
DESIGN OF A SERVERLESS OGC WPS BASED GEOPROCESSING SERVICE

SOLUTION

M.E. Pakdil1, R.N. Çelik1

1Istanbul Technical University, Istanbul, Turkey – (pakdilme, celikn)@itu.edu.tr

KEY WORDS: Cloud Computing, Geographic Information Systems, Serverless Architecture, OGC WPS, Geoprocessing.

ABSTRACT:

Geospatial data and related technologies have increasingly become a crucial part of big data analysis processes and even a prominent

player in most of them. Serverless architectures have become today's trending and widely used technology within the cloud computing

paradigm. In this paper, we review the serverless paradigm advantages over traditional cloud architecture models and infrastructures.

Moreover, we examined the deployment of Open Geospatial Consortium (OGC) Web Processing Service (WPS) specification based

geoprocessing Application Programming Interface (API) with serverless architecture. In this context, we propose a system design and

review it in detail together with the results discussed along with use cases.

1. INTRODUCTION

The recent developments in cloud computing have led to the

achievements of essential milestones in science and technology.

This was primarily because highly scalable processing

infrastructures are offered at low cost, allowing researchers to

access high computing power readily and quickly. Today, it is

almost impossible to think of big data scenarios without cloud

computing. Researchers now have the opportunity of testing their

algorithms on cloud computing platforms by using their ready

and tailorable computing infrastructures so that they can

efficiently complete their works without considerable

investments in infrastructure. They have contributed to the

development of science and technology and played a significant

role in the emergence and evolution of geospatial informatics.

Geospatial data and related technologies have increasingly

become a crucial part of big data analysis processes and even a

prominent player in most of them. The most challenging

requirement in these analysis processes is the setup and

management of fulfilling computing infrastructure that can

handle complex and resource-consuming algorithms. Thanks to

cloud computing, infrastructure deployment and management

have become much easy, even out of requirement. Therefore, in

today's world, geospatial informatics is more frequently

mentioned together with cloud technologies. Although a

geospatial project is attempted to be designed and implemented

on cloud computing infrastructure, lack of skilled human

resources and cost issues could be blocker and deal-breaker items

in project resource planning. The employment of skilled human

resources for cloud computing technologies is considered an

obstacle by companies eager to use this technology due to the

increasing demand for these skills in the market. Besides, hiring

a person with skills in cloud computing and geospatial

technologies poses extra difficulty.

Technical challenges must be carefully evaluated as a cloud-

based geographical information system is designed and planned.

These challenges are directly proportional to the volume of data

and the number of users. Although cloud infrastructures can

promise limitless physical resources and scalable platforms,

project budgets could limit their usage in practice. Moreover,

even though many cloud providers offer their services based on

a pay-as-you-go pricing model, project owners may face

unexpected bills unless resources are correctly configured. It can

cause colossal resource consumption mainly because of

misconfigured scaling parameters. (Berbotta et al., 2020).

Serverless architectures have become today's trending and widely

used technology within the cloud computing paradigm. The

major advantage of the serverless approach over others is its high

scalability and higher-level abstraction in infrastructure

management. Thus, it provides a computing platform with fewer

technical challenges and maintenance requirements. Serverless

computing services can be examined in two categories as

following;

 Function as a Service (FaaS)

 Container as a Service (CaaS)

 (Schachar 2019, Chowhan 2018).

These service types are specifically designed to run deployed

applications with abstracted infrastructure management

delegated to cloud providers. Therefore, skilled human resources

needed for both solving technical challenges in complex

deployment environments and infrastructure management are

reduced a lot. With the use of serverless technology in

geographical information system applications, geospatial

professionals with a lack of cloud computing competency may

have the opportunity to get acquainted with cloud technologies.

FaaS applications are event-based. Events can be fired from

different sources and devices, usually under the internet of things

(IoT) umbrella. Nowadays, various smart sensors are widely used

as a vital player in many smart city ecosystems. It is essential for

decision-makers to process the data produced by these sensors

based on environmental events and activities in near real-time.

For this reason, the infrastructure of the geographical information

system to process the data from these sensors must be very

responsive and easily scalable to handle massive data flow. In

this way, the data can be stored and analysed in the fastest way

(Evans et al. 2018). To give a comparative example, consider a

smart city scenario based on an IaaS or PaaS cloud architecture;

the system's success will depend on the technical competence of

human resources responsible for the management of

infrastructure. On the other hand, in the same scenario based on

serverless architecture, the success will depend only on the

software architecture design (Van et al. 2020). Thus, system

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

425

sustainability can be prolonged with proper optimisation and

maintenance of the application.

Even if, at first glance, smart city systems based on serverless

architectures cannot be run without the infrastructure provided by

public cloud providers, they can also run on on-premise

infrastructures in the same way. On-premise serverless

infrastructures make it possible to deploy serverless GIS

architectures for projects where cloud computing is not an option

because of limitations by local data regulations. Thus, resource

optimisation, one of the primary virtues of serverless

architectures, has also become applicable to on-premise systems.

Nevertheless, skilled human resources requirements could

remain a trade-off in on-premise deployments that need the

management of on-premise infrastructures.

This study proposes a system design to run Open Geospatial

Consortium (OGC) Web Processing Service (WPS) based web

service to execute complex and long-running geoprocessing tasks

in a serverless architecture. The proposed system design is

evaluated on a selected cloud provider, and the results are

reviewed. This system design could prove that geoprocessing

workflows can deploy to serverless platforms using a well-known

industry standard to eliminate interoperability issues.

2. SYSTEM DESIGN

The proposed system is designed based on the serverless

components so that the system's computing components are run

when called and terminated when the execution is done (Figure

1). The WPS API follows the OGC WPS standard's definitions

and runs asynchronously. The API executes the requested

operation on serverless containers. Task statuses are stored in a

serverless database and updated based on container and execution

states. The design is implemented with AWS serverless services,

and each service name is depicted together with the component

name.

In this design, we aim to accomplish the following goals;

1. The design should not consume any computational

resources while the system is idle.

2. The API should work with an industry standard to

provide interoperability and avoid a steep learning curve for

those who want to consume the API.

3. The API must be asynchronously run to be deployed to

stateless service models such as FaaS.

4. The design should be able to deploy in both on-

premises and public cloud infrastructures.

5. The system must be extensible with different

technologies and new task definitions without changing core

components.

6. The design should be testable and runnable in the

developer's machine so that it can be developed.

7. The system should be fault-tolerant. Application or

tasks errors should be logged and monitored.

Two different roles are defined in the design; these are `user` and

`task developer`.

 The user can be a person who knows how to use

desktop or web GIS applications. These end-user

applications must support the OGC WPS standard.

 The task developer adds new Docker container images

that contain code to run a task. The task developer should

understand the basics of Docker image development and

deployment. There is no limitation to using a programming

language so that the developer has the freedom to use any

programming language for the task development.

In the diagram, we divide the system design into three layers

called "OGC WPS Service", "Task Execution Service", "Task

Repositories". In the following three subsections, we will explain

these layers in detail.

Figure 1. Serverless OGC WPS based geoprocessing system

architecture design

2.1 OGC WPS Service

The WPS API is the core component of the whole system. A full-

fledged API handles HTTPS (Hypertext Transfer Protocol

Secure) requests from an API client and a running container. It

runs asynchronously and stateless. Thus, it does not support

session-based authentications or data, and each request must be

authenticated in every request.

The API endpoints are categorised as public and private

endpoints. Private endpoints are only available to containers, and

containers may use these internal endpoints to update progress,

status, and estimated completion time of the running task. In

addition, public endpoints are permission trimmed by role. User

and developer roles are defined in hardcoded ACL (access-

control list) that grants permissions. Process management

endpoints are restricted to developers. The API obeys REST

(Representational state transfer) design constraints except for

"/wps" endpoint because it must be OGC WPS 2.0 compliant

(Mueller and Pross, 2015).

Endpoint Request

Method

Description Role

/wps POST

and GET

WPS

operations

User

/outputs/{task-

id}/{filename}

GET Download

produced

output file

User

/process/ POST Add new

process

definition

Developer

/process/{process-

name}

PUT Update process

definition

Developer

/process/{process-

name}

DELETE Delete process

definition

Developer

Table 1. WPS API Public Endpoints

"/wps" endpoint follows OGC WPS 2.0 specification for both

request and response models. On the other hand, process

management endpoints, which start with "/process/" path,

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

426

consume and produce JSON (JavaScript Object Notation)

payloads.

Endpoint Request

Method

Description

/status/{task-id} PUT Update status of running

task

/inputs/{task-id} GET Download given inputs

/outputs/{task-

id}/{filename}

POST Upload produced output

file

Table 2. WPS API Private Endpoints

All input and output endpoints consume and produce a binary

payload for file management. These endpoints play a crucial role

in making WPS API asynchronous. A running task can use these

endpoints to store its outputs and read large input objects. Once

the task execution is complete, temporary download links can be

generated and passed as a reference value in the WPS execution

response.

The API can be deployed to a FaaS service as a serverless

function. Serverless functions, one of the serverless computing

services, are utilised to run a deployed piece of code to execute a

task for a purpose such as processing data from a sensor. This

piece of code may be written in any programming language

supported by the FaaS service. Functions can be triggered easily

by any event that can be sourced from either another platform

service or an external source (Malawski et al., 2020).

Fundamentally, FaaS services are a kind of container orchestrator

that runs deployed a piece of code within a short time on special

containers that are mainly designed for the FaaS system (Figure

2). A typical FaaS platform loads the function code on demand.

The first load is called a "cold start", and it usually takes

milliseconds (Katzer, 2020). Then the platform immediately

gives the function a request payload from the event. When

processing completes, it terminates the running container.

Subsequently, the platform may reuse the created container with

a "warm start" to save time, but the function cannot rely on this

case, and it must be designed stateless.

Figure 2. A life cycle of a FaaS execution

AWS offers a FaaS service called AWS Lambda. It supports

major programming languages and various event sources,

including HTTP events. Supporting HTTP traffic sourced events

makes it possible to deploy a Web API application. AWS

Lambda keeps regularly used functions warm for a limited time

(40 - 60 minutes) (Cui, 2020). AWS provides a logging platform

called CloudWatch that can integrate with AWS Lambda. It is

helpful to monitor the system for possible errors. Alerts can also

be created in CloudWatch to notify system administrators in case

of any failure in near real-time.

The proxy service is to route HTTPS traffic to WPS API in a

secure way. Most importantly, the proxy service cloud also

provides to work with multiple functions so that we can split the

API codebase into different functions based on optimisation or

deployment needs.

Figure 3. A function and its integrations with other resources

We leverage AWS API Gateway as a proxy service to transform

HTTP requests into AWS Lamba events in our proposed design.

The AWS API Gateway provides authentication and request

throttling, but we do not add these extra protection layers to keep

our design simple. Since the design is decoupled from these

protection features, they can be added later in available services

and libraries based on needs.

The WPS API functions store process statuses and parameters'

data in a serverless NoSQL database. NoSQL database

technology is selected as data storage because it is easier to find

an available serverless service in public cloud providers over

serverless relational SQL databases. Each asynchronous WPS

request is stored in the data store to monitor the progress of the

executed process. Thus, a WPS client can poll WPS API

frequently to track progress.

The WPS specification describes three different data types for

input and output parameters (Table 3).

Data Type Description

Complex It can be an extended ASCII or Binary

(Base-64) data such as GML vector or

Base-64 encoded raster data.

Literal Simple inputs like buffer size or

distance value

Bounding Box Bounding Box definition in geographic

coordinates

Table 3. WPS Data Types

The WPS API stores complex input and outputs to blob storage

to reduce the load on the data store in our design. Literal and

bounding box parameter values are stored in the data store. We

will explain how processes utilise these values in the next section.

The data store consists of two tables that define two entity

models; process and task (Figure 4). The process entity model is

designed to handle process information comply with the WPS

specification. Each process and task have a unique identifier.

System components identify and distinguish all task-related

objects based on these unique identifiers. When a developer adds

a new process definition to the system, the process model will be

populated with version, identifier, title, inputs, outputs, container

image name and container image tag as mandatory fields. On a

new task submission or a task event, the WPS API adds a new

record to the task table or sets additional attributes denoting status

information such as percentage, timing, and logged message.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

427

Figure 4. Data models for task and process entities

Amazon DynamoDB is a NoSQL database provided by AWS as

a key-value store. In the implementation, Amazon DynamoDB is

chosen as a serverless data storage solution. Unlike relational

databases, Amazon DynamoDB provides HTTP API endpoints

to perform data operations on tables instead of SQL. For this

reason, the WPS API communicates Amazon DynamoDB

throughout the HTTP API wrapped by the DynamoDB library.

Since it is a key-value store, we choose "Id" fields as keys in our

table configurations.

2.2 Task Execution Service

The task execution service is the layer where all processes are

executed in containers based on demand. The WPS API calls the

container orchestration platform to create a new container to

execute the process with given inputs. The container

orchestration platform pulls the published image from the image

registry.

Figure 5. Sequence diagram for task execution service

The container and WPS API must communicate via private

endpoints; thus, the container's network configuration should

allow traffic between the API and the container without any

restriction. In some cases, the process may need to access public

geospatial APIs or external resources via an internet gateway.

Therefore, internet access may be needed to allow for containers.

During the process execution, the container process updates the

progress and forward outputs to the WPS API, so the user is

acknowledged the status of the running or completed execution.

Amazon Fargate is an AWS service for the serverless container

orchestration platform that uses the Docker framework. Docker

is the de facto containerisation framework and has revolutionised

the packaging and deployment of software. In our design, we use

Amazon Fargate to run deployed container images. We choose

Amazon Fargate because it allows running containers without

managing an infrastructure to handle a high workload and long-

running processes (Culkin et al., 2021). In addition, it consumes

infrastructure resources only while containers are running.

The processes store output data to object storage as objects.

Object storages manage binaries as objects instead of other

storage architectures like file systems that manage data as a file

hierarchy. Objects are partitioned by process and task id as

follows; “{process-id}/{task-id}/output-file-name”. The WPS

API interacts with the object storage to generate signed URLs to

provide secure addresses for file uploads and downloads inside

the container.

Amazon S3 is the serverless object storage service provided by

AWS. The implantation of the proposed design uses Amazon S3

as object storage to store a WPS process' binary inputs and

outputs. Moreover, it allows generating unique temporal URLs

to access files from a container or a WPS client.

2.3 Process Repository

In this layer, the process developer builds and publishes custom

container images to the container image registry and register the

new process to the WPS API. The custom container image is

inherited from a previously published base image. This base

image contains necessary initialisation binaries to execute

deployed code pieces as a forked process and forwards all

standard inputs and outputs to the WPS API. This embedded

binary also calls the WPS API to update progress and get the

given inputs to download.

Figure 6. An example Dockerfile structure

The process developer builds an image based on the structure we

propose (Figure 6). This custom structure declares a custom base

docker image that injects the binary to fork deployed app as a

child process.

3. USE CASES

In geospatial data processing applications as well as in smart city

applications, there are various situations where serverless WPS

implementation can be useful. Geospatial workflows can

leverage WPS processes where intensive calculations are needed.

FROM [BASE IMAGE FOR PROCESS BINARY] as

function

COPY --from=function

/function_runner/function_runner

/usr/bin/function_runner

RUN chmod +x /usr/bin/function_runner

...REST OF THE IMPLEMENTATION...

ENV FUNCTION_COMMAND="[COMMAND TO BE FORKED]"

CMD ["function_runner"]

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

428

Geospatial big data applications can utilise cloud infrastructure

to scale out the process by splitting it into small batches for

parallel processing. Concurrent analyses are the most appropriate

use case for a serverless method (Roberts and Chapin, 2017). For

example, generation of contours from DEM (Digital Elevation

Model) raster files are supplied from a public data server that

resides in the cloud (Figure 7).

Figure 7. An example concurrent batch raster to vector

conversation

Smart sensors or Internet of Things (IoT) devices are another use

case for serverless architecture. IoT devices usually have little

processing capacity and rely on external resources by delivering

event signals, which are well-suited to cloud computing (Shekhar

et al., 2012). They can deliver messages to WPS API and trigger

processing execution. In high message traffic flow cases, the

system can allocate more containers to handle requests. The

stored process outputs can be directly used by another cloud

serverless analytic service to generate valuable outcomes for

decision-makers. Therefore, the data is processed and analysed

in the cloud without transferring to another platform (Figure 8).

Figure 8. Data processing flow triggered by smart sensors

It is possible to add more use cases for scenarios requiring data

processing in a performant and cost-effective way for geospatial

data throughout an open industry standard; in our case, it is OGC

WPS. We hope to see numerous use cases of serverless geospatial

data processing in the smart city architectures near future.

4. RELATED WORKS

PyWPS is an open-source project that implements WPS

specifications in Python (URL 1). PyWPS allows developers to

serve Python processes using the WPS standard. Not to mention

the fact that our API's WPS endpoints are implemented inspired

by the PyWPS library.

De Sousa et al. introduce new features in PyWPS version 4, and

they give some use cases that can be readily tested on our

proposed design.

Baldini et al. review the advantages of serverless architectures

and list limitations of the serverless platform. They emphasise

that there has not been a commensurate level of interest among

researchers for serverless technologies.

OGC released a new specification for geoprocessing service as a

part of the OGC API standard. This new specification also

supports JSON format.

Zhang et al. introduce a geoprocessing workflow that couples

W3C PROV and OGC WPS. This new model allows users to

define a workflow execution plan to run a set of geoprocessing

tasks in order. Their implementation can be applied to our

proposed architecture design and make it deployable on

serverless infrastructures.

Read et al. develop a new library called "geoknife". The idea

behind the library overlaps with our purpose. Briefly, the idea is

to delegate geoprocessing operations to managed web servers and

returned manageable datasets for subsequent local investigations.

This approach can be very well achieved with our proposed

design. The data can be processed in a cloud platform with public

datasets also served in the same cloud platform. Low latency

network calls between the geoprocessing and dataset locations

can reduce execution durations.

5. CONCLUSIONS

In this paper, we reviewed our proposed design in detail. Our

design is applied on OGC WPS specification; however, OGC has

been working on a new geoprocessing specification called OGC

API – Processes (URL 2). We choose the existing WPS

specification over OGC API – Processes because the new

standard is still in draft, and major GIS applications do not widely

support it. We expect the new geoprocessing standard to be more

suitable for sensors directly communicating with an OGC API

service that allows JSON requests and responses. JSON is

considerably smaller than XML, resulting in quicker

transmission and processing.

We prefer CaaS over FaaS because CaaS provides fewer

restrictions on configurations to deal with complex workloads.

When simple calculations are needed to be executed, the FaaS

model can also be preferred instead of the CaaS model in the

design. Thus, we do not add anything into the design to couple

tightly with CaaS infrastructure. When the FaaS is used, the

developer role needs to be slightly changed, and it will be

responsible for deploying code pieces that can be run on the FaaS

platform instead of publishing container images.

Our use cases are designed as generic as possible to give a

fundamental idea for readers to design specific systems based on

the requirements.

We prefer to implement our design with Amazon Web Services

as a public cloud provider because it is one of the most widely

used cloud providers and provides serverless services that we

need to realise our design. The design can also be deployed on

Microsoft Azure or Google Cloud, and both provide similar

serverless services for storage, data store, and container

orchestration.

In conclusion, we discuss the serverless paradigm together with

geospatial processing as locate it as a core component in systems

that produce meaningful information from raw data that may be

sourced from the environment and people. We believe that smart

city systems should leverage serverless architectures to build

highly optimised, real-time, highly scalable, fault-tolerant

systems requiring minimum infrastructure management and

advanced skills for geospatial professions.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

429

REFERENCES

Baldini, I., Castro, P.C., Chang, K., Cheng, P., Fink, S.J.,

Ishakian, V., Mitchell, N., Muthusamy, V., Rabbah, R.,

Slominski, A., & Suter, P. (2017). Serverless Computing:

Current Trends and Open Problems. Research Advances in Cloud

Computing.

Bebortta, S., Das, S., Kandpal, M., Barik, R. K., Dubey H.

(2020). Geospatial Serverless Computing: Architectures, Tools

and Future Directions. ISPRS International Journal of Geo-

Information. 9. 311. doi.org/10.3390/ijgi9050311.

Chowhan, K. (2018). Hands-On Serverless Computing. Pact

Publishing

Culkin, J., Zazon, M., Ferguson, J. (2021). AWS Cookbook.

O'Reilly Media, Inc.

Cui, Y. (2017). How long does AWS Lambda keep your idle

functions around before a cold start?

https://acloudguru.com/blog/engineering/how-long-does-aws-

lambda-keep-your-idle-functions-around-before-a-cold-start

(Accessed on: 25 July 2021)

de Sousa, L. M., de Jesus, J. M., Čepicky, J., Kralidis, A. T.,

Huard, D., Ehbrecht, C., Barreto, S., & Eberle, J. (2019). PyWPS:

overview, new features in version 4 and existing

implementations. Open Geospatial Data, Software and

Standards, 4(1). doi.org/10.1186/s40965-019-0072-0

Evans, M. R., Oliver, D., Yang, K., Zhou, X., Ali, R. Y., &

Shekhar, S. (2018). Enabling spatial big data via CyberGIS:

challenges and opportunities. GeoJournal Library, 143–170.

doi.org/10.1007/978-94-024-1531-5_8

Katzer, J. (2020). Learning Serverless. O'Reilly Media, Inc.

Malawski, M., Gajek, A., Zima, A., Balis, B., & Figiela, K.

(2020). Serverless execution of scientific workflows:

Experiments with HyperFlow, AWS Lambda and Google Cloud

Functions. Future Generation Computer Systems, 110, 502–514.

doi.org/10.1016/j.future.2017.10.029

Mueller, M., Pross, B. (2015). OGC WPS 2.0.2 Interface

Standard Corrigendum 2. Open Geospatial Consortium,

http://docs.opengeospatial.org/is/14-065/14-065.html (Accessed

on: 25 July 2021).

Read, J. S., Walker, J. I., Appling, A. P., Blodgett, D. L., Read,

E. K., & Winslow, L. A. (2015). geoknife: reproducible web‐

processing of large gridded datasets. Ecography, 39(4), 354–360.

doi.org/10.1111/ecog.01880

Roberts, M.; Chapin, J. (2017). What is Serverless? O'Reilly

Media, Incorporated: Sebastopol, CA, USA.

Schachar, A. (2019). Serverless CaaS: Rethinking app

infrastructure. https://spot.io/blog/serverless-caas-rethinking-

app-infrastructure/ (Accessed on: 27 May 2021)

Shekhar, S., Gunturi, V., Evans, M. R., & Yang, K. (2012).

Spatial big-data challenges intersecting mobility and cloud

computing. Proceedings of the Eleventh ACM International

Workshop on Data Engineering for Wireless and Mobile Access

- MobiDE '12. the Eleventh ACM International Workshop.

doi.org/10.1145/2258056.2258058

URL 1. https://pywps.org (Accessed on: 25 July 2021)

URL 2. https://ogcapi.ogc.org/processes/ (Accessed on: 25 July

2021)

Van Eyk, E., Toader, L., Talluri, S., Versluis, L., Uta, A., Iosup,

A. (2018). Serverless is more: from PaaS to present cloud

computing. IEEE Internet Computing, 22(5), 8–17.

doi.org/10.1109/mic.2018.053681358

Zhang, M., Jiang, L., Zhao, J., Yue, P., & Zhang, X. (2020).

Coupling OGC WPS and W3C PROV for provenance-aware

geoprocessing workflows. Computers & Geosciences, 138,

104419. doi.org/10.1016/j.cageo.2020.104419

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

430

