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ABSTRACT: 
 

Water quality monitoring is important in maintaining the cleanliness and health of water bodies. It enables us to identify sources of 

pollutions and study trends. While modern methods include the use of satellite images to estimate water quality parameters, 

commonly used satellite systems, such as Landsat and Sentinel, only generate images with temporal resolution of 2 to 16 days on the 

average. Himawari-8 satellite system, on the other hand, generates full-disk images every 10-minutes, making it possible to generate 

water quality parameters concentration maps more frequently. This paper presents the preliminary analysis of the generation of yearly 

and seasonal Chlorophyll-a (Chl-a) and Total Suspended Matter (TSM) estimation models using Himawari-8 satellite images and 

linear regression. Correlation analysis shows that the single spectral bands and band ratios involving Red band have the strongest 

relationship with Chl-a and TSM. Generated linear regression yearly and seasonal models resulted to R2 values of 0.4 to 0.5 with 

RMSE values around 3 micrograms/cm3 for Chl-a and 9.5 grams/m3 for TSM. Results also indicate that the seasonal models are better 

than the yearly models in terms of fit and error. Results from the preliminary investigation will be used to generate a more robust 

global model in future studies. 

 

1. INTRODUCTION 
 
Water quality monitoring is the process of gathering 

information about the status of water bodies to identify sources 

of pollution or study trends; this is necessary in maintaining 

their cleanliness and health. The physical, chemical, and 

biological characteristics of water are monitored in order to 

gather information about the status, changes, or trends in the 

water bodies, necessary in making decisions and policies for the 

betterment of the water bodies. Water quality parameters such 

as Chl-a, TSM, colored dissolved organic matters, water 

temperature, total phosphorus, and dissolved oxygen, are 

traditionally measured by collecting samples from the field and 

analyzing them in the laboratory. Specifically, Chl-a and TSM 

are commonly studied as these parameters are useful indicators 

of water quality and have a relationship to the water color. Chl-

a is an indicator of biological activity in the water through its 

relationship to nutrient concentration and algal production, 

while TSM is an indicator of the presence of suspended 

sediments in the water that affects how much light is scattered 

than transmitted through the water. However, measurement of 

these water quality parameters using traditional methods might 

be costly and tedious when done frequently and over a large 

area. With technology and development rapidly growing 

nowadays, the use of remote sensing techniques give solutions 

to the limitations of traditional water quality monitoring.  

 

Remote sensing techniques for the estimation and monitoring of 

water quality parameters involve the use of various satellite 

images and the study of the relationship between the imager’s 

bands and water quality parameters. Through the utilization of 

the different spatial and temporal resolution of the satellite 

systems, remote sensing provides a way to determine the spatial 

and temporal variations in the water quality, necessary for more 

accurate and detailed monitoring. Specifically, in times where 

in-situ measuring is limited and restricted, remote sensing can 

be used to perform an accurate and efficient way to determine 

water quality parameters and monitor the health of water bodies.  

Commonly studied satellite systems in the field of water quality 

estimations are Landsat and Sentinel due to their high spatial 

resolution and the availability of various tools for such purpose. 

However, the aforementioned satellite systems only generate 

images once from 2 to 16 days on the average over a particular 

region, making it difficult to perform a more temporally 

sensitive analysis, which is necessary for waters that are highly 

dynamic and productive. Himawari-8 weather satellite system 

provides a way to generate more water quality parameter data 

with the satellite’s temporal resolution of 10 minutes. This can 

be utilized hand-in-hand with high spatial resolution satellite 

systems for a more rigorous and thorough analysis and 

assessment.  

 

Himawari-8 is geostationary weather satellite of the Japan 

Meteorological Agency (JMA) launched on October 7, 2014. 

The satellite system generates full-disk scanning every 10-

minutes of East Asia and Western Pacific region. Aboard the 

Himawari-8 satellite, is the Advanced Himawari Imager (AHI), 

a 16-channel multispectral imager capable of capturing visible 

light and infrared images similar to the Advanced Baseline 

Imager (ABI) used in GOES (Table 1).  

 

Himawari-8 was mostly used for studies in relation to 

meteorology such as the study done to observe the eruption of 

Mt. Raung in Indonesia using shortwave (SWIR) to infrared 

bands of AHI for observation (Takayuki, 2018). 

 

For water quality monitoring, there are a few studies that 

generated SST and TSS estimates. Himawari-8 data was used to 

produce sea surface temperatures using a quasi-physical 

algorithm, which solves a parameterized infrared radiative 

transfer equation. A study was conducted to compare and 

validate the SSTs from Himawari-8 from June to September 

2015 with drifting and tropical moored buoy data using 630,000 

pairs of Hiamwari-8 SST and buoy data. The results showed 

good agreement between the Himawari-8 SST data and the buoy 

data with RMSD and bias of 0.59 K and -0.16 K, respectively. 

 

The negative bias was said to be either caused by the differing 

depths in measurement and/or cloud contamination (Kurihara, 

2016). 

 

Dorji and Fearns (2018) tested the feasibility of Himawari-8 

images to compute for the total suspended sediment in the 

coastal waters of Australia. The study also developed an 
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atmospheric correction method for the estimation of total 

suspended sediment levels. Results showed high correlation 

coefficients of 0.91 and 0.71, respectively, between the AHI-

derived TSS concentration  

Wavelength Himawari-8 

(μm) Band Spatial Central 

 
Number Resolution Wavelength 

    (km) (μm) 

0.47 1 1 0.4706 

0.51 2 1 0.51 

0.64 3 0.5 0.6391 

0.86 4 1 0.8567 

1.6 5 2 1.6101 

2.3 6 2 2.2568 

Table 1. Visible and infrared bands of the Advanced Himawari 

Imager. 

 

with the Landsat and MODIS-Aqua data. Moreover, the study 

also utilizes the SWIR bands of the AHI for the correction of 

turbid coastal waters which is not present on other geostationary 

satellites. 

 

This study uses the Case-2 Regional Coast Colour (C2RCC) by 

Doerffer and Schiller (2016) to generate water quality 

parameters to train and test the model. C2RCC is a set of neural 

networks used in order to generate Case-2 water products, 

specifically Chl-a and TSM, for various satellite systems such 

as Sentinel, MERIS, VIIRS, MODIS and Landsat. Specifically, 

the process involves the inversion of water leaving reflectance 

spectrum with atmospheric correction to generate the water 

products.  

 

C2RCC was utilized for the preliminary investigation in order to 

test the method and analyze if there is a relationship between 

water quality parameters and the Himawari-8 spectral bands as 

in-situ field measurements are limited.  

 

This paper presents the preliminary analysis of the generation of 

Chl-a and TSM seasonal and yearly models using Himawari-8 

AHI spectral bands and Sentinel-3 OLCI C2RCC Chl-a and 

TSM products as training-test data for the correlation and linear 

regression analysis. 

 

2. METHODOLOGY 
 

2.1  Study Area 
  

Manila Bay is the largest natural harbor in the Philippines with 

an area of 1,994 sq. km and a coastline of 190 km, alongside 

highly dense provinces such as Bulacan, Bataan, and Cavite, 

and cities like Manila.  

 

The bay is a center for various economic, industrial, and 

commercial activities such as shipping, fishing, aquaculture, 

tourism, and transport. Manila Bay is historically a center of 

biodiversity where around 100 different species of birds such as 

the Chinese Egret and Black-winged cuckoo-shrike, and various 

number of catfish and mackerels can be observed. Moreover, 

different species of mangroves can also be observed in the bay 

with Avicennia marina as the predominant species in the bay 

area. As such, different developments that are proposed and in 

motion resulted to various concerns about the bay’s condition, 

such as the bay’s deterioration in water quality, making 

monitoring of the bay more important and necessary.  

 

Principal river systems draining into Manila Bay include Angat, 

Bocaue, Sta. Maria, Marilao, Meycauayan, Obando, Talisay, 

Guagua and Pampanga Rivers, Meycauayan-Valenzuela, Pasig, 

Parañaque and Malabon-Navotas-Tullahan-Tinajeros Rivers, 

Imus, Ylang-ylang, Rio Grande and Cañas Rivers (Figure 1). 

 
Figure 1. Major rivers of Manila Bay depicted as blue lines. 

 

2.2  Downloading of Himawari-8 HSD and generation of 
C2RCC Chl-a and TSM data from Sentinel-3 OLCI 
 

The study is divided into three main components: gathering of 

Himawari-8 HSD files and Sentinel-3 OLCI Level 1 images, 

pre-processing of Himawari-8 HSD files and Sentinel-3 OLCI, 

and generation of water quality parameter models using Linear 

Regression Analysis (Figure 2). 

 

The Himawari standard data (HSD) files was downloaded from 

Japan Aerospace Exploration Agency (JAXA) and National 

Institute of Information and Communications Technology 

(NICT) Japan Science Cloud file transfer protocol server. HSD 

files were in UTC format separated per band and segment. The 

study area is covered in the 4th segment of the full disk image. 

Data downloaded was once per month where there is minimal to 

no cloud cover for the year of 2019 from 9:10 AM to 10:10 AM 

GMT+8, except for March and August where the data was 

either not downloadable or always cloudy. Bands used were the 

visible bands (Bands 1-3) and the infrared bands (Bands 4-6). 

 

Sentinel-3 OLCI was downloaded from the Copernicus 

Openhub and was processed using the C2RCC processor in 

SNAP. Other default parameters were changed based on the 

study area. 

 

2.3  Himawari Standard Data Processing 
 

The downloaded satellite images of Himawari-8 in HSD file 

format was pre-processed and converted to GeoTIFF using 

Geo2Grid processor. Geo2Grid is a bash script from 

Cooperative Institute for Meteorological Satellite Studies 

(CIMSS), formed by the Space Science and Engineering Center 

of University of Wisconsin-Madison, NOAA, and NASA. 

Specifically, Geo2Grid is a set of command line tools of 

reading, writing, compositing, and remapping gridded data to a 

new file format such as temperatures, reflectances, and 

radiances. Geo2Grid is also used for GOES ABI.  

 

The GeoTIFF images were then clipped using the shapefile of 

the bay and was then converted into points in order to resample 
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the other bands to 500 meters using Kriging Interpolation. 
Kriging Interpolation produces prediction surfaces together with 
measures of accuracy through geostatistical methods. 
Specifically, it interpolates by graphing out the variance of all 
pairs of data in terms of distance through a semi-variogram 
basically following the concept of Tobler’s First Law of 
Geography where closer things are more related than distant 
things.

Afterwards, points containing the bands’ reflectance values and 
water quality parameter were then extracted using 
point subsampling.  

2.4  Correlation and Regression Analysis 

Analysis was performed using Correlation Analysis and Linear 
Regression Analysis to determine the relationship between the 
AHI spectral bands and water quality parameter. Single bands 
together with their respective band ratios were tested in this 
study as spectral band ratios were studied to reduce irradiance, 
atmospheric and air-water surface influence.  

After checking the correlation between the bands and the water 
quality parameters, linear regression analysis was performed in 
order to determine the best model. Variance inflation factor 
(VIF) was examined to remove bands that are highly 
correlated with each other to avoid multicollinearity. Linear 
regression models were then created with 70% training set

and 30% random validation set for 10 iterations. Normality of 
the residuals as well as homoscedasticity of the models 
were also checked after the generation of the best model. The 
seasonal and yearly models were then applied to generate 
Chl-a and TSM maps. 

3. RESULTS AND DISCUSSION

3.1  Correlation Analysis 

Correlation analysis was used to determine the strength of the 
relationship between variables, specifically between the water 
quality parameters and Himawari-8 bands. Although, 
correlation analysis does not indicate direct causation, 
determining the bands with the strongest relationship to the 
water quality parameters is important in creating a more 
accurate global Himawari-8 model in the future. 
Figure 3 show the correlation matrix between Chl-a and 
Himawari-8 bands for the generated yearly and seasonal 
models. Values highlighted in red show positive correlation 
while values highlighted in blue show negative correlation, with 
darker shades indicating a stronger correlation between the 
variables. For the single bands, the visible bands showed the 
highest correlation to Chl-a, indicating a strong relationship 
between the Blue, Green, and Red bands, and Chl-a. The 
correlation can be due to Chl-a having high reflectance in the 
green wavelength, while having strong absorption in the blue 
and red wavelength, making the 

Figure 3. Correlation matrix of Chl-a and Himawari-8 bands. Features that are highly correlated to Chl-a are shown in dark red 

and dark blue colours such as band ratios of Band 3 and Band 1/2.  

Figure 2. General methodology for Chl-a and TSM modelling using Himawari-8 and linear regression analysis. 
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chlorophyll to appear green. Chl-a reflectance also reaches its 

peak near 700 nm wavelength, however the NIR band for AHI 

is already at 860 nm, hence the lower correlation. Stronger 

relationships can be observed when checking the correlation 

between the band ratios and Chl-a. Specifically, Blue over 

Green band showed the highest negative correlation to Chl-a, 

indicating an inverse relationship between them. Moreover, 

ratios involving Red band as the numerator showed the highest 

correlation to Chl-a. The stronger relationship observed with the 

band ratios might be due to the nature that irradiance, 

atmospheric and air-water surface influences affect spectral 

band ratios less than it affect single bands. 

Figure 4 shows the Correlation matrix between TSM and 

Himawari-8 bands. Correlation results showed similar pattern to 

the ones observed from Figure 4. Single band showed strong 

relationship to TSM, with spectral band ratios resulting to 

relatively high correlation values.  Studies by Nechad et al. 

(2010), Curran et al. (1989), and Novo et al. (1989) showed that 

the single band resulted to TSM-sensitive algorithms, especially 

when there is a direct relationship with the TSM and 

reflectance.  

Studies also showed that bands between 700 and 800 nm are the 

most useful in estimating TSM, but for AHI, the IR bands 

ranges from 0.86 to 2.3 µm which might explain its low 

correlation to the water quality parameters. However, relatively 

higher correlation can be observed for ratios between Band 4 

and visible bands, showing that when combined might still be 

used to explain some relationship between reflectances and 

water quality parameters.  

Chl-a and TSM have high correlation of around 0.8 when tested 

with the dataset. This might explain the similarity between the 

results from Chl-a and TSM, as both indicates how much light 

scatters and absorbs than transmit in straight lines in the water.  

3.2  Linear Regression Analysis 

After checking the strength of the relationship between the 

water quality parameters and spectral bands with Correlation 

Analysis, Linear Regression Analysis was performed to 

generate models using datasets from one year, one dry season 

(December to May), and one wet season (June to November). 

Multicollinearity was checked between the band reflectances 

through the Variance Inflation Factor (VIF), as multicollinearity 

weakens the significance of an independent variable making the 

regression coefficients unreliable. Bands with high VIF values 

were removed until the values are less than the standard 7.5 for 

all the remaining bands. Linear regression models were then 

generated through 10 iterations with 70 percent training set and 

30 percent validation set. Best models based on the R2 score of 

the training and validation set were then selected as the final 

models to be applied to produce Chl-a and TSM maps (Eqs. 1 –

6). 

Yearly Chl-a = A + B ⋅ B1/2 + C ⋅ B3/2 + D ⋅ B3/5 + E ⋅ B6/5
(1) 

Dry Chl-a = A + B ⋅ B4 + C ⋅ B3/1 + D ⋅ B3/2 + E ⋅ B3/6
(2) 

Wet Chl-a = A + B ⋅ B1/2 + C ⋅ B1/4 + D ⋅ B3/2 + E ⋅ B5/4
(3) 

Yearly TSM = A + B ⋅ B1/2 + C ⋅ B3/2 + D ⋅ B3/5 + E ⋅ B6/5
(4) 

Dry TSM = A + B ⋅ B4 + C ⋅ B3/1 + D ⋅ B3/2 + E ⋅ B3/6
(5) 

Wet TSM = A + B ⋅ B1/2 + C ⋅ B1/4 + D ⋅ B3/2 + E ⋅ B3/6
(6) 

Chl-a A B C D E 

Yearly 2.28 -3.90 9.28 0.85 -2.60

Dry -1.28 -0.68 14.00 -0.48 0.16

Wet -2.90 -4.99 4.31 14.56 -3.19

Table 2. Regression coefficient values for Chl-a models. 

TSM A B C D E 

Yearly 15.95 -20.00 20.22 5.35 -9.34

Dry -11.57 -2.86 45.39 1.15 0.60

Wet 9.24 -31.46 10.32 29.75 1.17

Table 3. Regression coefficient values for TSM models. 

Chl-a β1 β2 β3 β4

Yearly -0.124 0.411 0.306 -0.181

Dry -0.168 0.702 -0.194 0.135

Wet 0.130 0.274 0.559 0.208

Table 4. Standardized regression coefficient values for Chl-a 

models. 

TSM β1 β2 β3 β4

Yearly -0.194 0.273 0.374 -0.117

Dry -0.196 0.629 0.126 0.140

Wet -0.270 0.214 0.375 0.262

Table 5. Standardized regression coefficient values for TSM 

models. 

Equations 1 to 3 show the best models generated for Chl-a, 

while Table 2 shows the regression coefficient values. Band 

ratio Red over green was included in all the models, while ratio 

Blue over green for the yearly and wet season model. In general, 

an increase in Band 3 depicts an increase to the Chl-a estimated, 

except for Dry season Band 3/2, while a decrease in the 

reflectance Blue over green indicates an increase to the Chl-a 

value for all the model. Moreover, ratios including the IR bands 

were included in the model, which means that IR band ratios are 

Figure 4. Correlation matrix of TSM and Himawari-8 bands. Features that are highly correlated to TSM are shown in dark red and 

dark blue colors such as band ratios of Band 3 and Band 1/2.  
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still significant in generating estimation models when 

prioritizing bands that are not multicorrelated.  For TSM, 

Equations 4 to 6 show the best models generated for TSM, 

while Table 3 shows the regression coefficients. Similarly, band 

and band ratios included in the Chl-a models were also the ones 

included in the TSM models, except for Band 3/6 in the wet 

season TSM model. In general, band ratios were included in the 

models rather than single bands, which is similar to what was 

observed with the correlation matrices where band ratios were 

more significant.  

In terms of which variable affected the Chl-a models the most, 

Band ratio 3/1 and 3/2 showed the highest standardized 

coefficient values which can be observed in Table 4. These are 

also the bands that showed the highest correlation due to Chl-a 

having high absorption in the blue and red spectrum while high 

reflectance in the green spectrum. For the TSM models, Band 

3/5 affected the yearly model the most, while Band 3/1 and 

Band 3/2 for the seasonal models as seen in Table 5. However, 

unlike the models for Chl-a, the difference between the 

standardized coefficient values for TSM yearly and wet model 

are not relatively large, specifically Band ratio 1/2 and 3/6 for 

the TSM wet model.  

The best models for Chl-a resulted to training R2 scores of 

0.419, 0.506, and 0.416, with validation R2 scores of 0.414, 

0.501, and 0.407 for the yearly, dry, and wet season models, 

respectively. Training RMSE of 3.197, 2.727, and 3.344 μg/cm3

were computed for the yearly, dry, and wet season models, 

respectively. On the other hand, Validation RMSE resulted to 

values of 3.200, 2.752, and 3.356 micrograms/cm3, respectively. 

The significantly high R2 scores and small RMSE show that 

there is linear relationship between Chl-a and the reflectance 

bands, and no case of overfitting as the R2 scores for the training 

and validation set only have small differences.  

Same can be observed with the TSM models with training R2 

scores of 0.462, 0.509, and 0.496, and validation R2 scores of 

0.440, 0.498, and 0.491 for the yearly, dry, and wet season 

models, respectively. Training RMSE resulted to values of 

10.090, 9.849, and 9.502, and validation RMSE of 10.283, 

9.967, and 9.447 grams/m3 for the yearly, dry, and wet model, 

respectively. In general, resulting R2 scores for the seasonal 

models are higher than the yearly models. Similar case with the 

RMSE values of the seasonal models being lower than the 

RMSE of yearly models. Additional model parameters can be 

seen in Tables 6 and 7.  

Chl-a Source 
Standard 

error 
t Pr > |t| 

Yearly 

Intercept 0.061 37.517 <0.0001 

B1/2 0.042 -93.317 <0.0001 

B3/2 0.030 312.701 <0.0001 

B3/5 0.005 231.813 <0.0001 

B6/5 0.018 -148.005 <0.0001 

Dry 

Intercept 0.020 -64.709 <0.0001 

B4 0.007 -102.661 <0.0001 

B3/1 0.040 346.725 <0.0001 

B3/2 0.004 -130.975 <0.0001 

B3/6 0.002 73.831 <0.0001 

Wet 

Intercept 0.099 -29.394 <0.0001 

B1/2 0.067 -73.890 <0.0001 

B1/4 0.025 172.609 <0.0001 

B3/2 0.047 309.217 <0.0001 

B5/4 0.024 -130.148 <0.0001 

Table 6. Model parameters for the Chl-a models. 

Normality of the residuals was also tested by checking the 

histogram of the residuals per model as predictions are 

calculated based on the assumption that the residuals are normal 

(Figure 5). The histogram plots shows relatively normal 

distributions of the residuals checking the assumption of 

normality. 

Homoscedasticity was also checked by plotting the standard 

residual values and predicted values, however, the plot showed 

some trend and not a randomly distributed scatter plot, making 

it difficult to determine if it truly violates the assumption for 

homoscedasticity.  

TSM Source 
Standard 

error 
t Pr > |t| 

Yearly 

Intercept 0.200 79.565 <0.0001 

B1/2 0.133 -150.508 <0.0001 

B3/2 0.095 213.705 <0.0001 

B3/5 0.017 312.838 <0.0001 

B6/5 0.085 -109.648 <0.0001 

Dry 

Intercept 0.072 -161.090 <0.0001 

B4 0.024 -119.577 <0.0001 

B3/1 0.146 310.372 <0.0001 

B3/2 0.014 85.378 <0.0001 

B3/6 0.008 77.034 <0.0001 

Wet 

Intercept 0.279 33.155 <0.0001 

B1/2 0.190 -165.992 <0.0001 

B1/4 0.084 123.089 <0.0001 

B3/2 0.133 224.062 <0.0001 

B3/6 0.008 149.507 <0.0001 

Table 7. Model parameters for the TSM models. 

Figure 5. Histogram of residual of the models showing 
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3.3  Chl-a and TSM Maps 

After generating the yearly and seasonal models for Chl-a and 

TSM, the models were applied on Himawari-8 images through 

raster calculator. Maps produced were from 9:10 AM to 10:10 

AM GMT+8 for every 10 minutes. Sample generated maps for 

April 2019 and September 2019 are shown on Figure 6 to 13, 

displaying maps produced using the yearly and seasonal models.

Figure 6. Chl-a maps for April 2, 2019 using the Yearly model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

Figure 7. Chl-a maps for April 2, 2019 using the Dry model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

Figure 8. Chl-a maps for September 26, 2019 using the Yearly model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

(a) (b) (c) (d) 

(a) (b) (c) (d) 

(a) (b) (c) (d) 

(a) 
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Figure 9. Chl-a maps for September 26, 2019 using the Wet model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

 
Figure 10. TSM maps for April 2, 2019 using the Yearly model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

 
Figure 11. TSM maps for April 2, 2019 using the Dry model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

Figure 12. TSM maps for September 26, 2019 using the Yearly model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM. 

(b) (c) (d) 

(e) (f) (g) 

(a) (b) (c) (d) 

(a) (b) (c) (d) 

(a) (b) (c) (d) 
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Figure 13. TSM maps for September 26, 2019 using the Wet model: (a) 9:10, (b) 9:30, (c) 9:50, and (d) 10:10 AM

In general, high concentration of Chl-a and TSM can be 

found near the coastal areas of the bay. Specifically highest 

concentrations can be found in the North-western area of the 

bay near Pampanga-Bataan province. Higher concentrations 

can also be observed near the mouths of Guagua River, 

Pampanga River, and Angat River. Discharges from the 

river contribute to the increase in concentration of the 

respective areas. Fishponds and aquaculture can also be 

found in the area which also contribute to the increase in 

concentration due to the feeds and nutrients present in the 

water. Comparitively high concentrations can also be found 

in the Eastern area of the bay near Metro Manila area. Low 

concentrations are found in the central and mouth area of the 

bay which is explained by characteristic of open water being 

naturally less turbid. For the generated maps for September, 

the concentrations are higher in the Eastern area compared to 

maps for April. 

Qualitatively, the yearly and seasonal maps show similar 

areas of high and low concentration. One main difference 

between them is the magnitude of concentrations, 

specifically the seasonal maps having higher concentrations 

in general. Sufficient in-situ data is needed in order to 

identify which maps show more accurate concentrations. 

Variations can be seen between the 10-minute images, 

showing some movement of the concentration in the water, 

specifically in the North-western area of the bay. This can 

also be utilized in time of algam blooms or heavy rains to 

determine the source and movement of pollutions. 

Moreover, researchers can still obtain data and produce 

maps even on dates with high cloud. For example, in the 

Septembers maps, the high concentration near the mouth of 

the bay are cloud pixels confirmed when checked with the 

true color images. However, there are times where the cloud 

contamination is less specifically for 9:10 AM. With this, 

researcher can carefully check the 10-minute data of 

Himawari-8 when in need of data for a particular date  

even in times of high cloud contamination, which is difficult 

to perform for satellite systems that only produce one image 

per day. The symbology of the maps can also be changed to 

a more specific range when monitoring specific areas in 

order to monitor minute changes in the concentration.    

4. CONCLUSIONS

The researchers were able to develop a methodology for 

estimating Chl-a and TSM using Himawari-8 satellite 

images by downloading images from JAXA and NICT 

Cloud and pre-process the images using Geo2Grid in 

Ubuntu before performing analysis.  

Results of the study showed the possibility of estimating 

Chl-a and TSM using Himawari-8 spectral bands. Resulting 

models showed significantly high R2 scores and relatively 

low RMSE values. Results also show no case of overfitting 

as R2 and RMSE values of both the training and validation 

models are close to each other.  Seasonal models for the dry 

and wet season also showed higher R2 score and smaller 

RMSE than the yearly model. Similarities between the 

results of the Chl-a and TSM models might be due to the 

high correlation between the two water quality parameters, 

however, it is important to remember that Chl-a and TSM 

indicates different factors regarding the quality of waters. 

Models generated support assumptions of linearity, 

multicollinearity, and normality of residuals. Development 

of the study will include generation of models using a more 

rigorous technique to avoid assumptions that might affect 

the model, specifically, machine learning algorithms. 

Incorporation of in-situ data gathered using field instruments 

either for calibration or model building and validation 

depending on the number of data gathered will help in 

generating a more accurate global model.  
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