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ABSTRACT: 

 

Understanding changes in vegetation cover that affect the biophysical conditions of a region can help in formulating policies to address 

current and future problems of terrestrial ecosystems such as deforestation and environmental degradation. This study focuses on 

developing a model that forecasts the cumulative Enhanced Vegetation Index (EVI) anomalies as a tool for biophysical conditions 

monitoring in the Philippines. Satellite data from MODIS MYD13Q1 V6, which contains vegetation index per pixel at 16-day intervals 

with a resolution of 250 meters, were utilized. The cumulative EVI anomalies per instant were calculated in Google Earth Engine by 

aggregating the difference of a specific data point in 2011-2020 to a reference EVI mean computed from 2001-2010. The Error-Trend-

Seasonality model shows that the cumulative EVI anomalies graph is non-stationary with an upward trend and seasonality. The upward 

trend of the cumulative EVI anomalies indicates the improvement of vegetation in the Philippines. To check the stationarity of the 

cumulative EVI anomalies data, the Augmented Dickey-Fuller test was utilized and the model was generated using Seasonal 

Autoregressive Integrated Moving Average model. Based on the analysis, the best-fit model for the cumulative EVI anomalies is 

SARIMA (1,1,0)(1,1,1)12 with a mean absolute percentage error (MAPE) of 13.26%. Thus, the proposed model can be used as a tool 

for biophysical assessment by monitoring and forecasting changes in vegetation and contribute to attaining the UN Sustainable 

Development Goals 2 and 15 – ‘Eliminating Hunger’ and ‘Life on Land’. 

 

 

1. INTRODUCTION 

Satellite remote sensing is an effective tool to gain understanding 

of environmental impacts and challenges that acquires a 

collection of images over wide areas taking quick measurements. 

This method has the advantage of assessing large areas, where 

access in a forested area and collection of field measurements are 

limited. Sensors installed at the satellite collect information at a 

certain distance from the earth using the absorbed, reflected, and 

emitted electromagnetic radiation at different wavelengths of the 

areas under observation (Vorovencii, 2011). There has been a 

growing number of studies conducted utilizing geospatial 

technologies such as satellite remote sensing that has 

significantly improved the understanding of biophysical 

conditions such as biodiversity conservation, agriculture, forestry 

(Xue, and Su,, 2017), hydrological modeling, watershed 

mapping, urban modeling, predicting droughts (Melesse, 2007) 

and mapping natural hazards and disasters (Joyce, 2009). It is 

vital to ensure the synergy of ecology and remote sensing to 

ensure effective environmental management (Pettorelli., Safi, 

and Turner, 2014). 

 

Vegetation cover plays a critical role in sustaining life on earth 

by acting as a shelter for fauna, and minimizing air and water 

pollution (Abujayyab, Karaş, 2019). However, terrestrial 

ecosystems face environmental deforestation, destruction, and 

degradation, which are the main sources of greenhouse gas 

emissions (Poortinga et al., 2018) resulting from harmful 

anthropogenic activities (Šalić, A., and Zelić, 2018). For the past 

decade, there has been a reduction in the rate of deforestation in 

tropical regions. Strikingly, forest areas in Asia have significantly 

increased which indicates a thriving ecosystem (UN, 2021). 

 

Several challenges for biophysical conditions monitoring include 

limited accessibility and the unavailability of in situ 

measurements of the environment (Pastor-Guzman, Dash, and 

Atkinson, 2018). The biosphere consisting of flora and fauna may 

experience long-haul effects due to changes in vegetation. The 

local climate of an area varies with the changes and transition of 

vegetation cover which depends on several factors such as timing 

and location (Duveiller et al., 2018). The prediction of changes 

in vegetation cover will help to provide timely insights for 

decision-makers to effectively manage vegetation in a region 

(Abujayyab, Karaş, 2019).  

 

The commonly used metrics for vegetation phenology and 

dynamics fall in to three categories of indices: ratio and 

combined, physically based and adjusted vegetation, which 

undergoes further smoothing that includes i. empirical method 

which upholds assumptions within a time frame, ii. curve fitting 

method which utilizes mathematical mapping, and iii. data 

transformation which utilizes mathematical transformations and 

manipulations (Zeng et al., 2020).  

 

One of the established approaches to quantify changes in 

vegetation using Satellite remote sensing is computing 

cumulative EVI anomalies. The Ecological Monitoring 

Application developed by Poortinga et al. (2018) used the 

Before-After, Control-Impact (BACI) method which utilizes 

cumulative EVI anomalies to quantify vegetation changes. 

However, calculating cumulative anomaly with satellite data is 

computationally expensive. 

 

This paper focuses on developing a spatiotemporal model of the 

cumulative EVI anomalies in the Philippines to fully understand 

how the vegetation cover changes over time as a tool for 
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biophysical assessment to give timely insights to determine the 

suitable vegetation management. The model is useful for short-

term forecasting and the data must be updated to ensure the 

accuracy of the forecasted values. Furthermore, the biophysical 

factors that influence changes in vegetation are not incorporated 

in the model. 

 

2. METHODOLOGY 

2.1 Data 

Satellite images were taken from the enhanced vegetation index 

(EVI) vegetation layer of the Aqua Moderate Resolution Imaging 

Spectroradiometer (MODIS) Vegetation Indices (MYD13Q1 

V6), which contains vegetation index per pixel at 16-day 

intervals with a resolution of 250 meters (Didan, 2015). The EVI 

vegetation layer has improved sensitivity over high biomass 

regions and minimizes variations in canopy background 

(Poortinga et al., 2018) which is suitable for the Philippine 

Archipelago.  

 

2.2 Cumulative EVI Anomalies 

The EVI anomalies can be interpreted as a deviation from the 

mean (Xiao et al., 2003) or reference which is a climatological 

change approach that follows BACI method to quantify changes 

in vegetation (Poortinga et al., 2018). The baseline or reference 

EVI (EVIref) for the Philippines was computed by taking the 

mean of the EVI data from 2001-2010 using Equation (1). 

 

EVIref = 1/N (EVId1 + EVId2 + … + EVIdN) (1) 

 

where      EVIref = EVI reference 

N = total number of EVI observations from 2001-2010 

EVId = 16-day EVI observations 

 

Afterwards, the EVI anomalies (EVIa) are derived by getting the 

difference of EVI from 2011 to 2020 and the reference EVI using 

Equation (2).  

 

EVIa = EVId - EVIref   (2) 

 

where      EVIa = EVI anomalies 

EVId = 16-day EVI observations 

EVIref = EVI reference 

 

Then, the cumulative EVI (EVIc) anomalies will be the aggregate 

of all the EVI anomalies in the country shown by Equation (3). 

 

EVIc = Σ EVIa      (3) 

 

where      EVIc = cumulative EVI anomalies 

EVIa = EVI anomalies 

 

The positive (+) value of cumulative EVI anomalies indicates an 

overall improvement of a certain region. A negative (-) value 

indicates an overall reduction of vegetation in a region. The map 

of the cumulative anomalies from 2010-2020 was generated by 

aggregating all cumulative anomalies (Poortinga et al., 2018). 

 

The cumulative EVI anomalies of the MODIS MYD13Q1 were 

computed using the Google Earth Engine (GEE) platform. The 

GEE is a platform deployed in the cloud that is capable of running 

high computing of geospatial analysis on a global scale which 

can be used for applications such as mapping of malaria risk, 

flooding and rice paddy, and monitoring land use, land cover, 

climate and changes in planetary surface water and forest. The 

platform utilizes a user-friendly web interface which can directly 

access and work with data either privately or publicly available 

(Gorelick et al., 2017). 

 

2.3 SARIMA modeling 

A supplement of the ARIMA model is the seasonal 

autoregressive integrated moving average (SARIMA) model  

(Mwanga, Ong’ala, and Orwa, 2017), which can be applied to 

time series having trend, seasonality, and periodicity (Lou et al., 

2013) denoted as  

 

ARIMA (p, d, q) (P, D, Q)S    (4)  

 

where  

p = the non-seasonal Autoregressive (AR) order; 

d = the non-seasonal differencing order;  

q = the non-seasonal moving average (MA) order; 

P = the seasonal AR order; 

D = the seasonal differencing order; 

Q = the seasonal MA order; and  

S = the number of periods in a season 

 

The steps to determine the appropriate SARIMA model (Nai et 

al., 2017) are the following: (i) test for stationarity, (ii) time series 

differencing for data that are not stationary, (iii) evaluate the data 

after differencing using the autocorrelation function (ACF) and 

partial autocorrelation function (PACF), and (iv) choose the best 

model using Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) which optimizes the model 

parameters Kullback-Leibler divergence and the posterior model 

probability respectively (Ding, Tarokh, and Yang, 2017). 

 

The cumulative EVI anomalies plot was further analyzed by 

performing time series decomposition to identify the trend or 

pattern, seasonality, and residual of the data using the Error-

Trend-Seasonality (ETS) model (Mahajan, Rastogi, and Sharma, 

2020). The stationarity of the data was assessed using the 

Augmented Dickey-Fuller (ADF) test and the non-stationary data 

was transformed to stationary data using Differencing technique 

(Mohamed, 2008). The mean absolute percentage error (MAPE) 

and root mean squared error (RMSE) were computed to validate 

the best-fit model to ensure its accuracy. 

 

Time series decomposition, stationarity test, differencing and 

SARIMA modeling were done in Google Collaboratory or 

simply Google Colab which is a free service from Google 

operating as cloud-based Jupyter Notebooks and offering 

computational resources that have Artificial Intelligence libraries 

loaded in advance like matplotlib, NumPy, pandas, Torch, 

TensorFlow, and other libraries (Nelson and Hover, 2020). 

 

3. RESULTS AND DISCUSSION 

3.1 EVI Anomalies in the Philippines 

The cumulative EVI Anomalies for 2011-2020 is shown in 

Figure 1 which is generated from Google Earth Engine. Certain 

parts of the country experience a decrease in vegetation as shown 

by the hue of red in the map, which may be attributed to 

anthropogenic disturbances that includes urbanization, cutting of 
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trees, changes in land use, and climate change and global 

warming (Liu et al., 2019).  

 
 

Figure 1. Cumulative EVI anomalies in the Philippines. 

 

The cumulative EVI anomalies plot is shown in Figure 2. There 

are negative cumulative EVI anomalies values from 2011-2012 

which means that during the period, there was an overall 

reduction of vegetation in the country. After the 1st quarter of 

2012, the overall health of the vegetation in the country slowly 

increased as shown by the positive cumulative EVI anomalies 

values computed. The increasing value of the plot supports that 

there is an increase in vegetation in the Philippines (UN, 2021). 

 

 
 

Figure 2. Cumulative EVI anomalies plot of the Philippines for 

2011-2020. 

 

3.2 Model Construction and Analysis 

The EVI cumulative plot has been transformed from 16-day 

observations to monthly time series data. As indicated in Figure 

3, the mean of the cumulative EVI anomalies plot is trending 

upward and the standard deviation has minimal variability. 

 

 
 

Figure 3. Cumulative EVI anomalies rolling statistics plot. 

 

The ETS decomposition in Figure 4 shows that the cumulative 

EVI anomalies plot has an uptrend and seasonal component. A 

negative seasonal component can be observed in the dry season 

and a positive seasonal component in the rainy season. Moreover, 

the average of the residual component is computed to be zero.  

 

 
 

Figure 4. ETS decomposition of the cumulative EVI anomalies. 

 

After the first differencing, the Augmented Dickey-Fuller test 

was performed, and the ADF statistic computed is 2.5240 with a 

p-value of 0.99906. Since the computed p-value is greater than 

0.05, the data is non-stationary. Second differencing was 

performed to make the data stationary. The plot of the cumulative 

EVI anomalies after second differencing is shown in Figure 5. 

 

 
 

Figure 5. Cumulative EVI anomalies plot after second 

differencing. 

 

Figure 6 shows the ACF and PACF plots after second 

differencing. Since stationarity is achieved in second 

differencing, the researchers considered the parameter d = D = 1. 

With both ACF and PACF plots showing a positive peak at lag 0 

and diminishes significantly at lag 1, P = Q = 1 will be used for 

this case. In addition, p may take either a value of 2 or 1 while q 

= 0. Through the analysis, the suitable models for the cumulative 

EVI anomalies are SARIMA(2,1,0)(1,1,1)12 , and 

SARIMA(1,1,0)(1,1,1)12.  
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Figure 6. ACF and PCF plots. 

 

The AIC and BIC of each of the suggested models for the 

cumulative EVI Anomalies are presented in Table 1. The best-fit 

model for the cumulative EVI anomalies is 

SARIMA(1,1,0)(1,1,1)12, since it has the lowest AIC and BIC 

values between the two models. 

 

MODEL AIC BIC 

SARIMA(2,1,0)(1,1,1)12 1589.833 1603.243 

SARIMA(1,1,0)(1,1,1)12 1587.859 1598.588 

 

Table 1. Comparison of SARIMA models. 

 

Figure 7 presents the forecasted data generated by the model. The 

computed MAPE and RMSE are 13.26% and 361.3796, 

respectively which tells us that SARIMA(1,1,0)(1,1,1)12 is a 

good model for the cumulative EVI anomalies in the Philippines. 

 

 
 

Figure 7. Forecasted and actual cumulative EVI anomalies. 

 

It should be noted that biophysical factors that influence changes 

in vegetation are not incorporated in the model. The model is 

useful for short-term forecasting and the data must be updated to 

ensure the accuracy of the forecasted values.  

 

3.3 Implications on Sustainable Development 

The United Nations has set the Sustainable Development Goals 

(UN SDGs) aiming for a nation’s economic growth, protect the 

health of the inhabitants and the environment, alleviate poverty, 

eliminate hunger, and promote social equality and justice, among 

others. Furthermore, Holloway and Mengersen (2018) have 

pointed out the SDG targets with the corresponding remote 

sensing applications and indicators. SDG 2 and 15, pertaining to 

‘eliminating hunger’ and ‘life on land’, respectively, points out 

achieving food security and improved nutrition through resilient 

agricultural practices, adaptation to climate change, and 

progressively improving land and soil quality, among others. 

This accounts the protection, restoration, and responsible usage 

of ecosystems, while conforming to both national and 

international laws, as well the sustainable development goal 

indicators. 

 

The vegetation growth or degradation may be correlated with 

socio-economic and environmental factors, such as the 

production and consumption, affluence, climate change, among 

others. The Philippines is a tropical country situated in Southeast 

Asia, endowed with wide array of natural resources. Given the 

Philippines is considered as an agricultural country, remotely-

sensed data may be beneficial in optimizing the growth and 

harvest of crops, together with past data generated coming from 

government agencies. Similarly, both developed and developing 

economies may utilize statistical models to map out natural 

phenomenon, such as floods, droughts, wildfires, to name a few. 

This will help to plan when and where to plant and harvest. Paddy 

rice growth and development in South Korea was monitored 

using high-temporal-resolution Geostationary Ocean Colour 

Imagery (GOCI) (Yeom & Kim, 2015). In Arid regions, droughts 

are more apparent due to lack of precipitation. Land management 

in the said areas may be well supported using remote sensing 

through examining water supply pattern throughout the years, in 

consideration with the climate variability, crop management, and 

livestock production (Stanimirova et al., 2019). This said, food 

security may be addressed with forecasting through agricultural 

activities patterned using generated models (de Azevedo Silva et 

al., 2021). 

 

In terms of plastic waste, build-up of plastic barges on the 

coastlines of countries may also be monitored. This is of concern 

because of the high probability of plastic degradation that may 

affect the marine life through microplastics. The minute 

polymeric pollutants may be ingested by fishes and other marine 

species, that may lead to eventual consumption of humans. Over 

time, the accumulation of such microplastics in living organisms 

may cause irreversible effects (Bucol et al., 2020; Davaasuren et 

al., 2018; Walker, 2021). 

 

Health-related issues may also be monitored and mitigated using 

SARIMA. Areas with disease and virus outbreaks may be 

analyzed using remotely sensed environmental indicators, such 

as that in Ethiopia, where relationships among malaria cases, 

rainfall, vegetation, and ambient temperature were quantified 

over time (Midekisa et al., 2012). In conjunction with the usage 

of statistical and machine learning algorithms, epidemiological 

models pertaining to mosquito-borne diseases may be replicated 

with ease in different geographic contexts (Parselia et al., 2019). 

 

In general, socio-economic and environmental effects that have 

relationships with global climate change may be monitored and 

examined to reduce or eliminate the impacts by creating policies 

and guidelines pertaining to land usage, with the utilization of 

satellite remote sensing data as a tool for decision-making. 
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4. CONCLUSION 

The cumulative EVI anomalies can be used as a tool for the 

overall health assessment of a certain region. In this paper, the 

researchers proposed the SARIMA model for cumulative EVI 

anomalies in the Philippines as a tool for monitoring and 

forecasting changes in vegetation. The results of this study can 

help policymakers better understand changes in vegetation and 

formulate proper management and interventions. In addition, 

other socio-economic and environmental issues, such as food 

security, risk reduction, disease outbreaks, and waste build-up, 

among others, may be monitored and further examined. Thus, the 

cumulative EVI anomalies information can significantly 

contribute to the growth of a nation and conform to the UN 

Sustainable Development Goals, particularly goals 2 and 15 – 

‘Eliminating Hunger’ and ‘Life on Land’ through monitoring 

terrestrial ecosystems.  
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APPENDIX 

 

The source code for generating the cumulative EVI anomalies 

and SARIMA modeling is available at: 

https://github.com/tonydicc/Cumulative_EVI_Anomalies_Phili

ppines 
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