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ABSTRACT:  

 

Remote sensing can make seagrass aboveground carbon stock (AGCseagrass) information spatially extensive and widely available. 

Therefore, it is necessary to develop a rapid approach to estimate AGCseagrass in the field to train and assess its remote sensing-based 

mapping. The aim of this research is to (1) analyze the Percent Cover (PCv)-AGCseagrass relationship in seagrass at the species and 

community levels to estimate AGCseagrass from PCv and (2) perform AGCseagrass mapping at both levels using WorldView-2 image and 

assess the accuracy of the resulting map. This research was conducted in Karimunjawa and Kemujan Islands, Indonesia. Support Vector 

Machine (SVM) classification was used to map seagrass species composition, and stepwise regression was used to model AGCseagrass 

using deglint, water column corrected, and principle component bands. The results were a rapid AGCseagrass estimation using an easily 

measured parameter, the seagrass PCv. At the community level, the AGCseagrass map had 58.79% accuracy (SEE = 5.41 g C m-2), 

whereas at the species level, the accuracy increased for the class Ea (64.73%, SEE = 6.86 g C m-2) and EaThCr (70.02%, SEE = 4.32 

g C m-2) but decreased for ThCr (55.08%, SEE = 2.55 g C m-2). The results indicate that WorldView-2 image reflectance can accurately 

map AGCseagrass in the study area in the range of 15‒20 g C m-2 for Ea, 10‒15 g C m-2 for EaThCr, and 4‒8 g C m-2 for ThCr. Based on 

our model, the AGCseagrass in the study area was estimated at 13.39 t C. 

 

 

1. INTRODUCTION 

The integration of remote sensing and field data for mapping 

aboveground carbon stock of seagrass (AGCseagrass) requires 

corresponding field data to train the regression model and assess 

the accuracy of the resulting map (Hossain et al., 2015; 

Tamondong et al., 2018). However, the process of obtaining this 

data is destructive, costly, and time-consuming (Misbari, 2017); 

hence, it is necessary to develop a fast and non-destructive 

approach to estimate AGCseagrass for use in training and validating 

remote sensing-based AGC mapping. 

 

Equations to approximate AGC from easily measured 

parameters, such as percent cover, are currently available 

(Wahyudi et al., 2020) and are especially useful for AGCseagrass 

appraisal without considering species uniqueness. However, this 

study proposed a new alternative for predicting AGCseagrass using 

percent cover (PCv) while also factoring in the unique PCv-

AGCseagrass relationship of each species. In addition to developing 

a species-specific PCv-AGCseagrass equation, we also integrate 

WorldView-2 multispectral remote sensing images with in situ 

AGCseagrass data, calculated using the PCv-AGCseagrass equation, 

to map AGCseagrass.  

 

To achieve these objectives, this study measured seagrass PCv in 

the field and AGCseagrass in the laboratory and analyzed their 

relationship. We acknowledge that the interaction between 
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seagrass biophysical properties may only work effectively at the 

species level (Duffy, 2006). Species uniqueness controls 

variations in leaf size, life form, leaf distribution, leaf density, 

organic carbon distribution in above and belowground biomass, 

and the rate of inorganic carbon sequestration (Bell et al., 2006; 

Duffy, 2006). For example, 50% PCv of Enhalus acoroides 

might consist of a few tens of shoots, while 40% PCv of 

Thalassia hemprichii might be populated by hundreds of shoots 

because of its smaller size. These variations may lead to a weak 

correlation between seagrass biophysical properties, especially 

AGCseagrass, and seagrass reflectance.  

 

Therefore, this research mapped the AGCseagrass at species and 

community levels, and specifically aimed to (1) analyze the PCv-

AGCseagrass relationship in seagrass at both levels, enabling the 

estimation of AGCseagrass information from PCv, which is easily 

measured, and (2) conducting AGCseagrass mapping at the 

community and at the species level using WorldView-2 image 

and assess the accuracy of the resulting map. 

 

 

2.  STUDY AREA 

This research was carried out in four members of the 

Karimunjawa Islands in Indonesia, namely Karimunjawa Island, 

Kemujan Island, Menjangan Besar Island, and Menjangan Kecil 

Island (Figure 1). These areas were selected as they represent 
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seagrass beds with a variety of seagrass species and distribution 

patterns. Since 1999, they have been part of the Karimunjawa 

National Park under the authority of the Indonesian Ministry of 

Forestry. Several seagrass species found in the study area are 

Enhalus acoroides (Ea), Halophila ovalis (Ho), Thalassia 

hemprichii (Th), Cymodocea rotundata (Cr), Cymodocea 

serrulata (Cs), Halodule pinifolia (Hp), Halodule uninervis (Hu), 

Syringodium isoetifolium (Si), and Thalassodendron ciliatum 

(Tc). In all parts of the study area, seagrass inhabits a narrow 

fringe along the shoreline. However, the western sides of the 

island have more seagrass than the eastern side because they have 

relatively weak waves, are surrounded or sheltered by smaller 

islands, have reef crests that decrease the incoming wave 

energies, and comprise a broader area of reef flats and shallow 

lagoons. These conditions are more favorable for seagrass 

growth. 

 

 

3. METHODS 

3.1 Image Data 

The remote sensing image used in this research project was 

WorldView-2 (WV2) LV3X that had been orthorectified and thus 

did not require geometric correction. This project used the visible 

bands of WV2 images for mapping AGCseagrass and the near-

infrared bands to perform the sunglint correction. There are time 

differences between the WV2 image acquisition (24 May 2012) 

and the field data collection (July 2011, April 2012, and 

November 2012). Because of seasonal seagrass patterns in the 

study area, there would be changes in seagrass abundance and 

biophysical properties composition during these times, which 

may influence the empirical model quality and the AGCseagrass 

mapping accuracy. However, changes due to human disturbances 

are believed to be low since most seagrass areas are within the 

management of Karimunjawa National Park. 

 

3.2 Field Survey 

3.2.1 Seagrass sample analysis: In each sampling site, seagrass 

leaves were harvested in a quadrat of 1 × 1 m (1 m2) to 

standardize the measurement unit of biophysical properties. This 

process also took pictures of the quadrat overlaid on seagrass and 

recorded the coordinate of each sample. In total, 45 seagrass 

samples were collected. Then, the PCv and AGCseagrass were 

measured for each seagrass species present in the quadrat, i.e., 

Ea, Th, Cr, Hu, Si, and Ho. The PCv, which refers to the projected 

percentage of horizontal seagrass coverage within the quadrat, 

was estimated based on the seagrass species identified in the 

quadrat photos. In this research, the PCv was measured when the 

seagrass is submerged. The carbon stock of each species was 

measured in the laboratory following the proximate analysis 

procedure, and the AGCseagrass in each quadrant was also 

calculated for each species.  

 

These samples were used to analyze the relationship between 

PCv and AGCseagrass at community and species levels. Regression 

analyses were performed first at the quadrat level consisting of 

single or mixed seagrass species to determine the relationship 

between PCv and AGCseagrass at the community level and then for 

each species to understand their unique PCv-AGCseagrass 

relationship.  

 

3.2.2 Seagrass photo-quadrat analysis: To obtain a 

representative number of samples to train the regression model 

and validate the resulting map, the distribution of seagrass 

samples must represent variations in seagrass conditions in the 

study area. This research project used a stratified random, aligned 

sampling to determine the photo-quadrat sample locations. The 

mapping unit used to determine the sampling locations in a 

stratified random manner was seagrass density, whose variations 

were identified visually on true-color-composite (TCC) WV2 

image (R-G-B 5-3-2) using two interpretation keys: tone and 

texture. Seagrass pixels with darker tones indicate higher density 

and vice versa. A cluster of pixels of higher seagrass density has 

a smoother texture than those of lower density, where the 

background in between seagrasses increases the reflectance 

variations, roughening the texture. The location of each sample 

was center-aligned in the sampling’s mapping unit to minimize 

the risk of collecting samples from adjacent units due to the 

combined errors of GPS and image’s geometric accuracy. 

Afterward, the PCv of each seagrass species in each photo-

quadrat sample was interpreted and then converted to AGCseagrass 

based on the resultant regression function showing the PCv-

AGCseagrass relationship in seagrass. 

 

The training areas and validation samples were carefully selected 

by considering the spatial distributions of sample locations, 

species dynamics, and seagrass PCv differences so that both 

training area and validation samples cover similar seagrass 

variations. Randomly selecting the samples may lead to unequal 

distribution of the training areas and validation samples. Figure 

1 shows the location of the study area and the field data 

distribution.
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Figure 1. Satellite images of the study area and the spatial distribution of seagrass samples.  

 

3.3 Image Corrections 

The procedure to convert the Digital Number (DN) of WV2 

images to TOA radiance (LTOA) and TOA reflectance (RTOA) and 

the parameters involved, i.e., absolute radiometric calibration 

factors, mean solar exoatmospheric irradiance (ESUN), and 

zenith angle, were described in (Updike and Comp, 2010). The 

atmospheric path radiance was removed from Top-of-

Atmosphere (TOA) reflectance image using the Dark-Object 

Subtraction (DOS) algorithm (Chavez et al., 1977) to obtain 

Bottom-of-Atmosphere (BOA) reflectance (RBOA) image. The 

DOS method was selected because it is simple but with 

performance comparable to more robust methods, such as Fast 

Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH) 

and 6S radiative transfer models for multispectral images 

(Lantzanakis et al., 2016; Wicaksono, Hafizt, 2018).  

 

Optically deep water pixels free from sunglint were selected to 

predict the atmospheric offset for path-radiance removal using 

the DOS method (Wicaksono, Hafizt, 2018). The atmospheric 

offsets used to obtain RBOA image were 0.153, 0.121, 0.075, 

0.049, 0.038, 0.029, 0.022, and 0.016 for Cyan, Blue, Green, 

Yellow, Red, Red-Edge, NIR1, and NIR2 band, respectively. 

These values were subtracted from RTOA. 

 

Sunglint-free reflectance (RD) was obtained using a method 

developed by (Hedley et al., 2005). Principle Component 

Analysis (PCA) was applied to RD to obtain additional variables 

to map seagrass species and their AGCs (Wicaksono, 2016). 

Inversed Model (IM) water-column correction algorithm was 

used to minimize the effect of the water column on the 

reflectance of submerged seagrass (Wicaksono, Hafizt, 2013). 

The IM algorithm requires information on the depth of each pixel 

or bathymetry (z), the water-column attenuation coefficient for 

each band (ki), and the reflectance of optically deep water (RWi). 

The formula is as follows:  

 

RBi = 10((loge(RDi - Rwi) + 2kiz)) + RWi .………… (Eq. 1) 

 

The ki for Cyan, Blue, Green, Yellow, Red, and Red-edge bands 

is 0.009 m-1, 0.018 m-1, 0.072 m-1, 0.075 m-1, 0.178 m-1, and 0.381 

m-1, respectively (Bukata et al., 1995; Wicaksono, Hafizt, 2013). 

The RWi for the WV2 image, as adapted from Wicaksono (2016), 

is 0.002 (Cyan), 0.011 (Blue), 0.015 (Green), 0.005 (Yellow), 

0.003 (Red), or 0.003 (Red-edge). The z was generated 

empirically by calibrating optically shallow water reflectance 

with in situ bathymetry data using the band ratio method. A 

detailed explanation of the procedure to obtain the said 

bathymetry map is published in Wicaksono (2016). The resulting 

bathymetry map has a standard error of estimate  (SEE) of 0.17 

m for 0–1 m, 0.19 m for 1–2 m, 0.24 m for 2–3 m, 0.32 m for 3–

4 m, and 0.78 m for 4–7 m; hence, the maximum effective depth 

is 7 m (Wicaksono, 2016). Beyond this depth, the SEE increases 

exponentially (3 m for depth >7 m) and is, therefore, practically 

unusable for water column correction input.  

 

3.4 Seagrass species and AGC mapping 

Seagrass species were mapped to create a seagrass species mask 

for AGC mapping at the species level. However, mapping 

seagrass species individually is challenging, as already been 

pointed out in Phinn et al. (2008), where the accuracy of seagrass 

species mapping using per-pixel classification, even with 

hyperspectral data, is low (<30%). Consequently, the 

classification scheme for the seagrass species mapping was 

constructed based on life form variations (Table 1). 

 

Each photo-quadrat sample was labeled based on this 

classification scheme. Then, the samples were grouped into two, 

for training the model and classification algorithm and for 

assessing the accuracy: 80 samples for the class Ea (48 for 

training the model and classification; 32 for accuracy 

assessment), 50 for EaThCr (31; 19), and 83 for ThCr (53; 30).  
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Class 

Name 

Species 

Composition 
Class Descriptor 

Ea Ea ● Species grow and extend vertically within a 

water column. Sometimes, the leaves reach the 

surface.  

● Other life forms may be present in this class 

with insignificant coverage. 

ThCr Th, Cr, Hu, Si, 

Ho 

● A mixture of horizontally growing species 

covers the substrate and does not significantly 

extend vertically within a water column. 

● Other life forms may be present in this class 

with insignificant coverage. 

EaThCr Ea ● This class is a mixture between the Ea and the 

ThCr-type species with proportional coverage. Th, Cr, Hu, Si, 

Ho 

Table 1. The classification scheme for seagrass species 

composition based on life forms (Wicaksono, Hafizt, 2013). 

 

The Support Vector Machine (SVM) was applied only to pixels 

classified as seagrass to exclude non-seagrass pixels from the 

classification process and performed on RD, RB, and PC bands. 

SVM is a machine-learning classification algorithm that 

produces high classification accuracy, especially when the data 

are not normally distributed, as is frequently encountered in 

benthic habitat mapping with a detailed classification scheme. As 

a result, SVM has successfully mapped underwater objects with 

higher accuracy (Zhang et al., 2013; Eugenio et al., 2015). This 

study used the Gaussian Radial Basis Function (RBF) kernel in 

the SVM algorithm.  

 

AGCseagrass maps were derived with stepwise regression analyses. 

There were six predictors for empirical AGC modeling: (1) RD 

bands, (2) ratio of RD bands, (3) IM bands, (4) ratio of RB bands, 

(5) Principle Component (PC) bands, and (6) ratio of PC bands. 

The regression analysis was performed at community and species 

levels, and the resulting regression functions were used to convert 

seagrass reflectance values into AGCseagrass.  

 

The mapping accuracies were assessed with two approaches: the 

confusion matrix (Congalton and Green, 2019) for seagrass 

species classification and the SEE for AGCseagrass prediction. The 

SEE was converted into percent using confidence interval 

analysis based on the lower and upper limit of the mean of the 

reference data (Wicaksono et al., 2011). This analysis produced 

a range of expected minimum and maximum accuracies of the 

AGCseagrass map.  

 

 

4. RESULTS 

4.1 AGCseagrass estimation from PCv 

4.1.1 PCv and AGCseagrass measurement: The measurement 

results of the harvested seagrass samples are shown in Table 2. 

Ea generally had lower PCv than other species because this class 

was found in lower density with wide gaps in between the shoots. 

However, its AGC was higher than other species, mainly because 

of its bigger leaf size. These findings provide the fundamental 

justification for predicting AGCseagrass using PCv and mapping it 

at the species level. 

 

Seagrass class 
PCv (%) AGCseagrass (g C m-2) 

Range Mean Range Mean 

At the community 

level (n = 45) 

5.2 – 98.9 45.9 ± 26.4 0.06 – 26.3 6.5 ± 6.7 

Ea (n = 16) 6.2 – 65.5 34.1 ± 20.3 1.1 – 26.3 11.5 ± 8.1 

Th (n = 9) 5.2 – 98.9 53.2 ± 36.1 0.3 – 11.2 5.8 ± 4.2 

CrHu (n = 16) 19.1 – 98.6 52.7 ± 23.9 0.5 – 5.4 2.9 ± 1.5 

SiHo (n = 4) 18.9 – 78.5 51.3 ± 30.1 0.1 – 0.2  0.1 ± 0.1 

Table 2. PCv and AGC measurement results for each class of 

the harvested seagrass (n is the number of samples). 

4.1.2 PCv-AGCseagrass analysis results at the community level: 

The PCv had a correlation coefficient (r) of 0.37 (Sig. 95%) and 

R2 of 0.14 with AGCseagrass. The low correlation can be addressed 

to variations in life forms and growth types across the seagrass 

species. The resultant regression function for predicting 

AGCseagrass from PCv was AGCseagrass = 0.1028(PCv) + 1.449. 

 

4.1.3 PCv-AGCseagrass analysis results at the species level: 

Analyses at the species level revealed a stronger PCv-AGCseagrass 

correlation than the one measured at the community level. It 

results from the seagrass biophysical properties that naturally 

vary with species. Larger species, such as Ea, grow vertically 

within a water column frequently up to the water surface. For 

seagrass species with a life form similar to Ea, their PCv may 

underestimate the actual AGCseagrass, as indicated by the R2 of the 

regression analyses between PCvEa and AGCEa, which was the 

lowest of all seagrass species (r = 0.81, R2 = 0.66). For Ea, the 

AGCseagrass was estimated using the regression equation AGCEa 

= 0.3179(PCvEa) + 0.6295. 

 

Using PCv for predicting the AGCseagrass of horizontally growing 

species, such as Th, Cr, Hu, or Si, was less of an issue since an 

increase in PCv corresponded to an addition in the AGCseagrass. 

As a result, the R2 between the PCv and AGCseagrass of these 

species was higher than Ea’s.  

 

The Th percent cover (PCvTh) could explain 87% (R2 = 0.87) of 

variations in the AGCseagrass. The regression function for Th was 

AGCTh = 0.1069(PCvTh) + 0.0951. Cr and Hu (CrHu) were 

analyzed together because the two species have an almost 

identical morphology and life form. In fact, the main visible 

difference is the shape of their leaf tip, while other leaf 

morphologies are visually similar. The strong relationship 

between their biophysical properties (R2 = 0.95) justifies the 

combined analysis. The regression function for CrHu was 

AGCCrHu = 0.0604(PCvCrHu) - 0.1767. Si and Ho, the minor 

species found in some sample locations, were associated with 

more dominant seagrass species such as Th and Cr. Although Si 

and Ho have different life forms, their AGCseagrass were almost 

similar. For this reason, and because they were only a minor 

component of the seagrass beds in the study area, their analyses 

were also combined (SiHo) (r = 0.97, R2 = 0.94). The resultant 

regression function for SiHo was AGCSiHo = 0.00268(PCvSiHo) - 

0.0022.  

 

4.2 Seagrass species composition mapping 

The most accurate seagrass species composition map based on 

life forms had an OA of 76.11% obtained from PC bands. The 

ThCr classification was the most accurate, as shown by its high 

user’s accuracy (UA) and producer’s accuracy (PA) (Table 3), 

because it consisted of single life forms with almost similar leaf 

morphology. Meanwhile, EaThCr had lower accuracy compared 

with ThCr since it was a mixed life form class. Nevertheless, 

because EaThCr species were primarily found with higher 

density, mapping was relatively feasible because most of the 

reflectance was from the seagrass. Species with lower densities 

were more difficult to classify because the reflectance of the 

background substrates obscured the reflectance of the seagrass. 

Ea had a similar UA to but significantly lower PA than EaThCr, 

causing the extent of the Ea class to be highly underestimated; 

only 3.6% Ea in the field was correctly classified, while the 

majority was misclassified as either EaThCr or ThCr. The life 

form of this class and the reflectance of substrates in between Ea 

shoots may be the sources of the misclassification. The three 

generated life form masks represented the distribution of specific 

seagrass species composition, namely: Ea, EaThCr, and ThCr 
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masks. The empirical AGCseagrass model at the species level was 

performed based on these three species composition classes. 

 

Seagrass 

class 
PA (%) UA (%) 

Misclassification rate (%) 

Ea EaThCr ThCr 

Ea 3.60 50.00 - 41.44 54.95 

EaThCr 63.96 50.00 3.60 - 32.43 

ThCr 94.98 82.98 0.00 5.02 - 

Table 3. Accuracy assessment results of the seagrass species 

composition mapping using SVM. 

 

4.3 AGCseagrass mapping 

The PCv interpreted from each photo-quadrat sample was used 

to estimate the AGCseagrass at the species level using the 

corresponding species composition class regression function. 

The AGCseagrass of each quadrat is the sum of the AGCs of all 

seagrass species present in the quadrat. Afterward, each sample 

was labeled based on the species composition class described in 

Table 1. The mean AGCseagrass from all photo-quadrat samples 

were 11.33 g C m-2 for training areas and 10.65 g C m-2 for 

validation samples. 

 

4.3.1 AGCseagrass mapping at the community level: The 

AGCseagrass was modeled and mapped at higher accuracy using 

band ratio (Table 4). The AGCseagrass map generated with the ratio 

of RD bands had 58.79% accuracy (SEE = 5.41 g C m-2), which 

was 10% higher than the best result of the single band model (RB 

bands, 48.69% accuracy, SEE = 6.69 g C m-2). The single band 

and band ratio results showed a similar pattern where AGCs 

below 10 g C m-2 were overestimated, while AGCs above 15 g C 

m-2 were underestimated. Thus, only AGCs in the range of 10–

15 g C m-2 were correctly predicted.  

 

 
Table 4. Accuracy assessment results of the AGCseagrass 

mapping. 

 

4.3.2 AGCseagrass mapping at the species level: Compared with 

mapping at the community level (Table 4), the AGCseagrass maps 

generated at the species level were higher in accuracy for Ea and 

EaThCr but lower for ThCr. The mean AGCs were 15.41±6.07 g 

C m-2 for Ea (estimated from 46.67±19.21% PCv), 11.73±4.42 g 

C m-2 for EaThCr (64.49±17.22% PCv), and 4.89±2.16 g C m-2 

for ThCr (50.91±19.82% PCv). Despite having the lowest PCv, 

Ea had the highest mean AGC because its species constituents 

had a significantly larger size than species in other classes. 

 

The predicted AGCEa was saturated beyond 20 g C m-2, while for 

the AGCEaThCr was saturated after 15 g C m-2; hence, the actual 

amount of aboveground carbon stored in seagrass with high 

predicted AGC is underestimated. In contrast, the predicted 

AGCThCr was overestimated, especially for AGC less than 8 g C 

m-2. Based on these results, seagrass reflectance captured by 

remote sensing can correctly map AGCseagrass when it is in the 

range of 15‒20 g C m-2 for Ea, 10‒15 g C m-2 for EaThCr, and 

4‒8 g C m-2 for ThCr. Accordingly, the AGCseagrass in the study 

area was estimated at around 13.39 t C from 1.21 km2 of seagrass 

habitat. In detail, AGCEa was estimated at around 0.35 t C, 

AGCEaThCr at 5.84 t C, and AGCThCr at 3.24 t C. 

 

 

5. DISCUSSION 

This research utilized seagrass PCv for rapid and non-destructive 

estimation to obtain AGCseagrass at community and species levels. 

PCv and AGCseagrass show a weak correlation at the community 

level, causing the approximated AGCseagrass to be less accurate. 

Therefore, the equation provided in Wahyudi et al. (2020) is 

suggested for converting seagrass PCv into AGCseagrass without 

considering species variations. Nevertheless, the correlation 

coefficients and R2 values are significantly higher when 

approximating AGCseagrass from PCv at the species level. Besides, 

estimating AGCseagrass from the PCv interpreted from photo-

quadrat samples is relatively fast and, thus, allows more samples 

to be collected. 

 

At the community level, the highest AGCseagrass map accuracy is 

58.79% (SEE = 5.41 g C m-2). To obtain better accuracy, 

mapping AGC at the species level is deemed necessary. It 

requires an accurate seagrass species map, and this research has 

successfully generated a seagrass species composition map with 

76.11% OA. However, although this percentage is comparable to 

previous works by Roelfsema et al. (2014) and Koedsin et al. 

(2016), the accuracy of classes comprising individual seagrass 

species is not similarly high. In this research, Ea has a very low 

PA and underestimated extent. Under these conditions, it is also 

difficult to compare the AGCseagrass map accuracy achieved in this 

study with that in previous work. Therefore, the results of this 

research cannot be directly compared with other studies but can 

be used as the baseline for future mapping activities using 

seagrass classification with similar complexity.  

 

This research also highlights some improvements in estimating 

and mapping the AGCseagrass at the species level. For instance, the 

AGCEaThCr map has the highest accuracy, followed by AGCEa and 

AGCThCr maps. Consisting of seagrass species with various life 

forms, EaThCr is expected to be the most challenging class to 

model. However, because its AGCs are in the range of 5 to 25 g 

C m-2, species belonging to this class can be mapped at higher 

accuracy. Furthermore, Ea can be modeled quite accurately 

because the pixels categorized into this class are composed of 

only one species, with biomass having a negative linear 

correlation with the percent cover of sand or any background 

substrates. Therefore, the fraction of seagrass reflectance that 

composes the pixel mainly comes from Ea, and it effectively 

represents the abundance of Ea within the pixel. Assuming the 

background reflectance does not vary greatly, variations in 
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biophysical properties are the main cause of changes in Ea 

reflectance. Moreover, Ea grows sparsely; thus, unless mixed 

with other species, bare substrates in between the shoots create 

larger gaps and produce background reflectance that affects the 

total reflectance of seagrass. This condition may also negate the 

image pixel value that is easily saturated. Consequently, Ea has a 

higher saturation threshold (20 g C m-2) than other classes (15 g 

C m-2). 

 

Three important findings regarding the AGCseagrass mapping are: 

(1) mapping low AGCseagrass is difficult because the background 

reflectance largely contributes to and alters the resultant seagrass 

reflectance, (2) mapping high AGCseagrass is also challenging 

because seagrass reflectance is saturated at higher AGC due to 

the high energy absorption by seagrass bed with higher biomass, 

and (3) mapping seagrass with medium AGC is more feasible 

since the reflectance of background object is limited and yet to 

be saturated. 

 

There are not many published papers on AGCseagrass mapping in 

Indonesia. For instance, Astuty et al. (2019) mapped AGCseagrass 

in Parang Island using PlanetScope-based depth-invariance 

bottom index and produced 66.90% accuracy with SEE of 4.78 g 

C m-2. The mapping was conducted at the community level with 

higher accuracy than the current study owing to the capability of 

PlanetScope to obtain images closest to the date of the field 

survey. As a result, there was no temporal error due to seasonal 

patterns of seagrass in their study. 

 

This research acknowledges that one of the issues affecting the 

AGCseagrass mapping accuracy is the seasonal variations in 

seagrass presence, especially when the image acquisition does 

not temporally coincide with field data collection. This issue can 

be addressed in future studies by using a high temporal-resolution 

image, such as PlanetScope. Although PlanetScope has lower 

spectral and spatial resolution than WV2, it offers flexibility in 

selecting the acquisition date, thus enabling users to obtain 

images during field data collection and removing the error caused 

by seasonal variations in seagrass presence in the empirical 

AGCseagrass model. 

 

Finally, the regression equations developed in this study are 

expected to improve the availability of AGCseagrass data that is 

currently lacking due to the laboratory analysis and destructive 

harvest involved in their acquisition, especially for seagrass 

species presented in this study. With more availability, this 

information can be used to train remote sensing images and 

validate the results of remote sensing-based AGCseagrass mapping. 

 

 

  

Figure 2. Life form-based seagrass species composition map with 76.11% OA, based on SVM classification results using WV2 PC 

bands (left) and AGCseagrass mapping at the community level with 5.41 g C m-2 SEE and 58.79% accuracy (right). 

 

 

6. CONCLUSIONS 

This research has developed a rapid aboveground seagrass carbon 

stocks (AGCseagrass) estimation using an easily measured 

parameter, seagrass PCv. Estimating AGCseagrass from PCv 

produces more accurate results when conducted individually for 

each species. Hence, this research recommends using species-

specific PCv-AGCseagrass equation to approximate AGCseagrass 

from PCv. Furthermore, AGCseagrass can be modeled and mapped 

from remote sensing data. At the community level, the 

AGCseagrass map generated from WV2 images is 58.79% accurate 

(SE = 5.41 g C m-2). Meanwhile, at the species level, the accuracy 

increases significantly for Ea (64.73%, SEE = 6.86 g C m-2) and 

EaThCr (70.02%, SEE = 4.32 g C m-2) but decreases for ThCr 

(55.08%, SEE = 2.55 g C m-2). The results indicate that WV2 

image reflectance can correctly map AGCseagrass in the study area 

when it is in the range of 15‒20 g C m-2 for Ea, 10‒15 g C m-2 

for EaThCr, and 4‒8 g C m-2 for ThCr. Finally, AGCseagrass in the 

study area is estimated at 13.39 t C. 
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