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ABSTRACT: 

 

This study entails generation of empirical ordinary least squares regression models to estimate water parameters. It uses remote sensing 

for environmental monitoring of Pasig River located in the Philippines. This uses measurements of primary water quality (WQ) 

parameters defined on Department of Environment and Natural Resources Administrative Order 2016-08 recorded on the Pasig River 

Unified Monitoring Stations (PRUMS) report from January to June of 2019. Sentinel-2 images are utilized to estimate biological 

oxygen demand (BOD), Chloride, Color, Dissolved Oxygen (DO), Fecal Coliform, Nitrate, pH, Phosphate, Temperature, and Total 

suspended solids (TSS). Feature generation involved calculation of different band reflectances from the satellite image. Exhaustive 

feature selection through application of a Pearson Correlation threshold was applied to limit number of independent variables. The 

box-cox transformations of water quality parameters (except for Temperature) were used as dependent variables and the selected 

features are used as dependent variables for the ordinary least squares regression model. The root mean square error (RMSE) values 

for the models which are computed using the k-fold cross validation technique showed outliers, especially for the TSS model (>547000 

mg/L), which made its average negative RMSE so large. Tests for multicollinearity, autocorrelation, and homoscedasticity indicated 

problems in models created. However, normality of residuals indicates that models allow us to roughly estimate water quality for the 

river as a whole with the advantages of remote sensing, enabling a better perspective for its spatial distribution. 

 

 

1.        INTRODUCTION 

 

Pasig River connects Laguna de Bay to Manila Bay. The river 

stretches up to 27 kilometers with an average depth of 50 meters. 

Through the years, it has served as an important means of 

transport. However, today, it suffers from high levels of water 

pollution (Meijer, et. al, 2021). According to the Pasig River 

Rehabilitation Program Case Study (2004), it dates back after 

World War 2 when there was a massive population growth, 

construction of lots of infrastructures and a dispersal of 

economic activities. It was observed during the 1930s that there 

was a significant increase of pollution, diminishing fish 

migration from Laguna de Bay, and decrease of ferry transports. 

Foul smells began in 1970s and in the 1980s. During the 1990s, 

its water quality failed to meet Class C standards, a classification 

suited for fishery water for propagation and growth of fish and 

other aquatic resources. It was also then declared biologically 

dead by the Pasig River Rehabilitation Commission (PRRC). 

 

A more recent study by Gorme, et al. (2010) stated that Pasig 

River was very polluted and failed to meet the Department of 

Environment and Natural Resources (DENR) standards for 

dissolved oxygen (DO) and BOD.  Water quality in the river 

improved from the time when the Pasig River Rehabilitation 

Commission (PRRC) was established in 1999, but continued to 

deteriorate through the years. According to American 

Association for the Advancement of Science (2021), Pasig River 

is considered the world’s most polluting river when it comes to 

plastic waste. The 27-kilometer Pasig River which runs through 

Metro Manila, accounting for 63,000 tons of plastic entering 

oceans from rivers per year.  

 

A problem which this paper aims to solve is the big gap in the 

retrieval of water quality using remote sensing methods. 

Although remote sensing provides a more cost efficient and 

faster complementary approach for a more comprehensive 

assessment of water bodies compared to conventional water 

quality monitoring methods (i.e. sampling and lab analysis), it is 

still limited to the retrieval of water clarity, turbidity, water 

color, and the concentrations of optically active constituents 

(Wisconsin DNR., n.d.). A study by Márquez, et. al. (2018) 

generated an empirical model to estimate Temperature, PO4, 

Total suspended solids (TSS), Turbidity, pH and Electrical 

conductivity (EC) using Landsat 8 images tested a multitude of 

different independent variables of the reflectance values such as 

individual bands, combinations of bands, square roots, 

reciprocals, square, cubic, powers, sums, subtractions, 

logarithms, and band ratios for their linear regression model. 

This study aims to enhance environmental monitoring of Pasig 

River using remote sensing methods. 

 

This study uses different Sentinel-2 image band combinations 

to generate empirical ordinary least squares (OLS) models to 

estimate different water quality (WQ) parameters established 

by the Department of Environment and Natural Resources 

Administrative Order (DAO-2016-08), namely, Biological 

oxygen demand (BOD), Chloride, Color, Dissolved Oxygen 

(DO), Fecal Coliform, Nitrate, pH, Phosphate, Temperature, 

and Total suspended solids (TSS). It aims to analyze the water 

quality of the river through time based on the Pasig River 

Unified Monitoring Stations (PRUMS) data from January to 

June of 2019. It also aims to estimate the water quality 

parameters using Sentinel-2 satellite images from the same 

date.  
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2.        METHODS 

 

Table 1 describes the datasets used for this study. 
Data Source Type Date 

PRUMS WQ Report 

(Monthly Primary WQ 

Parameters Readings) 

PRRC Environmental 

Management Division 
PDF  2019 

Sentinel-2 Level 2-A Google Earth Engine TIF 2019 

Fourteen PRUMS 

Station Points 

Derived from PRUMS 

Report 
Shapefile 2019 

Table 1. Summary of datasets used including source, type and 

date 
 

Figure 1 describes the general methodology. 

 
Figure 1. Summary of datasets used including source, type and 

date 
 

The PRUMS report is manually converted into a CSV format per 

station per WQ parameter. The shapefile for the PRUMS WQ 

stations will be used in ArcMap to extract multi values, which 

are the band reflectances of each calibrated Sentinel-2 Level-2A 

image. Band reflectance per station is integrated to the PRUMS 

report with each corresponding date. Cloud-obstructed stations 

are removed in the image, and PRUMS data is filtered by Z-

score, removing entries which go beyond the threshold of 3 

standard deviations, to remove outliers. Exploratory data 

analysis is then implemented to potentially apply a box-cox 

transformation, or other any necessary transformation, which 

allows a non-normal dependent variable to be transformed into 

a normal shape. Different band combinations are calculated 

(Figure 2) in the next step, then an exhaustive feature selection 

using different Pearson Correlation thresholds is done to 

calculate the final empirical OLS model per water quality 

parameter. These thresholds aim to limit number of features per 

model between 14 to 16. 

 

 
Figure 2. Methodology workflow for generating new features 

based from band combinations 

 

The exhaustive feature selection described above will be based 

on a determined threshold for the magnitude of each parameter’s 

Pearson correlation. It allows thousands of features computed 

(Figure 2) to be filtered quickly. The features which will be 

selected must have a balance in high positive and high negative 

correlations with the water quality parameters for a better model 

performance. 

 

OLS regression estimates the relationship between one or more 

independent variables (Sentinel-2 bands, 2019 Q1-Q2) and a 

dependent variable (WQ parameters in PRUMS report, 2019 

Q1-Q2), as described in Equation 1. 

 

                𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 +  𝜀                           (1) 

 

where: 

𝑌 = Dependent variable (WQ parameter) 

𝛽0 = Constant 

𝛽1, … , 𝛽𝑛  = Coefficients  

𝑋1, … , 𝑋𝑛 = Independent variables (Sentinel-2 bands) 

𝜀 = Error 

 

It is a statistical method of analysis which minimizes the sum of 

the squares in the difference between the observed and predicted 

values of the dependent values configured as a straight line. 

Producing one model per WQ parameter, there will be a total of 

ten models using data from 2019 Q1 to Q2. These models are 

tested by calculating their RMSE, and by evaluating the 

normality of their residuals  

 

 

3.        RESULTS AND DISCUSSION 

 

Exploratory data analyses (EDA) yielded the following results 

for the distplot (Figure 3 (i) to (x)), which is a combination of 

the histogram and kernel density estimate. It shows both the 

distribution of the data in bars and as a comparison to the 

standard distribution. Box-cox transformation was applied on 

BOD, Fecal Coliform, Chloride, TSS, Nitrate, Phosphate, Color, 

and pH on all 106 data point observations. Temperature was not 

included because it already has near normal distribution. 

 
i. BOD

 
ii. DO
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iii. Fecal Coliform

  
iv. Chloride

  
v. TSS

  
 

vi. Nitrate

  
 

vii. Phosphate

  
 

viii. Color

  
 

 

ix. Temperature

  
x. pH

  
Figure 3. From (i) to (x): BOD, DO, Fecal coliform, 

Chloride, TSS, Nitrate, Phosphate, Color, Temperature, 

pH: Shows the distplot 

 

The resulting positive and negative thresholds which limits the 

number of features from 14 to 16 is described in Figure 4 (a). 

The three WQ parameters with the lowest magnitude of Pearson 

Correlation threshold includes Fecal Coliform (0.31 & 0.27), 
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DO (0.29 & 0.31) and Nitrate (0.33 & 0.31), which means that 

the threshold is lenient because the calculated features has less 

overall correlation to these parameters. The three highest 

includes temperature (0.53 & 0.52), color (0.45 & 0.43) and 

BOD (0.45 & 0.43) on the other hand has a strict threshold since 

for a feature to be included in the model, it needs to have a very 

high correlation. The final number of features per WQ model are 

shown in Figure 4 (b).  

 

(a)  
 

(b)  
Figure 4. (a) The Computed positive and negative Pearson 

Correlation Threshold for each of the water quality parameter 

model after feature selection and (b) Number of features per 

model 

 

The RMSE values for the models which are computed using the 

k-fold cross validation technique are shown in Figure 5. It is 

observed that there are outliers, especially for the TSS model 

(>547000 mg/L), which made its average negative RMSE so 

large. This indicates the problem of underfitting for these 

models.  

 

 
Figure 5. Average RMSE per water quality model 

 

Based from the RMSE values in figure 5, it is observed that the 

Chloride (0.31), BOD (0.44), Phosphate (0.57) and Nitrate 

(0.71) models has the least amount of discrepancy in terms of 

predicted value compared to other models. Meanwhile, the TSS 

is considered to be an outlier because of its massive RMSE 

value (>547000).  

 

i. BOD 

 
ii. DO 

.  

iii. Fecal Coliform 

 
iv. Chloride 
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v. TSS 

 
vi. Nitrate 

 
vii. Phosphate 

 
viii. Color 

 
 

 

 

 

 

 

 

 

 

 

 

ix. Temperature 

 
x. pH 

 
Figure 6. From (i) to (x): BOD, DO, Fecal coliform, 

Chloride, TSS, Nitrate, Phosphate, Color, Temperature, 

pH: Shows the hisogram of residuals per model 

 

Figure 6 describes the distribution of the residuals through a 

histogram. The Shapiro-Wilk test which is a reliable test of 

normality was applied to each model and yielded the following 

results: 

 

Model Statistics p 
Gaussian 

Distribution? 

BOD 0.98 0.15 Yes 

DO 0.94 0 No 

Fecal 

Coliform 0.98 0.35 Yes 

Chloride 0.97 0.02 No 

TSS 0.98 0.25 Yes 

Nitrate 0.98 0.4 Yes 

Phosphate 0.99 0.77 Yes 

Color 0.98 0.45 Yes 

Temperature 0.97 0.01 No 

pH 0.98 0.2 Yes 

       Table 2. Shapiro-Wilk results for water quality models 

 

Results shown in Table 2 indicate that all models except DO, 

chloride, and temperature have normal residual distribution. 

Residuals for DO and temperature is skewed towards the right, 

while a bimodal distribution is present in the residuals for 

Chloride. A potential cause for this is that some of the predictors 

are significantly non-normal, which might affect the confidence 

intervals for these three models. 

 

Table 3 summarizes the results for the following tests: Linear 

Relationship between the Target and the Feature (Appendix A), 

Little to no multicollinearity among predictors (Appendix B), 

Autocorrelation, and Homoscedasticity of Error Terms: 
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Model 

Linear rel. 

between target 

& features 

Multic

ollinea

rity 

Autocorrelatio

n 

Homo

sceda

sticity 

BOD 
Biased towards 
higher values Yes 

 Little to no 

autocorrelation  

Yes 

DO 

Biased towards 
lower values Yes 

 Little to no 

autocorrelation  

No 

Fecal 

Colifor
m 

Slightly biased 
towards higher 

values Yes 

 Signs of 

positive 
autocorrelation 

Yes 

Chlorid

e 

Slightly Biased 
towards higher 

values Yes 

 Signs of 

positive 

autocorrelation  

Yes 

TSS 

Biased towards 
higher values Yes 

 Little to no 

autocorrelation  

Yes 

Nitrate 

Relationship is 
non-linear Yes 

 Little to no 

autocorrelation  

Yes  

Phosph
ate 

Relationship is 
non-linear Yes 

 Little to no 
autocorrelation  

Yes 

Color 

Relationship is 
non-linear Yes 

 Little to no 
autocorrelation  

Yes 

Tempe
rature 

Linear 
relationship Yes 

 Signs of 

positive 
autocorrelation 

No 

pH 

Biased towards 
higher values Yes 

 Little to no 
autocorrelation 

No 

    Table 3. Summarized test results for water quality models 

 

Based from the tests, the ones with the most linear relationship 

between target and features are the temperature (linear), Fecal 

Coliform (slightly biased), and Chloride (slightly biased), this 

means that all other models might indicate underfitting. All 

models failed the multicollinearity test, which becomes a 

problem since it adds to the overall standard errors to its 

predictions. Signs of positive autocorrelation appears on the 

Fecal Coliform, Chloride, and temperature models, which can 

impact model estimates. The test for homoscedasticity failed for 

DO, Temperature and pH only.  

 

Even though most of the models exhibit normal distribution of 

residuals, it has not performed well based on the test results. It 

can roughly estimate the relative values for the water quality 

parameters; however, it cannot be concluded that the values are 

accurate enough to know the precise values in each spot of the 

river. Possible reasons include: One, that the methodology in 

feature selection described in Section 2 lacks checking 

correlation between other features during the process. Two, the 

dataset is very limited (106 observations) with discrepancies 

between satellite passing dates and dates of data reading, and the 

exact locations of the observation point and the sample point 

picked in the image.  

 

 

 4.        CONCLUSION AND RECOMMENDATION 

 

This study generated and tested empirical OLS models for 

estimating water quality parameters such as BOD, DO, Fecal 

coliform, Chloride, TSS, Nitrate, Phosphate, Color, 

Temperature, pH on Pasig River using Sentinel-2 satellite 

images. Although the exhaustive feature selection process did 

not produce excellent models based from the test results, they 

can still be used to roughly estimate water quality from the river 

because of the normal distribution of residuals which can be 

performed more quickly and with less cost for fast estimation 

purposes. The recommendation for the methodology is to 

include steps to prevent multicollinearity between the features 

while currently being filtered. This can potentially improve 

model performance significantly, since this is the test which all 

models failed. 
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Appendix A. From upper-left to lower-right: BOD, DO, 

Fecal coliform, Chloride, TSS, Nitrate, Phosphate, Color, 

Temperature, pH: Shows the actual vs. predicted values of 

model in a scatterplot 

 

 

 

 

 

 

 

 

 

 

 

 

 

i. BOD 

 
 

ii. Fecal Coliform 

 
 

iii. Chloride 
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iv. TSS 

 
 

v. Nitrate 

 
 

vi. Phosphate 

 
 

 

 

 

 

 

 

vii. Color 

 
 

viii. Temperature 

 
 

ix. pH 

 
Appendix B. From (i) to (ix): BOD, Fecal coliform, 

Chloride, TSS, Nitrate, Phosphate, Color, Temperature, 

pH: Shows the correlation of variables used in model.  
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