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ABSTRACT: 

 

Geospatial data and related technologies have increasingly become a crucial part of big data analysis processes and even a prominent 

player in most of them. Serverless architectures have become today's trending and widely used technology within the cloud computing 

paradigm. In this paper, we review the serverless paradigm advantages over traditional cloud architecture models and infrastructures. 

Moreover, we examined the deployment of Open Geospatial Consortium (OGC) Web Processing Service (WPS) specification based 

geoprocessing Application Programming Interface (API) with serverless architecture. In this context, we propose a system design and 

review it in detail together with the results discussed along with use cases.  

 

 

1. INTRODUCTION 

The recent developments in cloud computing have led to the 

achievements of essential milestones in science and technology. 

This was primarily because highly scalable processing 

infrastructures are offered at low cost, allowing researchers to 

access high computing power readily and quickly. Today, it is 

almost impossible to think of big data scenarios without cloud 

computing. Researchers now have the opportunity of testing their 

algorithms on cloud computing platforms by using their ready 

and tailorable computing infrastructures so that they can 

efficiently complete their works without considerable 

investments in infrastructure. They have contributed to the 

development of science and technology and played a significant 

role in the emergence and evolution of geospatial informatics. 

 

Geospatial data and related technologies have increasingly 

become a crucial part of big data analysis processes and even a 

prominent player in most of them. The most challenging 

requirement in these analysis processes is the setup and 

management of fulfilling computing infrastructure that can 

handle complex and resource-consuming algorithms. Thanks to 

cloud computing, infrastructure deployment and management 

have become much easy, even out of requirement. Therefore, in 

today's world, geospatial informatics is more frequently 

mentioned together with cloud technologies. Although a 

geospatial project is attempted to be designed and implemented 

on cloud computing infrastructure, lack of skilled human 

resources and cost issues could be blocker and deal-breaker items 

in project resource planning. The employment of skilled human 

resources for cloud computing technologies is considered an 

obstacle by companies eager to use this technology due to the 

increasing demand for these skills in the market. Besides, hiring 

a person with skills in cloud computing and geospatial 

technologies poses extra difficulty.  

 

Technical challenges must be carefully evaluated as a cloud-

based geographical information system is designed and planned. 

These challenges are directly proportional to the volume of data 

and the number of users. Although cloud infrastructures can 

promise limitless physical resources and scalable platforms, 

project budgets could limit their usage in practice. Moreover, 

even though many cloud providers offer their services based on 

a pay-as-you-go pricing model, project owners may face 

unexpected bills unless resources are correctly configured. It can 

cause colossal resource consumption mainly because of 

misconfigured scaling parameters. (Berbotta et al., 2020).  

 

Serverless architectures have become today's trending and widely 

used technology within the cloud computing paradigm. The 

major advantage of the serverless approach over others is its high 

scalability and higher-level abstraction in infrastructure 

management. Thus, it provides a computing platform with fewer 

technical challenges and maintenance requirements. Serverless 

computing services can be examined in two categories as 

following; 

 Function as a Service (FaaS) 

 Container as a Service (CaaS) 

 (Schachar 2019, Chowhan 2018). 

 

These service types are specifically designed to run deployed 

applications with abstracted infrastructure management 

delegated to cloud providers. Therefore, skilled human resources 

needed for both solving technical challenges in complex 

deployment environments and infrastructure management are 

reduced a lot. With the use of serverless technology in 

geographical information system applications, geospatial 

professionals with a lack of cloud computing competency may 

have the opportunity to get acquainted with cloud technologies. 

 

FaaS applications are event-based. Events can be fired from 

different sources and devices, usually under the internet of things 

(IoT) umbrella. Nowadays, various smart sensors are widely used 

as a vital player in many smart city ecosystems. It is essential for 

decision-makers to process the data produced by these sensors 

based on environmental events and activities in near real-time. 

For this reason, the infrastructure of the geographical information 

system to process the data from these sensors must be very 

responsive and easily scalable to handle massive data flow. In 

this way, the data can be stored and analysed in the fastest way 

(Evans et al. 2018). To give a comparative example, consider a 

smart city scenario based on an IaaS or PaaS cloud architecture; 

the system's success will depend on the technical competence of 

human resources responsible for the management of 

infrastructure. On the other hand, in the same scenario based on 

serverless architecture, the success will depend only on the 

software architecture design (Van et al. 2020). Thus, system 
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sustainability can be prolonged with proper optimisation and 

maintenance of the application. 

 

Even if, at first glance, smart city systems based on serverless 

architectures cannot be run without the infrastructure provided by 

public cloud providers, they can also run on on-premise 

infrastructures in the same way. On-premise serverless 

infrastructures make it possible to deploy serverless GIS 

architectures for projects where cloud computing is not an option 

because of limitations by local data regulations. Thus, resource 

optimisation, one of the primary virtues of serverless 

architectures, has also become applicable to on-premise systems. 

Nevertheless, skilled human resources requirements could 

remain a trade-off in on-premise deployments that need the 

management of on-premise infrastructures. 

 

This study proposes a system design to run Open Geospatial 

Consortium (OGC) Web Processing Service (WPS) based web 

service to execute complex and long-running geoprocessing tasks 

in a serverless architecture. The proposed system design is 

evaluated on a selected cloud provider, and the results are 

reviewed. This system design could prove that geoprocessing 

workflows can deploy to serverless platforms using a well-known 

industry standard to eliminate interoperability issues.  

 

2. SYSTEM DESIGN 

The proposed system is designed based on the serverless 

components so that the system's computing components are run 

when called and terminated when the execution is done (Figure 

1). The WPS API follows the OGC WPS standard's definitions 

and runs asynchronously. The API executes the requested 

operation on serverless containers. Task statuses are stored in a 

serverless database and updated based on container and execution 

states. The design is implemented with AWS serverless services, 

and each service name is depicted together with the component 

name.  

 

In this design, we aim to accomplish the following goals; 

 

1. The design should not consume any computational 

resources while the system is idle.  

2. The API should work with an industry standard to 

provide interoperability and avoid a steep learning curve for 

those who want to consume the API. 

3. The API must be asynchronously run to be deployed to 

stateless service models such as FaaS.  

4. The design should be able to deploy in both on-

premises and public cloud infrastructures.  

5. The system must be extensible with different 

technologies and new task definitions without changing core 

components. 

6. The design should be testable and runnable in the 

developer's machine so that it can be developed. 

7. The system should be fault-tolerant. Application or 

tasks errors should be logged and monitored. 

 

Two different roles are defined in the design; these are `user` and 

`task developer`.  

 The user can be a person who knows how to use 

desktop or web GIS applications. These end-user 

applications must support the OGC WPS standard.  

 The task developer adds new Docker container images 

that contain code to run a task. The task developer should 

understand the basics of Docker image development and 

deployment. There is no limitation to using a programming 

language so that the developer has the freedom to use any 

programming language for the task development. 

 

In the diagram, we divide the system design into three layers 

called "OGC WPS Service", "Task Execution Service", "Task 

Repositories". In the following three subsections, we will explain 

these layers in detail. 

 
Figure 1. Serverless OGC WPS based geoprocessing system 

architecture design  

 

2.1 OGC WPS Service 

The WPS API is the core component of the whole system. A full-

fledged API handles HTTPS (Hypertext Transfer Protocol 

Secure) requests from an API client and a running container. It 

runs asynchronously and stateless. Thus, it does not support 

session-based authentications or data, and each request must be 

authenticated in every request.  

 

The API endpoints are categorised as public and private 

endpoints. Private endpoints are only available to containers, and 

containers may use these internal endpoints to update progress, 

status, and estimated completion time of the running task. In 

addition, public endpoints are permission trimmed by role. User 

and developer roles are defined in hardcoded ACL (access-

control list) that grants permissions. Process management 

endpoints are restricted to developers. The API obeys REST 

(Representational state transfer) design constraints except for 

"/wps" endpoint because it must be OGC WPS 2.0 compliant 

(Mueller and Pross, 2015).  

 

Endpoint Request 

Method 

Description Role 

/wps POST 

and GET 

WPS 

operations 

User 

/outputs/{task-

id}/{filename} 

GET Download 

produced 

output file 

User 

/process/ POST Add new 

process 

definition 

Developer 

/process/{process-

name} 

PUT Update process 

definition 

Developer 

/process/{process-

name} 

DELETE Delete process 

definition 

Developer 

Table 1. WPS API Public Endpoints  

 

"/wps" endpoint follows OGC WPS 2.0 specification for both 

request and response models.  On the other hand, process 

management endpoints, which start with "/process/" path, 
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consume and produce JSON (JavaScript Object Notation) 

payloads.  

 

Endpoint Request 

Method 

Description 

/status/{task-id} PUT Update status of running 

task 

/inputs/{task-id} GET Download given inputs 

/outputs/{task-

id}/{filename} 

POST Upload produced output 

file 

Table 2. WPS API Private Endpoints  

All input and output endpoints consume and produce a binary 

payload for file management. These endpoints play a crucial role 

in making WPS API asynchronous. A running task can use these 

endpoints to store its outputs and read large input objects. Once 

the task execution is complete, temporary download links can be 

generated and passed as a reference value in the WPS execution 

response. 

 

The API can be deployed to a FaaS service as a serverless 

function. Serverless functions, one of the serverless computing 

services, are utilised to run a deployed piece of code to execute a 

task for a purpose such as processing data from a sensor. This 

piece of code may be written in any programming language 

supported by the FaaS service. Functions can be triggered easily 

by any event that can be sourced from either another platform 

service or an external source (Malawski et al., 2020). 

Fundamentally, FaaS services are a kind of container orchestrator 

that runs deployed a piece of code within a short time on special 

containers that are mainly designed for the FaaS system (Figure 

2). A typical FaaS platform loads the function code on demand. 

The first load is called a "cold start", and it usually takes 

milliseconds (Katzer, 2020). Then the platform immediately 

gives the function a request payload from the event. When 

processing completes, it terminates the running container. 

Subsequently, the platform may reuse the created container with 

a "warm start" to save time, but the function cannot rely on this 

case, and it must be designed stateless. 

 

 
Figure 2. A life cycle of a FaaS execution  

 

AWS offers a FaaS service called AWS Lambda. It supports 

major programming languages and various event sources, 

including HTTP events. Supporting HTTP traffic sourced events 

makes it possible to deploy a Web API application. AWS 

Lambda keeps regularly used functions warm for a limited time 

(40 - 60 minutes) (Cui, 2020). AWS provides a logging platform 

called CloudWatch that can integrate with AWS Lambda. It is 

helpful to monitor the system for possible errors. Alerts can also 

be created in CloudWatch to notify system administrators in case 

of any failure in near real-time. 

 

The proxy service is to route HTTPS traffic to WPS API in a 

secure way. Most importantly, the proxy service cloud also 

provides to work with multiple functions so that we can split the 

API codebase into different functions based on optimisation or 

deployment needs. 

 
Figure 3. A function and its integrations with other resources 

 

We leverage AWS API Gateway as a proxy service to transform 

HTTP requests into AWS Lamba events in our proposed design. 

The AWS API Gateway provides authentication and request 

throttling, but we do not add these extra protection layers to keep 

our design simple. Since the design is decoupled from these 

protection features, they can be added later in available services 

and libraries based on needs.  

 

The WPS API functions store process statuses and parameters' 

data in a serverless NoSQL database. NoSQL database 

technology is selected as data storage because it is easier to find 

an available serverless service in public cloud providers over 

serverless relational SQL databases. Each asynchronous WPS 

request is stored in the data store to monitor the progress of the 

executed process. Thus, a WPS client can poll WPS API 

frequently to track progress. 

 

The WPS specification describes three different data types for 

input and output parameters (Table 3). 

 

Data Type Description 

Complex It can be an extended ASCII or Binary 

(Base-64) data such as GML vector or 

Base-64 encoded raster data. 

Literal Simple inputs like buffer size or 

distance value 

Bounding Box Bounding Box definition in geographic 

coordinates 

Table 3. WPS Data Types  

 

The WPS API stores complex input and outputs to blob storage 

to reduce the load on the data store in our design. Literal and 

bounding box parameter values are stored in the data store. We 

will explain how processes utilise these values in the next section. 

 

The data store consists of two tables that define two entity 

models; process and task (Figure 4). The process entity model is 

designed to handle process information comply with the WPS 

specification. Each process and task have a unique identifier. 

System components identify and distinguish all task-related 

objects based on these unique identifiers. When a developer adds 

a new process definition to the system, the process model will be 

populated with version, identifier, title, inputs, outputs, container 

image name and container image tag as mandatory fields. On a 

new task submission or a task event, the WPS API adds a new 

record to the task table or sets additional attributes denoting status 

information such as percentage, timing, and logged message. 
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Figure 4. Data models for task and process entities 

 

Amazon DynamoDB is a NoSQL database provided by AWS as 

a key-value store. In the implementation, Amazon DynamoDB is 

chosen as a serverless data storage solution. Unlike relational 

databases, Amazon DynamoDB provides HTTP API endpoints 

to perform data operations on tables instead of SQL. For this 

reason, the WPS API communicates Amazon DynamoDB 

throughout the HTTP API wrapped by the DynamoDB library. 

Since it is a key-value store, we choose "Id" fields as keys in our 

table configurations. 

 

2.2 Task Execution Service 

The task execution service is the layer where all processes are 

executed in containers based on demand. The WPS API calls the 

container orchestration platform to create a new container to 

execute the process with given inputs. The container 

orchestration platform pulls the published image from the image 

registry.  

 

  
Figure 5. Sequence diagram for task execution service 

 

The container and WPS API must communicate via private 

endpoints; thus, the container's network configuration should 

allow traffic between the API and the container without any 

restriction. In some cases, the process may need to access public 

geospatial APIs or external resources via an internet gateway. 

Therefore, internet access may be needed to allow for containers.  

 

During the process execution, the container process updates the 

progress and forward outputs to the WPS API, so the user is 

acknowledged the status of the running or completed execution.  

 

Amazon Fargate is an AWS service for the serverless container 

orchestration platform that uses the Docker framework. Docker 

is the de facto containerisation framework and has revolutionised 

the packaging and deployment of software. In our design, we use 

Amazon Fargate to run deployed container images. We choose 

Amazon Fargate because it allows running containers without 

managing an infrastructure to handle a high workload and long-

running processes (Culkin et al., 2021). In addition, it consumes 

infrastructure resources only while containers are running. 

 

The processes store output data to object storage as objects. 

Object storages manage binaries as objects instead of other 

storage architectures like file systems that manage data as a file 

hierarchy. Objects are partitioned by process and task id as 

follows; “{process-id}/{task-id}/output-file-name”. The WPS 

API interacts with the object storage to generate signed URLs to 

provide secure addresses for file uploads and downloads inside 

the container. 

 

Amazon S3 is the serverless object storage service provided by 

AWS. The implantation of the proposed design uses Amazon S3 

as object storage to store a WPS process' binary inputs and 

outputs. Moreover, it allows generating unique temporal URLs 

to access files from a container or a WPS client.  

 

2.3 Process Repository 

In this layer, the process developer builds and publishes custom 

container images to the container image registry and register the 

new process to the WPS API. The custom container image is 

inherited from a previously published base image. This base 

image contains necessary initialisation binaries to execute 

deployed code pieces as a forked process and forwards all 

standard inputs and outputs to the WPS API. This embedded 

binary also calls the WPS API to update progress and get the 

given inputs to download.  

 

Figure 6. An example Dockerfile structure 

 

The process developer builds an image based on the structure we 

propose (Figure 6). This custom structure declares a custom base 

docker image that injects the binary to fork deployed app as a 

child process. 

3. USE CASES 

In geospatial data processing applications as well as in smart city 

applications, there are various situations where serverless WPS 

implementation can be useful. Geospatial workflows can 

leverage WPS processes where intensive calculations are needed. 

FROM [BASE IMAGE FOR PROCESS BINARY] as 

function 

 

COPY --from=function 

/function_runner/function_runner 

/usr/bin/function_runner 

RUN chmod +x /usr/bin/function_runner 

 

...REST OF THE IMPLEMENTATION... 

 

ENV FUNCTION_COMMAND="[COMMAND TO BE FORKED]" 

 

CMD ["function_runner"] 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W5-2021 
The 6th International Conference on Smart City Applications, 27–29 October 2021, Karabuk University, Virtual Safranbolu, Turkey

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-425-2021 | © Author(s) 2021. CC BY 4.0 License.

 
428



 

Geospatial big data applications can utilise cloud infrastructure 

to scale out the process by splitting it into small batches for 

parallel processing. Concurrent analyses are the most appropriate 

use case for a serverless method (Roberts and Chapin, 2017). For 

example, generation of contours from DEM (Digital Elevation 

Model) raster files are supplied from a public data server that 

resides in the cloud (Figure 7).  

 

 
Figure 7. An example concurrent batch raster to vector 

conversation 

 

Smart sensors or Internet of Things (IoT) devices are another use 

case for serverless architecture. IoT devices usually have little 

processing capacity and rely on external resources by delivering 

event signals, which are well-suited to cloud computing (Shekhar 

et al., 2012). They can deliver messages to WPS API and trigger 

processing execution. In high message traffic flow cases, the 

system can allocate more containers to handle requests. The 

stored process outputs can be directly used by another cloud 

serverless analytic service to generate valuable outcomes for 

decision-makers. Therefore, the data is processed and analysed 

in the cloud without transferring to another platform (Figure 8). 

 

 
Figure 8. Data processing flow triggered by smart sensors 

 

It is possible to add more use cases for scenarios requiring data 

processing in a performant and cost-effective way for geospatial 

data throughout an open industry standard; in our case, it is OGC 

WPS. We hope to see numerous use cases of serverless geospatial 

data processing in the smart city architectures near future. 

 

4. RELATED WORKS 

PyWPS is an open-source project that implements WPS 

specifications in Python (URL 1). PyWPS allows developers to 

serve Python processes using the WPS standard. Not to mention 

the fact that our API's WPS endpoints are implemented inspired 

by the PyWPS library.  

 

De Sousa et al. introduce new features in PyWPS version 4, and 

they give some use cases that can be readily tested on our 

proposed design.  

 

Baldini et al. review the advantages of serverless architectures 

and list limitations of the serverless platform. They emphasise 

that there has not been a commensurate level of interest among 

researchers for serverless technologies. 

 

OGC released a new specification for geoprocessing service as a 

part of the OGC API standard. This new specification also 

supports JSON format.  

 

Zhang et al. introduce a geoprocessing workflow that couples 

W3C PROV and OGC WPS. This new model allows users to 

define a workflow execution plan to run a set of geoprocessing 

tasks in order. Their implementation can be applied to our 

proposed architecture design and make it deployable on 

serverless infrastructures.  

 

Read et al. develop a new library called "geoknife". The idea 

behind the library overlaps with our purpose. Briefly, the idea is 

to delegate geoprocessing operations to managed web servers and 

returned manageable datasets for subsequent local investigations. 

This approach can be very well achieved with our proposed 

design. The data can be processed in a cloud platform with public 

datasets also served in the same cloud platform. Low latency 

network calls between the geoprocessing and dataset locations 

can reduce execution durations. 

 

5. CONCLUSIONS 

In this paper, we reviewed our proposed design in detail. Our 

design is applied on OGC WPS specification; however, OGC has 

been working on a new geoprocessing specification called OGC 

API – Processes (URL 2). We choose the existing WPS 

specification over OGC API – Processes because the new 

standard is still in draft, and major GIS applications do not widely 

support it. We expect the new geoprocessing standard to be more 

suitable for sensors directly communicating with an OGC API 

service that allows JSON requests and responses. JSON is 

considerably smaller than XML, resulting in quicker 

transmission and processing.  

 

We prefer CaaS over FaaS because CaaS provides fewer 

restrictions on configurations to deal with complex workloads. 

When simple calculations are needed to be executed, the FaaS 

model can also be preferred instead of the CaaS model in the 

design. Thus, we do not add anything into the design to couple 

tightly with CaaS infrastructure. When the FaaS is used, the 

developer role needs to be slightly changed, and it will be 

responsible for deploying code pieces that can be run on the FaaS 

platform instead of publishing container images.  

 

Our use cases are designed as generic as possible to give a 

fundamental idea for readers to design specific systems based on 

the requirements.  

 

We prefer to implement our design with Amazon Web Services 

as a public cloud provider because it is one of the most widely 

used cloud providers and provides serverless services that we 

need to realise our design. The design can also be deployed on 

Microsoft Azure or Google Cloud, and both provide similar 

serverless services for storage, data store, and container 

orchestration. 

 

In conclusion, we discuss the serverless paradigm together with 

geospatial processing as locate it as a core component in systems 

that produce meaningful information from raw data that may be 

sourced from the environment and people. We believe that smart 

city systems should leverage serverless architectures to build 

highly optimised, real-time, highly scalable, fault-tolerant 

systems requiring minimum infrastructure management and 

advanced skills for geospatial professions.  
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