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ABSTRACT:  

 

The aim of the current study was to evaluate the performance of patch-based classification technique in land use/land cover 

classification and to investigate the effect of patch size in thematic map accuracy. To reach desired goal, recently proposed ensemble 

learning classifiers (i.e., XGBoost and CatBoost) were utilized to classify produced image patches obtained from high-resolution 

WorldView-2 (WV-2) satellite image. . In order to analyse the effect of varying patch size on classification accuracy, three different 

window sizes (i.e., 3×3, 7×7 and 11×11) were applied to WV-2 imagery for extracting image patches. Constructed image patches 

were classified using XGBoost and CatBoost ensemble learning classifiers and thematic maps were constructed for varying patch 

sizes. Results showed that while XGBoost and CatBoost showed similar classification performances for varying patch size and the 

estimated highest overall accuracy were %68, %82 and %92 for 11x11, 7x7 and 11x11 patch sizes, respectively.   These findings 

confirmed that defining class boundaries on the high-resolution image using smaller patches increases the accuracy of thematic 

maps. In addition, results of patch-based classification were compared the results of LULC maps produced by same classifiers using 

pixel-based classification method. Overall accuracy of pixel-by-pixel classification of WV-2 image reached to about %94. 

Furthermore, CatBoost showed superior classification performance in all time compared to XGBoost. All in all, pixel-based 

CatBoost was found to be more successful in LULC mapping of fine resolution image.  

 

1. INTRODUCTION 

Producing and visualization of accurate, reliable and actual 

spatio-temporal information about the Earth’s surface plays an 

important role in planning, monitoring and management of 

intelligent cities. Land use/land cover (LULC) mapping of 

surface objects by performing various terrestrial measurements 

and statistical calculations is one of the ways for collecting 

information (Luo et al., 2021). In recent years, parallel to the 

technological advances, there has been increasing interest in the 

use of remote sensing technologies due to its ability for 

monitoring large areas at different spectral, spatial and temporal 

resolution with low cost. Thanks to the recent advances in 

sensor technology, it is possible to map the spatial distribution 

of LULC classes with higher accuracy using multiple spectral 

bands at high spatial resolution (Omer et al., 2015; Colkesen, 

Ertekin, 2020). Although the quality and resolution of remotely 

sensed imagery increases, accuracy of LULC maps produced 

through image classification process can be influenced by the 

several factors, such as selection of suitable classification 

technique and the use of robust prediction algorithm.  

 

There are different classification techniques have been applied 

to multi-spectral, hyperspectral, UAV or Radar images to 

determinate LULC classes of lands in many studies (Dingle 

Robertson, King, 2011; Sharma et al., 2017; Zheng et al., 2017; 

Xu et al.,, 2018; Ozturk and Colkesen, 2021). Traditional pixel-

based classification is one of the well-known classification 

techniques in the literature. The main idea behind the pixel-

based classification is to assign each image pixel to certain the 

LULC classes using their spectral values.  Thanks to the high 

spatial and spectral resolution images provided by recent 

sensors mounted on different platforms such as drones and 

satellites, acquisition of more detailed information about the 

Earth's surface has become possible. Due to the high spatial 

resolution, the performance of the pixel-based technique may be 

insufficient for the classification of a large number of pixels 

with spectrally similar properties. (Colkesen, Kavzoglu, 2017). 

To overcome these problems and to produce more accurate 

thematic maps, object-based image classification techniques 

have been suggested in the literature. The technique mainly 

relies on image segmentation process grouping spectrally 

similar pixels to construct image objects. The created image 

objects then classified considering their geometrical, textural, 

contextual or statistical properties (Lizarazo, Elsner, 2009). In 

the last decade, researchers shifted their focus to patch-based 

classification forming basis of deep learning applications due to 

their capacity to extract spatial information from image patches 

using relationship between neighbouring pixels and its ability to 

reduce noise (Zhu et al., 2017; Yang et al., 2020). Selection of 

optimal patch size for producing LULC maps is one the key 

parameters effected the success of patch-based classification. 

Many studies have been conducted to evaluate the impact of 

patch size on land cover mapping. For example, the 

comparative study on the selection of the appropriate vegetation 

patch size on the accurate mapping was carried out by Lechner 

et al. (2009). Dumitru et al. (2016) assessed the effect of patch 

size on generating of thematic maps for urbanized areas using 

SAR images. On the other hand, the use of a robust and 

effective classification algorithm for labelling LULC classes is 

another remarkable factor affecting accuracy of results as well 

as choosing the appropriate classification technique.  The 

superior performance of ensemble learning algorithms 

consisting of multiple classifiers in separating class boundaries 

has been used in many studies (Immitzer et al., 2012; Islam et 

al., 2020; Bui et al., 2021). XGBoost and CatBoost, one of the 

recently introduced advanced ensemble classifiers, have been 

widely used in land cover classification of remotely sensed 

datasets using pixel-based and object-based process (Gašparović 

and Dobrinić, 2020; Hamedianfar et al., 2020; Lebedev et al., 

2020; Rumora et al., 2020). However, there are few studies 

about adopting of these algorithms to patch-based classification 

for producing LULC mapping in the literature (Pal et al., 2020; 

Samat et al., 2020) 

 

The aim of this study is to adopt the patch-based classification 

and investigate optimal patch size for accurate LULC mapping 

of WV-2 image. In addition, traditional pixel-based 

classification was also applied to WV-2 image to find 

appropriate classification technique for LULC mapping. 
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XGBoost and CatBoost were used to classify remotely sensed 

image and results were evaluated with overall accuracy, kappa 

coefficient and F-score measures.  

 

2. STUDY AREA AND DATASET 

The study area covers approximately 220 ha of Bayramoglu 

Peninsula located in the west of Darica district of Kocaeli 

province, Turkey. The Bayramoglu Peninsula is located in 

Darica district of Kocaeli Province and it situated on the coast 

of Marmara Sea and the south-east of the Istanbul (Figure 1). 

The study area stands out with sandy beaches and recreation 

areas, single family houses having private pools and gardens. 

Generally, eight main LULC classes were determined for 

Bayramoglu Peninsula: forest including deciduous and 

coniferous trees, gray surface including roads and gray roofs, 

pasture, shadow, soil, tile roof, water including sea and pool and 

white surface including pool tiles and white roofs.  

 

 
 

Figure 1. The location of study area 

 

To produce LULC thematic maps of study area by pixel-based 

and patch-based image classification process, radiometrically 

and geometrically corrected 16-bit level 2 WorldView-2 (WV-

2) satellite image acquired on 7 July 2013 was utilized as main 

data source. The image consists of 8 spectral bands at 2 m 

spatial resolution in the central wavelength of 0.427 μm (coastal 

blue), 0.478 μm (blue), 0.546 μm (green), 0.608 μm (yellow), 

0.659 μm (red), 0.724 μm (red edge), 0.831μm (NIR-1) and 

0.908 μm (NIR-2). It also provides a panchromatic band at 0.5 

m spatial resolution in the spectral range of 0.46–0.80 μm. To 

improve the spatial resolution of WV-2 image and enhance 

interpretability of surface objects, multi-spectral bands were 

fused with panchromatic band of WV-2 by applying Gram-

Schmidt pan-sharpening algorithm before the image 

classification process and 8 spectral bands with a spatial 

resolution of 0.5 m were obtained. 

 

3. METEDOLOGY 

In this paper, a comparative study was conducted to analyse the 

accuracy of classification of WV-2 image by XGBoost and 

CatBoost using patch-based and pixel-based image analysis 

methods. In addition, effects of different window sizes (i.e., 

patch sizes) on estimated classification accuracy were also 

evaluated. The main processing steps of both classification 

techniques, description of classifiers and accuracy assessment 

procedure used for evaluating the accuracies of thematic maps 

were given in detail in the following subsections.  

 

3.1 Image Classification 

Different classification techniques, namely pixel-based, 

subpixel-based, object-based and patch-based have been 

suggested and applied in remote sensing to classify land cover 

objects more accurately, efficiently and faster. In recent years, 

there has been remarkable interest to patch-based classification 

due to its simple but robust performance (Samat et al., 2020). 

 

In this study, to conduct patch-based classification task two 

main processing steps were followed. First, square vectors of 

predefined sizes (i.e., image patches) of high-resolution WV-2 

image were produced. Spectral values of each band were 

extracted using the spatial information of these polygons and 

added to relevant vectors as attributes with flattening process. 

Finally, WV-2 raster image with 8 spectral bands was converted 

into vectorized image using 11×11, 7×7 and 3×3 window size as 

shown Figure 2.  It should be noted that vectorized image 

created with above mentioned patch sizes specifies the Dataset-

1, Dataset-2 and Dataset-3, respectively.  

 

 
 

Figure 2. Creation of vectorized input from MS raster image 
 

In the second step of patch-based classification, training and test 

samples were separately created from all Datasets. Training 

samples were formed to construct classification models with 

XGBoost and CatBoost classifiers and these models applied to 

test samples to determinate suitable user-defined parameters of 

algorithms. It should be noted that during the determination of 

training samples, the purest patches indicating highest spectral 

similarity between the pixels within the patch covering 

approximately the same location were selected to obtain more 

objective results.  Number of training and test patches utilized 

to produce LULC maps using WV-2 following patch-wise 

classification process were given in Table 1. 

 

Datasets 
Number of Training 

Patches 

Number of Test 

Patches 

Dataset-1 
(11 x 11) 

Per class:40 Per class:20 
Total:320 Total:160 

Dataset-2 

(7 x 7) 

Per class:120 Per class:60 

Total:960 Total:480 

Dataset-3 
(3 x 3) 

Per class:360 Per class:180 
Total:2880 Total:1440 

Table 1: Distribution of train test patches for each Dataset   

 

To compare the accuracy of thematic maps using different 

classification techniques, WV-2 image was also classified by 

applying pixel-based technique using XGBoost and CatBoost 

algorithms. To perform pixel-based classification process, 3,240 

pixels for each class (i.e., total of 25,920 pixels) were chosen as 

training samples and test dataset consisted of totally 12,960 

pixels (i.e., 1,680 pixels for each LULC classes). To construct 
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the most accurate classification models using training data, 

optimal parameters of algorithms were determined using test 

dataset. After this step, thematic maps produced by both 

classifiers separately.  

 

3.2 Classification Algorithms 

3.2.1 Extreme gradient boosting (XGBoost) 

 

XGBoost, one of the gradient boosting algorithm used in many 

remote sensing classification applications due to its robust and 

efficient performance (Georganos et al., 2018; Ghatkar et al., 

2019; Zhang et al., 2020), was developed by Chen and Guestrin  

(2016). The main principle behind XGBoost is to recursively 

construct decision trees and to focus on correcting errors of 

misclassified samples of the training dataset in the next iteration 

instead of the correctly classified sample at previous iteration 

(Sahin, 2020). To achieve this purpose and to obtain the most 

accurate model, it applies the loss function to weak learners of 

previous iteration and in order to minimize overfitting problem, 

it utilizes regularization parameter values (Hamedianfar et al., 

2020; Ustuner et al., 2020). To employ XGBoost algorithm, 

“xgboost” package available in R software was used and 

optimal values for user-defined parameters namely, “eta”, 

“gamma”, “min_child_weight”, “subsample”, 

“colsample_bytree”, “max_depth” and “nround” were 

determined with grid search algorithm. Determined optimal 

parameter values of XGBoost were given in Table 2.  It should 

be noted that parameter values of patch-based classification 

were specified for Dataset-3 and same values were employed to 

Dataset-1 and Dataset-2, respectively.  

 

Parameters 
Patch-Based 

Classification 

Pixel-Based 

Classification 

eta 0.3 0.1 

gamma 0 0 

min_child_weight 0.6 1 

subsample 0.8 0.8 
colsample_bytree 1 0.4 

max_depth 4 4 

nround 200 300 

Table 2. Parameter values of XGBoost 

 

3.2.2 Categorical boosting (CatBoost) 

 

CatBoost, relatively new tree-based ensemble learning 

algorithms developed by Yandex (2018) for handling 

categorical and numerical features, have been utilized in many 

studies including classification of remote sensing datasets 

(Pham et al., 2020; Rumora et al., 2020; Bui et al., 2021; Luo et 

al., 2021). In the implementation of CatBoost algorithms, there 

are two main processing steps for training phase. First, training 

samples were split into subsamples using random permutation 

technique to robust the classification model and the labels of 

samples are converted into numerical values. Second, numerical 

values are transformed into categorical features. “catboost” 

package available in the R software was used to implement of 

CatBoost classifier.  

 

Parameters 
Patch-Based 

Classification 

Pixel-Based 

Classification 

depth 4 4 

learning_rate 0.3 0.3 

iteration 400 300 
l2_leaf_reg 0.7 0.2 

rms 0.95 0.95 

border_count 128 128 

Table 3. Parameter values of CatBoost 

 

The “depth”, “learning_rate”, “l2_leaf_reg”, “rms” and 

“border_count” parameters were tuned using grid search 

algorithm and the estimated parameter values for patch-based 

and pixel-based classifications were presented in Table 3.  Note 

that the parameter values determined for the Dataset-3 were 

kept constant within the classification models created for the 

other datasets. 

 

3.3 Accuracy Assessment 

In this study, various classification techniques were used to 

produce thematic maps representing 8 LULC classes using the 

WV-2 image. In other words, spectral values of images 

extracted to vectors with different size and these vectors were 

classified by XGBoost and CatBoost. In addition, pixel-based 

image classification process was also conducted and two 

thematic maps were generated by classification algorithms. To 

evaluate the accuracy of LULC maps and to compare 

classification performances of both classifiers, 1,000 pixels for 

each class (i.e., totally 8,000 pixels) were selected as validation 

samples. Overall accuracy (OA) and Kappa coefficient values 

were estimated using validation samples to conduct accuracy 

assessment. In addition, F-score values based on harmonic 

means of user’s accuracy and producer’s accuracy value of each 

LULC class were also calculated to compare class-level 

accuracies.  

 

4. RESULTS  

In this study, thematic maps of the study area were produced by 

XGBoost and CatBoost ensemble methods using two different 

image classification techniques. To clearly examine the results 

of classified WV-2 image, results were presented under two 

subsections for each classification techniques.   

 

4.1 Results of Patch-Based Classification 

As stated above, one of the main purposes of this study is to 

evaluate the effect of varying window (i.e., patch) sizes on 

classification accuracy. For this purpose, pixel values of WV-2 

image in the 11×11 (i.e., Dataset-1), 7×7 (i.e., Dataset-2) and 

3×3 (i.e., Dataset-3) window sizes were aggregated in the 

vectors and created vectors were utilized as new classification 

inputs. Classification models were formed by both classifiers 

using aforementioned parameters and thematic maps were 

produced.  

 

LULC 

Classes 

F-score Values 

Dataset-1 Dataset-2 Dataset-3 

XGB CB XGB CB XGB CB 

Forest 66.17 71.44 83.01 85.80 92.81 93.33 

Gray S. 49.53 51.35 72.35 72.23 85.49 87.34 

Pasture 69.92 66.49 81.44 81.65 90.83 92.25 
Shadow 77.11 74.96 82.72 84.80 93.82 93.37 

Soil 70.70 71.19 81.64 83.21 91.04 90.01 

Tile R. 72.96 74.29 84.01 83.67 94.85 94.16 
Water 71.03 75.85 82.76 86.68 92.44 94.35 

White S. 67.43 62.87 87.19 82.96 98.07 97.76 

OA (%) 67.83 68.05 81.62 82.40 92.31 92.75 

Kappa 0.63 0.64 0.79 0.80 0.91 0.92 

Table 4. Accuracy results of maps produced by patch-based 

classification 

 

Accuracy assessment results of each thematic map produced by 

XGBoost and CatBoost were presented in Table 4. By the 

analysing of table, it was seen that there was an inverse 

relationship between patch-size considered and estimated 

classification accuracies. In other words, the highest OA values 
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(i.e., %92.31 with Kappa coefficient value of 0.91 by XGBoost 

and %92.75 with Kappa coefficient value of 0.92 by CatBoost) 

were observed dividing WV-2 image to 3x3 patches (Dataset-

3), whereas the lowest OA values were estimated as 67.83% 

(Kappa coefficient value of 0.63) and 68.05% (Kappa 

coefficient value of 0.64) by XGBoost and CatBoost, 

respectively with the use of 11x11 patch size. In addition, the 

surface objects in the study area were assigned to LULC classes 

using Dataset-2 with an OA value of %81.62 (Kappa coefficient 

value of 0.79) and %82.4 (Kappa coefficient value of 0.80) by 

XGBoost and CatBoost classifiers, respectively. Classification 

outputs showed that use of smaller patches for producing 

thematic maps enhanced the OA values up to %10 and %24 

compared to classification of surface objects with Dataset-1. 

Furthermore, it was found that the CatBoost classifier 

outperformed the XGBoost method with respect to the 

estimated OA values in all cases.  
 

In this study, F-score measure indicating the individual class-

accuracies were also assessed. When the results of Dataset-1 

analysed, it was seen that estimated class level accuracies for 

both classifiers below the 78%. In addition, the lowest F-score 

values as %49.53 as %51.35 calculated for gray surface class 

by, whereas shadow and water were classified by XGBoost and 

CatBoost with the highest class-level accuracy 77.11% and 

75.85%, respectively. When the F-score results calculated 

utilizing Dataset-2 were evaluated, about all objects were 

attached to relevant classes by both algorithms with over %81 

accuracy except gray surface class. On the other hand, the 

improvement in individual class-level of forest, shadow and soil 

reached to about %2 using CatBoost compared to XGBoost. 

However, classifying white surface using XGBoost resulted in 

approximately %5 better accuracy than result of Catboost. The 

results of class-based measurements of Dataset-3 showed that 

XGBoost and CatBoost determined the boundaries of nearly all 

classes with over %90 F-score values. On the other hand, when 

white surface was classified with highest value by both 

algorithms, the worst F-score values were estimated for gray 

surface class which was significantly lower than results of other 

classes as nearly %4. When the classification performance of 

the algorithms was evaluated for all data sets, CatBoost was 

produced better results for forest and water class. However, 

XGBoost was outperformed to CatBoost in identifying 

boundaries of white surface class in all cases.  

 

Visual results produced by XGBoost and CatBoost using 

Dataset-1, Dataset-2 and Dataset-3 were presented separately in 

Figure 3. As could be seen from figure, smoother maps were 

obtained when WV-2 image was classified utilizing smaller 

patch size (i.e., 3x3). In other words, results of Dataset-1 

generated by both algorithms had the nosiest look, whereas 

maps of Dataset-3 were smoothest. On the other hand, visual 

results indicated that boundaries of LULC classes were more 

accurately drawn using Dataset-3, yet classes covering large 

areas such as water were mapped more clearly by the use 

Dataset-3. In addition, misclassification errors were determined 

between shadow and water classes. When CatBoost tended to 

classify the water class as shadow, XGBoost was found to have 

superior classification performance in identifying these classes. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
 

Figure 3. Thematic maps produced using Dataset-1 by (a) 

XGBoost, (b) CatBoost; using Dataset-2 by (c) XGBoost, (d) 

CatBoost; using Dataset-3 by (e) XGBoost, (f) CatBoost 
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4.2 Results of Pixel-Based Classification 

In order to compare the performance of patch-based 

classification results of XGBoost and CatBoost algorithms, the 

WV-2 imagery was also classified using traditional pixel-based 

classification technique. Classification models were constructed 

using determined user-defined parameters applied whole dataset 

and thematic maps were produced. Thematic map accuracies 

were calculated using confusion matrix-derived measures 

including OA, Kappa coefficient and F-Score values. Table 5 

shows the pixel-based results of LULC maps yielded by 

XGBoost and CatBoost. Moreover, it was found that maps with 

similar OA values were generated by both classification 

algorithms. In other words, when the surface objects of study 

area depicting eight LULC classes were mapped of %94.65 OA 

value (Kappa coefficient of 0.94) via CatBoost, XGBoost 

classified these objects with OA of %94.59 (Kappa coefficient 

of 0.94), with a %0.06 difference. These classification results 

showed that pixel-based image analysis method produced more 

accurate and efficient maps by both robust classifiers compared 

to patch-based classification process for this study. 

 
LULC 

Classes 

F-score Values (%) 

XGB CB 

Forest 94.94 94.58 

Gray Surface 90.83 91.11 

Pasture 93.23 93.21 
Shadow 96.47 96.47 

Soil 91.97 91.40 

Tile Roof 93.76 93.96 
Water 96.41 96.98 

White Surface 99.30 99.65 

OA (%) 94.59 94.65 

Kappa 0.94 0.94 

Table 5. Accuracy results of maps produced by pixel-based 

classification 

 

F-sore values were computed for comparing class-based 

accuracies generated by XGBoost and CatBoost and 

measurements were given in Table 5. When the table was 

analysed, mapping of each LULC class resulted in with 

accuracy of over 90% using pixel-based classification 

procedure. On the other hand, when the highest F-score values 

calculated by classification algorithms were observed for white 

surface class over 99% accuracy, surface and soil classes were 

classified with worst accuracies of about 91%. In addition, 

XGBoost showed superior classification performance for forest, 

pasture, and soil, whereas gray surface, tile roof, water and 

white surface classes were more accurately classified by 

CatBoost. Furthermore, it was seen that boundaries of shadow 

class were determined with same accuracy level (i.e., 96.47%) 

by classifiers. 
 

Thematic maps produced by pixel-based XGBoost and 

CatBoost classifier were given in Figure 4. As can be seen from 

the figure, both classifiers mapped the LULC classes 

approximately the same accuracy using pixel-based image 

analysis. In addition, main classification errors were determined 

between gray surface and water. The reason for this error is 

thought to be caused by gravels under water in shallow areas. 

When the maps with the highest OA value produced as patch-

based (i.e., Dataset-3) were compared with the images produced 

as pixel-based, it was found that the classification error between 

water and shadow classes was eliminated by using pixel-based 

image analysis technique.  

 

 
(a) 

 
(b) 

 
 

Figure 4. Thematic maps produced using pixel-based image 

analysis technique by (a) XGBoost, (b) CatBoost 

 

5. CONCLUSIONS 

In this study, the accuracies of thematic maps produced by two 

different classification techniques were analysed. For this 

purpose, high spatial resolution WV-2 image was classified 

applying patch-based classification process using various 

window sizes and pixel-based classification process. Robust 

ensemble learning methods, XGBoost and CatBoost, were used 

to implementation of classification task. LULC maps of study 

area were generated by these classifiers using mentioned 

classification techniques and results of maps were evaluated 

with OA, Kappa coefficient and F-score measurements.  

 

Some important findings were obtained from the classification 

results of this study. Firstly, in the patch-based classification, 

the most accurate thematic maps with over %92 OA values 

were produced with the use of Dataset-3 by both classifiers. On 

the other hand, employing classification models using Dataset-1 

and Dataset-2 decreased the OA values of maps up to about 

%68 and %82 respectively. These results verified that the use of 

smaller window size in the classification of raster image with 

patch-based procedure improved the classification accuracy. 

Secondly, thematic maps yielded by pixel-based image analysis 

technique produced more accurate results compared to maps 

produced extracting pixel values of image to vectors with 

different sizes and improvements in map accuracies reached to 

about %2, %12 and %27, respectively. Moreover, the result 

showed that pixel-based classification technique can be produce 

more accurate results using ensemble learning algorithms.  

Thirdly, when the thematic maps produced by patch-based 

(patch size of 3x3) and pixel-based analyzed separately, patch-

based approach showed superior performance in the 

classification of the interior areas of objects. However, it was 

insufficient of assigning object edges to the correct class label. 

On the other hand, pixel-based classification approach 

outperformed to patch-based classification in the determination 

of the class boundaries clearly. This finding showed that while 

better results can be obtained with pixel-based classification in 

the objects with sharp boundaries, maps containing lower level 

noise (i.e., salt-and-pepper noise) can be produced with patch-

based classification. Finally, CatBoost yielded better 

classification results than XGBoost method in all cases. In other 
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words, although both algorithms produced thematic maps with 

similar accuracies in patch-based classification and pixel-based 

classification process, improvement in accuracies increased 

about %0.5 in the patch-based classification and %0.06 in the 

pixel-based classification by using CatBoost comparing to 

XGBoost. The superiority of CatBoost may be related the 

training approach that convert categorical features to numeric. 

More studies should conduct to compare the performance of 

pixel-based and patch-based approach in the classification of the 

datasets including different object types. This study was carried 

out in a small area. High resolution LULC maps to be produced 

for larger areas will contribute more to the management and 

planning of smart cities. 
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