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ABSTRACT:  

 

Disaster risk reduction and management (DRRM) not only requires a thorough understanding of hazards but also knowledge of how 

much built-up structures are exposed and vulnerable to a specific hazard. This study proposed a rapid earthquake exposure and 

vulnerability mapping methodology using the municipality of Porac, Pampanaga as a case study. To address the challenges and 

limitations of data access and availability in DRRM operations, this study utilized Light Detection and Ranging (LiDAR) data and 

machine learning (ML) algorithms to produce an exposure database and conduct vulnerability estimation in the study area. Buildings 

were delineated through image thresholding and classification of the normalized Digital Surface Model (nDSM) and an exposure 

database containing building attributes was created using Geographic Information System (GIS). ML algorithms such as Support 

Vector Machine (SVM), logistic regression, and Random Forest (RF) were then used to predict the model building type (MBT) of 

delineated buildings to estimate seismic vulnerability.  Results showed that the SVM model yielded the lowest accuracy (53%) while 

logistic regression and RF models performed fairly (72% and 78% respectively) as indicated by their F-1 scores. To improve the 

accuracy of the exposure database and vulnerability estimation, this study recommends that the proposed building delineation process 

be further refined by experimenting with more appropriate thresholds or by conducting point cloud classification instead of pixel-based 

image classification.  Moreover, ground truth MBT samples should be used as training data for MBT prediction. For future work, the 

methodology proposed in this study can be implemented when conducting earthquake damage assessments.     
 

 

1. INTRODUCTION 

 
Disaster risk reduction and management (DRRM) requires an 

understanding of risk, hazards, and vulnerability and their 

interrelations amongst each other. Geographic Information 

System (GIS) provides a powerful tool that allows DRRM 

experts to map, visualize, and analyze the interrelations among 

the three elements of DRRM. However, DRRM-related mapping 

efforts will only be effective if sufficient and reliable information 

is available. It remains a challenge for concerned government 

agencies and organizations to collect this information. Apart 

from being time-consuming, the data collection phase of      
DRRM operations often entails large monetary costs and 

manpower requirements. Oftentimes, DRRM initiatives stop 

during data collection phase and do not carry on with the analysis 

of the data collected due to resource constraints; in some cases, 

data collection activities are terminated prematurely due to 

budget constraints (Torres et al., 2019).  

 

The wide range of available remote sensing data at present 

allows the possibility to derive necessary information for disaster 

risk management in a more efficient and cost-effective manner, 

therefore eliminating the challenges mentioned above. Remote 

sensing has become an operational tool in DRRM due to the 

significant amount of data it can provide (van Westen, 2000). 

This study will use remote sensing tools and methods for 

applications in earthquake preparedness. For this purpose, Light 

Detection and Ranging (LiDAR) was used to generate data on 

building infrastructures for the conduct of a reliable seismic 

vulnerability assessment. Related studies on building detection 

often used remote sensing products such as Synthetic Aperture 

Radar (SAR) and high resolution aerial images (Tupin & Roux, 

2003; Geiß et al., 2014).  These data products can be challenging 

to process because they either require high processing power (as 

in the case of SAR) or are not readily accessible to the public as 

with high resolution aerial images. Torres et al. (2019) 

highlighted in their study that using LiDAR data has its 

advantages for the purpose of building detection since it has a 

higher spatial resolution compared to SAR and requires a much 

lower processing power. LiDAR data and open-source LiDAR 

processing tools are also becoming more accessible to the public. 

LiDAR serves as a useful remote sensing tool for capturing 

building footprint data—not just its location but its attributes as 

well. Moreover, machine learning methods provide a means to 

automate data creation.  Related studies have demonstrated how 

machine learning can be used for seismic vulnerability 

estimation (Geiß et al., 2015; Torres et al., 2019; Ningthoujam 

& Nanda, 2018). With LiDAR and machine learning combined, 

DRRM operations can be streamlined so that      the resource-

intensive mapping process of exposed and vulnerable 

infrastructures may be partially automated. Thus, this paper aims 

to:  

(1) implement a rapid and highly automated method for 

earthquake exposure and vulnerability mapping using 

remote sensing and machine learning tools; and  

(2) to demonstrate      the usefulness of LiDAR data in 

the DRRM field, specifically for earthquake 

preparedness.      
      

LiDAR-derived surface models were used to map and describe 

exposed building infrastructures in the study area. Different 

machine learning techniques were then used to estimate the 

seismic vulnerability of each building footprint by classifying 

each according to model building type (MBT) (i.e., whether 

reinforced concrete or masonry). However, the unavailability of 

ground-truth MBT samples presented a limitation to this study 

as this affected the accuracy of the models produced. 

Nonetheless, the proposed methodology illustrates how LiDAR 
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and machine learning techniques can streamline DRRM 

operations and help communities in the Philippines be more 

prepared for earthquakes. 
 

 

2. RELATED LITERATURE 

 

2.1. Seismic vulnerability assessment 

 

Availability of earth observation (EO) data has improved the 

quality of earthquake damage maps that can be produced. 

However, single-source EO data is often not sufficient for 

producing accurate maps. Dell’Acqua and Gamba (2012) noted 

that data fusion of a priori vulnerability models or geophysical 

information to EO data can increase the quality of generated 

maps. Furthermore, methods proposed for seismic vulnerability 

mapping often require considerable historical data which are 

challenging to collect and often limits the geographical scale of 

damage assessment to just a small study area (Polli et al., 2009). 

 

A new trend of data collection in the DRRM field is through 

crowdsourcing and crowd mapping which involves volunteers 

manually digitizing building footprints. With the increasing 

number of areas being covered by satellite imaging platforms, 

crowdsourcing of exposure and vulnerability information has 

become the current trend of collecting granular data for DRRM 

applications. However, this is heavily reliant on public 

participation and requires costs on data distribution systems 

which eventually raises issues on timeliness, accuracy, and cost-

effectiveness (Dell’Acqua and Gamba, 2012). On the other hand, 

recent developments in remote sensing technologies provide a 

more cost-effective means of mapping built structures and are 

also able to collect data more frequently at larger extent. 

Therefore, remote sensing may help overcome data challenges 

and limitations in conducting seismic vulnerability assessments. 

 

2.2. LiDAR for building detection 

 

An up-to-date building footprint database is essential in 

earthquake risk management. Remote sensing data can aid in the 

regular updating of footprint databases to ensure accurate and 

timely outputs of risk assessments. Torres et al. (2019) used 

LiDAR data due to its high resolution and its capability of 

deriving information that are vital for seismic vulnerability 

assessments. For instance, obtaining building height information 

is a challenging task due to the limited availability of 3D data 

(Torres et al., 2019). 

 

Processing tools for LiDAR datasets are becoming more 

accessible as well. Ramiya et al. (2017) developed a 

segmentation-based methodology for building detection using an 

open-source library and found that the results are comparable 

with the output from the Terrasolid commercial software. 

Machine learning algorithms also provide more efficient and 

cost-effective methods for LiDAR data processing. With 

machine learning, processing of large-scale point clouds can be 

done automatically. Zhou & Gong (2018) used deep neural 

networks to extract residential buildings from LiDAR point 

clouds. The increasing availability of open-source and automated 

LiDAR tools have also led to LiDAR’s wider usage in the 

disaster risk studies. For instance, Sarp et al (2014) integrated 

high resolution orthophotos with a LiDAR-derived nDSM and 

conducted image classification to detect buildings and structural 

damages after the Van Erciş earthquake in Turkey. Similarly, 

Zhou, Gong, and Hu (2019) used LiDAR point clouds to detect 

building damages after a typhoon event. 

 

To produce accurate footprint data from automated processes, 

multiple remote sensing datasets are often combined—fusion of 

SAR and optical imagery (Tupin & Roux, 2003;  Geiß et al., 

2014), multi-sensor multispectral data (Fan et al, 2019), or 

integration of LiDAR data and multispectral images. However, 

building detection solely based on LiDAR data is also possible. 

Huang et al. (2018) detected buildings using surface 

characteristics and penetrating capacities of buildings derived 

from LiDAR point clouds. Similarly, Ma (2005) processed 

LiDAR point clouds to generate surface models and detected 

buildings by extracting points having a specific height and 

belonging to a certain planar area. Otherwise, a highly accurate 

building detection is often achievable only with very high-

resolution imagery (VHRI). Femin & Biju (2020) were able to 

develop a highly accurate building detection method from 

satellite images from publicly available VHRI from SpaceNet; 

however, VHRIs are often commercial and not available from 

open-source platforms in the Philippines. Furthermore, building 

attributes would still need to be sourced elsewhere even when 

building areas are successfully detected from VHRI. 

 

2.2. Building vulnerability estimation 

 

A classification of structural building types is one indicator of 

seismic vulnerability for each building. When an exposure 

database containing footprint geometry is readily available, 

vulnerability estimation can be easily conducted with machine 

learning algorithms. Geiß et al. (2015) implemented a method 

for MBT estimation using a more rigorous manner by 

considering a wider range of variables such as spatial and 

spectral features from multi-sensor images and in situ 

observations. The number of these variables were then reduced 

using filter-based algorithms before they are used as variables in 

the classification algorithms. By using a set of multi-sensor 

images, more information can be captured regarding the 

characteristics of a building. However, this also requires more 

complex processing. Similarly, Torres et al. (2019) estimated the 

MBTs of buildings in Lorca, Spain based on calculated building 

attributes such as roof slope, building height, footprint area, and 

shape complexity. Instead of classifying buildings according to 

their MBTs, Ningthoujam & Nanda (2018) implemented a 

multiple regression analysis on the footprints in their test study 

area to estimate the damage grade of the existing reinforced 

concrete buildings which have already been mapped. The 

independent variables such as building age, number of storeys, 

construction quality, and maintenance condition were used to 

estimate the damage grade of each footprint which were then 

projected in a GIS to produce a vulnerability map. These related 

studies show the value of implementing machine learning 

techniques in seismic vulnerability assessments. 

 

 

3. STUDY AREA 

 

Earthquake exposure and vulnerability mapping was done to two 

selected barangays in Porac, Pampanga—Manibaug Paralaya 

and Manibaug Libutad. Porac was selected as a study area 

because of the recent earthquake event observed in the 

municipality. On April 22, 2019, a 6.1 magnitude earthquake 

shook the Central Luzon region (PHIVOLCS, 2019). The 

observed intensities of the earthquake varied per 

city/municipality and those located in the province of Pampanga 

significantly experienced many earthquake fatalities.  

 

The municipality of Porac experienced an Intensity VI (very 

strong) earthquake then. Thus, the municipality is worth 
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mapping for the purpose of this study. Barangays of Manibaug 

Paralaya and Manibaug Libutad were selected as areas of interest 

specifically because built-up structures are observed to be 

relatively more concentrated in these areas than in other 

barangays in the municipality. The relatively dense built-up area 

in these two barangays is assumed due to their proximity to the 

provincial capital (Angeles City, Pampanga). 

 

 
Figure 1. The study area in Porac, Pampanga. 

 

 

4. METHODOLOGY 

 
In line with the objective of this study, all data used are solely 

remote sensing data. Moreover, the processes were automated as 

much as possible to achieve a rapid exposure and vulnerability 

mapping process. 

 

4.1. Data 

 

The main datasets used in this study were the LiDAR-derived 

digital terrain model (DTM) and digital surface (DSM) model as 

collected from the Phil-LiDAR program. Additionally, 

orthophotos were made available as well. The Phil-LiDAR 

program is an expansion of the University of the Philippines 

Disaster Risk and Exposure Assessment for Mitigation (UP 

DREAM) program which conducted LiDAR data collection for 

flood hazard and natural resource mapping applications. The 

program was conducted in two phases (Phil-LiDAR 1 and Phil-

LiDAR 2) from 2014 to 2017 and covered several provinces in 

the Philippines as study areas. Therefore, available LiDAR data 

from Phil-LiDAR was limited to the pre-2019 earthquake event 

in Porac. Figures 2a and 2b show the DTM and DSM of the study 

area. 

 

 
Figures 2a and 2b. From left to right: DTM and DSM 

of the study area. 
 

4.2. Methods 

 

The methodology as implemented in this study consists of two 

parts: exposure mapping and vulnerability estimation (Fig. 3). 

Exposure mapping was conducted in a GIS environment while 

vulnerability estimation was done using WEKA 3.8.5, an open-

source data mining and machine learning software. 

 

4.2.1. Exposure mapping: Initially, the DTM and DSM were 

used to generate a normalized DSM (nDSM) which is the main 

input for the building delineation process. The nDSM is 

calculated by subtracting the DTM from the DSM. The nDSM 

was then filtered twice using masks generated through 

thresholding—firstly, of DTM-derived terrain ruggedness index 

(TRI) raster and secondly, of nDSM-derived height values. 

Related studies also conducted rigorous thresholding of the 

nDSM using TRI and height for building extraction (Villanueva 

et al., 2015; Ekhtari, 2009). TRI, defined as the difference in 

elevation between a cell and those adjacent to it, was used to 

eliminate tree features since buildings generally have a flatter 

surface while trees have more rugged surface. The height filter 

was then applied to the TRI-filtered nDSM to eliminate the 

ground features such as roads, crop lands, and shrubs. These two 

filters significantly reduced the features in the nDSM which also 

reduced the probability for misclassification between buildings, 

vegetation, and ground classes. 

 

The filtered nDSM was segmented to conduct an object-based 

image analysis (OBIA) and training samples of the three classes 

were collected. Support Vector Machine (SVM) was then used 

to classify the nDSM. The classification output was post-

processed using a Majority Filter to remove any single isolated 

pixels before converting it into vector polygons. Building 

footprints were then extracted from the vectorized classification 

output and were simplified and smoothened as deemed fit. 

Building attributes were then calculated for each footprint. These 

attributes calculated are relevant for vulnerability estimation and 

based on the attributes used in the study of Torres et al. (2019). 

The final output for this part is an earthquake exposure database. 

 

4.2.2. Vulnerability estimation: earthquake vulnerability of the 

study area was estimated by predicting the MBT of the 

delineated buildings. In this case, buildings were classified into 

two: masonry or reinforced concrete. Masonry buildings are 

more vulnerable to earthquakes while reinforced concrete 

buildings are more resilient. The MBT prediction was done using 

machine learning algorithms implemented through the WEKA 

software.  

 

The training/test dataset was created through collection of MBT 

sample points using Google Street View. Since there were no 

means of conducting ground survey, MBT of sample points were 

identified mainly through visual inspection, thus, is largely prone 

to error. Moreover, other MBTs may exist in the study area 

which are not easily discernible from the Google Street View. 

The MBT samples were then spatially joined to the delineated 

building footprints so the MBT was added as a new attribute to 

the exposure database. Buildings with unidentified MBT are then 
predicted using machine learning techniques. 

 

Prior to implementing the machine learning for MBT prediction, 

four highest ranked building attributes from the exposure 

database were selected using the ReliefF algorithm; the selected 

attributes were used as explanatory variables for the MBT 

prediction. Three machine learning algorithms were then 

implemented to create an MBT prediction model; SVM, logistic 

regression, and Random Forest (RF). Building features with 

known MBTs were used as training/test dataset and a 10 k-fold 

cross validation was used in running the algorithms. The model 
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Figure 3. Flowchart of the proposed methodology. 

 

with the highest accuracy and reliability was then used for 

predicting the MBT of all building features in the exposure 

database. The MBT attribute field which previously only 

contained MBT classification of the sample points is then 

updated with the MBTs predicted by the machine learning 

model. 

 

 

5. RESULTS AND DISCUSSION 

 

5.1. Exposure mapping 

 

The nDSM was filtered twice using threshold values firstly of 

TRI and secondly of height. Thresholds are set after several trials 

of filtering the nDSM using different values. Finally, the 

combination of TRI and height filters yielded the best results. In 

other areas, different threshold parameters may be more 

applicable. TRI was used to eliminate trees and retain buildings 

which have a flatter surface, thus, only pixels with TRI<0.75 

were retained. Figure 4a shows the TRI-filtered nDSM which 

significantly eliminated tree features. Figure 4b shows a close-

up of how TRI was able to significantly reduce tree features. 

 

 

 
Figure 4a. TRI-filtered nDSM. 

 

 
Figure 4b. TRI threshold eliminated tree features. 

 

The TRI-filtered nDSM was filtered further using height values. 

A one-storey building, by standard, is commonly about 2 to 3 

meters high. Thus, a 2.5 m threshold value was set. Figure 5a 

shows the height-filtered nDSM which eliminated ground 

features and retained pixels with height>2.5 m. Ground features 

which now have pixel values of zero are colored in gray. Figure 

5b shows croplands eliminated in the height-filtered nDSM.  

 

 
Figure 5a. Height-filtered nDSM. 
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Figure 5b. Height threshold eliminated ground features. 

 

The filtered nDSM was used as input for image classification of 

building, vegetation, and ground classes. After the classification, 

building features were extracted, simplified, and smoothed. 

There are a total of 2,125 building features delineated in the 

survey area. The building delineation process performed fairly in 

sparse areas and for buildings with large areas (see Figure 6a and 

6b). It is also able to detect building structures covered by 

vegetation although buildings with highly irregular geometry 

was produced (see Figure 6d). The delineation method did not 

perform well in dense areas and tends to merge buildings located 

too closely to each other (see Figure 6c). Overall, the building 

delineation process was effective in detecting locations of 

infrastructures in an urban area but was not accurate enough for 

generating granular per footprint features.  

 

 
Figures 6. Delineated building features. 

 

After the building footprints have been delineated, building 

attributes were calculated using GIS tools to complete the 

exposure database. Geometry attributes—centroid XYs, area, 

and perimeter were easily calculated in GIS. The zonal statistics 

tool was used to obtain building heights from the nDSM. The 

number of storeys per building and their respective rise type were 

calculated and classified based on building heights. Lastly, the 

shape complexity was calculated using the Shape Complexity 

Index tool available from the Whitebox Tools GIS software 

package. Shape complexity values range from 0 to 1; as the shape 

of the polygon becomes more complex, the value approaches 1 

(Lindsay, 2020). Table 1 lists the attributes calculated and the 

description of each field. 

 

5.2. Vulnerability estimation 

 

Earthquake vulnerability was estimated by predicting the MBT 

of the buildings in the study area. Geiß et al. (2015), Torres et al. 

(2019), and Ningthoujam & Nanda (2018) reported the 

capability of machine learning methods for this specific purpose. 

Following their works, this study has conducted MBT prediction 

by implementing SVM, logistic regression, and RF 

classification.  

 

FIELD NAME DESCRIPTION 

BLDG_ID Unique ID 

 

BLDG_HEIGHT Maximum height of the building (in 

meters); derived from nDSM 

 

X X-coordinate 

 

Y Y-coordinate 

 

NUM_STOREY Estimated number of storeys in each 

building calculated as 

BLDG_HEIGHT/3 

 

RISE_TYPE Rise type classification; ‘Low rise’ = 1 

to 2 storeys, ‘Mid-rise’ = 3 to 5 storeys, 

and ‘High rise’ = >5 storeys 

 

COMPLEXITY Shape complexity index (SCI); values 

range from 0 to 1 where SCI 

approaches 1 as the shape becomes 

more complex 

 

MBT Model building type classification; 

Reinforced concrete or masonry 

 

Shape_Length Perimeter of the building (in meters) 

 

Shape_Area Area of the building (in square meters) 

Table 1. List of building attributes calculated for the 

earthquake exposure database. 

 

Prior to creating a prediction model, a training/test dataset was 

created by collecting sample points of MBTs identified through 

visual inspection in Street View. Figure 7 shows a map of the 

collected sample points. A total of 262 sample points were 

identified which is composed of 168 masonry and 94 reinforced 

concrete buildings. However, only 158 of these sample points 

intersected and were spatially joined with the delineated 

buildings from the exposure mapping conducted. The final 

training/test dataset is composed of 98 masonry and 68 

reinforced concrete buildings. Table 2 shows the distribution of 

the MBT samples collected. 

 

 
Figure 7. Map of MBT sample points collected 

from Street View. 

 

 
a b 

c d 
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Building Types No. of 

Samples 

Final No. of 

Samples 

(spatially joined) 

Masonry 168 98 

Reinforced Concrete 94 60 

Table 2. Distribution of MBT sample points. 

 

The 158 buildings with known MBT were loaded into the 

WEKA software to create MBT prediction models. To reduce 

the dimension of available data which can be used as explanatory 

variables for MBT prediction, the ReliefF algorithm was used to 

select only the four highest ranked attributes from the eight 

attributes (excluding MBT) in the exposure database. Based on 

the results of the ReliefF attribute selection, building height, 

shape complexity, XY coordinates, and perimeter were the 

highest ranked and were therefore  used as explanatory variables 

in the prediction models. 

 

SVM, logistic regression, and RF were implemented using a 10 

k-fold cross validation. F-1 measure and kappa statistics were 

computed to assess the accuracy of each model and compare the 

reliability of the three models amongst each other, respectively 

(see Table 3). McHugh’s (2012) interpretation of kappa values 

was used as the basis for interpreting the kappa measures of the 

three models. 

 

ML Algorithm      F-1 kappa 

SVM 0.530 0.081 

Logistic 

regression 

0.724 0.409 

Random Forest  0.779 0.525 

Table 3. F-1 and kappa statistics of three MBT prediction 

models. 

 

SVM is the least accurate model with a 0.53 F-1 score and a 

0.081 kappa which implies that there is no agreement between 

the training and test data. Logistic regression performed 

relatively well with a 0.724 F-1 score and a 0.409 kappa which 

can be interpreted as a weak level of agreement. Among the 

three, the RF model yielded the highest F-1 measure of 0.779 

with a fair kappa statistic of 0.525. Furthermore, the confusion 

matrices of the three models (see Tables 4a, 4b, and 4c) were also 

analyzed to assess the performance of each model. A comparison 

of the confusion matrices of logistic regression and the RF 

models shows that the latter performed better than the former. 

 

 Masonry Reinforced 

Concrete 

M 98 0 

RC 56 4 

Table 4a. Confusion matrix of the SVM model. 

 

 Masonry Reinforced 

Concrete 

M 80 18 

RC 26 34 

Table 4b. Confusion matrix of the logistic regression model. 

 

 Masonry Reinforced 

Concrete 

M 87 11 

RC 23 37 

Table 4c. Confusion matrix of the RF model. 

 

Since the RF model produced the highest accuracy and 

performed best out of the three models, it was then used to 

predict the MBTs of all 2,125 delineated buildings in the 

exposure database. Figure 8 shows the map of predicted MBTs 

in the study area. Based on the results of the MBT prediction, the 

model not only predicted the MBTs of buildings with unknown 

MBT classification but also detected misclassifications from the 

training/test dataset. As expected, most buildings in the two 

barangays are masonry. Clustering of reinforced concrete 

buildings was also observed in the central part of the study area. 

 

It should be noted that since the training/test dataset used 

contains a high level of uncertainty, the prediction results must 

be further validated. Results of the model can be further 

improved if: (1) the training/test dataset used were more accurate 

(e.g. sourced from authoritative agencies or collected through 

ground survey); and (2) building geometries were accurately 

delineated since shape complexity is one of the explanatory 

variables used in the models. Nonetheless, the rapid exposure 

and vulnerability mapping procedure implemented in this study 

proved that it could address challenges in data collection and risk 

assessments in the DRRM field, specifically for earthquake 

preparedness. 

 

 
Figure 8. Predicted MBTs in the study area using RF model. 

 

 

6. CONCLUSION 

 

This study was able to successfully implement a rapid and highly 

automated methodology for exposure and vulnerability mapping. 

The whole process, excluding the time spent for 

experimentation, can be done by one personnel in less than 2 

days. Implementing the proposed methodology in a larger                     
area may require a few more days of processing. The study was 

also able to show how remote sensing and machine learning tools 

can help in solving problems and challenges on data availability 

and collection. 

 

In this study, LiDAR data was used as a primary dataset which 

was proven useful in detecting buildings and was faster and less 

tedious to process than when optical and radar RS were utilized 

instead. LiDAR was also very useful in deriving relevant 

information on earthquake exposure and vulnerability. 

 

Inaccuracies in the generated exposure database and 

vulnerability maps are apparent. Nonetheless, outputs still 

provided a good generalization of earthquake exposure and 

vulnerability of the study area. While results may not completely 

replace the level of accuracy of ground surveys, the methodology 

proposed in this study will significantly aid in streamlining      
data collection processes in the DRRM projects. The exposure 
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and vulnerability maps produced through the rapid method 

proposed in this study may also be used to identify areas that 

would need further onsite field investigation. 

 

 

7. RECOMMENDATIONS FOR FUTURE WORK 

 

There are many aspects in the rapid mapping methodology 

developed in this study that need to be further improved. Firstly, 

to improve the accuracy of the exposure database and the results 

of the vulnerability estimation, the building delineation process 

must be refined. It is recommended that future work also use a 

Normalized Difference Vegetation Index (NDVI) threshold to 

better eliminate tree features in the nDSM. If point cloud data are 

available, point cloud classification instead of image 

classification may also be done for building detection to produce 

more regularized footprint geometries. MBT samples are also 

preferably collected through ground surveys to prevent 

misclassification in the test/training dataset and create a more 

reliable prediction model. Fieldwork may also be conducted to 

validate the results of the vulnerability estimation. Lastly, the 

rapid exposure and vulnerability methodology may be 

implemented for pre- and post- earthquake events to conduct 

damage assessments. This will be helpful in streamlining DRRM 

activities and speeding up earthquake disaster response. 
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