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ABSTRACT: 

 

COVID-19 vaccines are rolling out in the Philippines but the supply remains limited; there is a need to optimize the distribution. In 

this study, we developed a COVID-19 agent-based model for Quezon City, a COVID-19 hotspot in the country. This model, in 

conjunction with a multi-objective linear programming model for equitable vaccine distribution, was then used to simulate four 

vaccination scenarios. Experiments were conducted with the front-line workers always added to the groups: mobile workers, elderly 

and low-income. Main results are: prioritizing the mobile workers minimizes infections the most (by 4.34%), while prioritizing the 

low-income groups minimizes deaths the most (by 1.93%).  These results demonstrate that protecting the population with the most 

interactions (mobile workers) effectively reduces future infections. On the other hand, protecting the most vulnerable population  (low 

income and elderly) decreases the likelihood of death. These results may guide the policy-makers in Quezon City.  

 

 

1. INTRODUCTION  

 

Worldwide, COVID-19 vaccines are rolling out, but the supply 

remains limited, and coverage is hampered by various factors, 

including vaccine hesitancy. As of October 28, 2021, “Our 

World in Data” reports only a 25% full or partial vaccine 

coverage for the Philippines. This limitation forces the Philippine 

national government to vaccinate in groups (e.g., front-line 

workers, elderly, mobile workers, and low-income earners) with 

minimizing infections and deaths as their primary objectives. 

Having these different priority groups raises questions on 

prioritization, resulting in different vaccination scenarios, but the 

outcome of these scenarios is unknown; hence we ask: How 

would we maximize these vaccines in a way that we minimize 

infections and deaths? We explore this question by simulating 

different vaccination scenarios in Quezon City, Philippines—a 

COVID-19 hot-spot in the country (has the highest number of 

reported cases in the country as of October 28, 2021, from 

Statista.com). We have four vaccination scenarios of interest): 1) 

no vaccination (control), 2) prioritizing the elderly and front-line 

workers, 3) prioritizing the mobile workers and front-line 

workers, and 4) prioritizing the low-income earners and front-

line workers. 

 

 

2. METHODOLOGY  

 

2.1 COVID-19 Agent-Based Model for Quezon City, 

Philippines  

 

A COVID-19 agent-based model was developed for Quezon 

City. Agent-based models are computer models composed of 

autonomous entities called agents. These agents follow rules and 

are independent of each other. For our COVID-19 agent-based 

model, the agents represent human beings. We based this new 

model on the Age-Stratified Quarantine Modified SEIR with 

Non-Linear Incidence Rates (ASQ-SEIR-NLIR) (Bongolan et 

al., 2021; Rayo et al., 2020; and Minoza et al., 2020) 

compartmental model which is described by the following 

differential equations: 

 

 
𝑆′ =  

−𝛽𝑄(𝑡)𝑆𝐼/𝑁

(1 + 𝛼𝑆/𝑁)(1 + 𝜀𝐼/𝑁)
 

(1) 

 
𝐸′ =  

𝛽𝑄(𝑡)𝑆𝐼/𝑁

(1 + 𝛼𝑆/𝑁)(1 + 𝜀𝐼/𝑁)
−  𝜎𝑈𝐸 

(2) 

 𝐼′ =  𝜎𝑈𝐸 −  𝛾𝐼 (3) 

 𝑅′ =  𝛾𝐼 (4) 

 

From the classic SEIR model, S, E, I, and R represent the 

susceptible, exposed, infectious, and removed compartments, 

respectively. Moreover, β, σ, and γ are the transmission, 

incubation, and removal rates, and the three modifications to the 

classic SEIR account for quarantine Q(t), age-stratification (U), 

and behavioral and disease-resistance factors (α and ε).  

 

Adopting the classic SEIR design, the model has four major 

compartments S, E, I, and R, representing the four major states 

of an agent: susceptible, exposed, infectious, and removed (dead, 

recovered, and vaccinated). The model assumes that once 

recovered from COVID-19, an agent is forever immune from the 

disease, a common simplifying assumption. Similarly, we 

assume a 100% efficacy for vaccines, providing permanent 

immunity for all the vaccinated. Newer work actually calculates 

the mathematical expectation for vaccine efficacy for the 

country, from data published by vaccine manufacturers. The 

transition from one state to another is a probability game.  

 

A susceptible agent becomes exposed when it interacts with an 

infectious agent, is not wearing a mask, is not observing social 

distancing, and the transmission probability is hit. From the 

exposed state, an agent becomes infectious once the incubation 

probability is hit. Now from the infectious state, an agent may 
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either die or recover (with permanent immunity, a common 

simplifying assumption). It recovers when it completes the 

average recovery period and the recovery probability is hit; it 

dies when the death probability is hit even before it completes 

the average recovery period; otherwise, it remains infectious.  

 

Q(t) is the quarantine parameter, which should be less than one, 

to slow down the transmission when susceptible meet infectious 

agents/people. For this parameter, the smaller the better, i.e., 

Q(t)=0.4 means a 60% successful quarantine,  0.10 means a 90% 

successful quarantine. Per “ADB Outlook 2020 Supplement”, 

Philippine compliance with the strictest quarantine regime of the 

24 countries surveyed was generally good, as evidenced by the 

resulting reduced mobility. Details of the Q(t) calculations are in 

Bongolan et al. (2021). 

 

The U parameter is the effect of age-stratification, calculated as 

the normalized mathematical expectation (the vector of assumed 

infection probabilities is dotted with the vector of the age-

stratified population). This comes out as less than one,  and it 

serves to dampen the infection term; details in Rayo et al. (2020). 

 

Alpha and epsilon (α and ε) represent, respectively, behavioral 

and disease resistance factors in the population. They are in the 

denominator of the exposure term, and are ideally big (maximum 

value of one), to effectively dampen the exposure of susceptibles 

when they meet infectious agents. α <1  and ε<1 are worrisome 

situations, and it was the ε term that was calculated, per district,  

when we estimated the low-income groups in Quezon City. 

Details on non-linear infection rates are in Minoza et al. (2020). 

 

2.2 Model Implementation with Python Mesa and MesaGeo  

 

2.2.1 Person Agent: Our COVID-19 agent-based model is 

composed of agents. These agents represent human beings and 

were designed to follow the rules and assumptions of ASQ-

SEIR-NLIR. To implement it, we wrote a Python class called the 

PersonAgent.  

 

The PersonAgent class has the following attributes: age, status, 

mask-wearing, physical distancing, days incubating, and days 

infected. The age attribute is a positive integer or zero. The status 

attribute may hold one of the following strings: susceptible, 

exposed, infected, recovered, dead, or vaccinated. These values 

correspond to the SEIR compartments of our ASQ-SEIR-NLIR 

model, only that the removed compartment, R, has been 

disaggregated into three compartments: recovered, dead, and 

vaccinated. Next, mask-wearing and physical distancing 

attributes are boolean variables, i.e., true if wearing a mask or if 

observing physical distance. Finally, the days incubating and 

days infected attributes are positive integers or zero signifying 

the number of days elapsed since an agent was exposed or 

became infectious, respectively. These attributes allowed us to 

capture the effects of COVID-19 on human beings, and 

collectively, to the city.  

 

2.2.2 GIS Feature: The agents interact inside the space element 

of our model. We chose to implement this element through a GIS 

feature. Figure 1 shows the GIS implementation, with the map of 

Quezon City with its six districts and the agents in it.  The green 

dots represent the susceptible agents, the orange ones are 

exposed, the red ones are infectious, and the grey ones are 

removed (dead,  recovered, and vaccinated).  

 

This feature allowed us to capture the density of the six districts 

of Quezon City, Philippines. Agents are initially placed within 

the bounds of their home districts. This way, districts with small 

areas and large populations will have larger densities.  

 

 
Figure 1. GIS visualization of the agent-based model 

 

The agents inside the bounded region interact with each other. 

Their interaction is determined by two factors: their age and the 

age restriction parameters, i.e., quarantine. Similar to real-life 

scenarios, agents under the minimum age restriction or above the 

maximum age restriction are not allowed to go out, which 

translates to the agent mobility range being zero in the model. 

For agents within the age restrictions, they are free to move in 

the space and interact with other agents. We also assumed that 

ingress and egress are allowed among the districts, but not 

outside Quezon City. This is a simplifying assumption to isolate 

and capture the case of Quezon City. These assumptions form 

the concept of space and mobility in our model. 

 

2.2.3 Technologies: We implemented our COVID-19 agent-

based model using Python (v3.8.5) programming language. 

Mainly, we used  Mesa (Project Mesa Team, 2021) and MesaGeo  

(Corvince, 2018) application libraries to implement the features 

of the model. 

 

The GIS feature was implemented using MesaGeo (Corvince, 

2018). A shapely file containing the geospatial information of the 

six districts of Quezon City was fed to MesaGeo. In turn, this 

library renders the map of Quezon City showing the city’s six 

districts.  

 

The Mesa library, on one hand, provided the control mechanism 

and data collection feature of the model. It was responsible for 

agent instantiation, calling, and deletion, i.e., of Person Agents. 

It determined how the agents would be called, i.e., randomly. It 

also monitored the compartment changes concerning COVID-

19, i.e., the SEIRDV compartment changes. 

 

The model runs on any operating system as long as the 

mentioned dependencies are installed in the machine: Python (at 

least v3.8.5), Mesa, and MesaGeo application libraries. We 

designed the model this way so that the program could be easily 

migrated to any machine. However, when running the model, it 

must be noted that, as the number of agents increases, the 

memory consumption also increases. Hence, users must ensure 

that the machines they use are equipped with at least 8 gigabytes 

of RAM so that the model runs smoothly.  

 

Finally, since our model uses randomization methods, i.e., order 

of agent calls, infection, recovery, and death probabilities, etc., 

the model produces different results for every run. This is 

expected behavior since agent-based models are naturally 

stochastic. To reduce the noise in the data, users may run the 

model N > 1 times then compute the average of the results. 

Higher N yields more accurate solutions. We recommend 

running the model more than 10 times. 
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2.3. Multi-objective Linear Programming Model for 

Equitable Vaccine Distribution 

  

To ensure that vaccines are given fairly, it is critical to identify 

the locations and priorities. The Fair Priority Model (Emanuel et 

al., 2020) was proposed as an ethical framework for vaccine 

global allocation. Phase I of the Fair Priority Model would 

distribute vaccinations to minimize COVID-19-related 

premature mortality directly or indirectly; Phase II would 

attempt to mitigate major economic and social costs; and Phase 

III would strive to reduce and eventually eliminate community 

transmission. Furthermore, vulnerable groups are an important 

factor to consider for equitable distribution of vaccines.  The 

definition of "most vulnerable" in society must not be limited to 

adults 65 years of age or older, persons with pre-existing 

comorbidities, and the economically deprived. Essential workers 

i.e in the medical field and the other most at risk should be 

considered.  (Heaton, 2020) 

 

From that, we used a multi-objective linear programming model 

for equitable vaccine distribution designed and implemented by 

Jose Marie Antonio Minoza (2021). The optimization model 

aims to maximize the allocation of the vaccines available in the 

six districts. For each district (location), we consider 1) the 

number of available vaccines, 2) age distribution of the 

susceptible population per district, and 3) prioritization factors 

that can be based on the Fair Priority Model Framework.  

 

The formal problem addressed by the optimization model is as 

follows. Given the following inputs: 

 

N, a limited number of vaccine doses (courses) that can be 

given to remaining susceptible populations; 

L, L locations where the vaccine will be distributed; 

A, age-stratified percentage of the population for each of 

the L locations (districts); 

P, set of prioritization factors for each of the L locations; 

 

The model determined the optimal allocation of available 

vaccines and the corresponding distribution for each location. 

 

Model Formulation 

 

Sets 

 

L Set of Locations 

S Set of Susceptible Population 

V Set of Vaccine Allocation of each Location 

P Set of Vaccine Prioritization    

A Set of Age Group 

C Set of Allowed Number of Susceptible to be 

Vaccinated 

 

Indices 

 

loc index for location 

s index for the susceptible population 

v index for vaccine allocation 

p index for vaccine prioritization   

a index for age group 

c index for Allowed Number of Susceptible to be 

Vaccinated 

 

 

Variables 

 

Sa,loc  Susceptible Percentage Population for Location l and 

with Age group a 

Vloc Vaccines to be allocated for Location loc 

Ca   Allowed Number of Susceptible to be Vaccinated for 

Age Group a 

Z  Optimal Number of Vaccine to be distributed 

 

Parameters 

 

p Prioritization Factors (e.g., Frontliners, Mobility 

Workforce, Elderly) 

ploc Prioritization Factor p for Location loc 

Sloc Age Stratified Susceptible Population for Location loc 

N Limited number of vaccine doses that can be 

distributed 

 

In this optimization model, given the number of the susceptible 

population 

 

∑ (∑ 𝑆𝑎,𝑙 𝑉𝑙 ≤ 𝐶𝑎

𝐴

𝑎=1

)

𝐿

𝑙=1

 

 

and by limited supply N of vaccine doses 

 

∑ 𝑉𝑙𝑜𝑐 ≤ 𝑁

𝐿

𝑙𝑜𝑐=1

 

 

The goal is to maximize the vaccine to be allocated for each 

location l 

 

 

𝑧 = 𝑚𝑎𝑥 ∑ 𝑉𝑙𝑜𝑐

𝐿

𝑙𝑜𝑐=1

 (5) 

 

and further optimize given with the priority factors P for each 

location l 

 

𝑚𝑎𝑥 ∑ ( ∑ 𝑃𝑙𝑜𝑐𝑉𝑙𝑜𝑐 ≤ 𝑧

𝐿

𝑙𝑜𝑐=1

)

𝑃

𝑝=1

 

 

2.4. Model Data  

 

For this study, the prioritization factors considered are the 

percentage distribution of front-line workers, mobile workers, 

elderly, and the low-income earners across the six districts of 

Quezon City, and the assumed number of available vaccines is 

one million vaccine courses. Populations for these areas were 

taken from the Quezon City Government’s (2018a) 2021 

population projection. Finally, the model constraints were 

computed by getting the ratio of the priority groups’ populations 

(QC Government, 2018a; PSA, 2018; QC Government, 2018b) 

with the total population of Quezon City.  

 

For the transmission, death, and recovery probabilities, the 

values were taken from the age distribution of the infections, 

deaths, and recoveries, respectively, from the same DOH dataset. 

Similarly, the age-stratified infection expectation was also 

computed from the same. For the rest of the parameter values 

adopted for the simulations, see Table 1.  
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Parameters Values Adopted in this Study 

Incubation Rate 1/7 (Bongolan et al., 2021) 

Min Age-Restriction 15 years old (QC Government, 

2018c) 

Max Age-Restriction 65 years old (QC Government, 

2018c) 

Age-Stratified Infection 
Expectation 

0.5 

Wearing Mask 0.83 (Imperial College London, 

2021) 

Wearing Mask Protection 0.8 (Chu et al., 2020) 

Social Distancing 0.67 (Imperial College London, 
2021) 

Social Distancing Protection 0.85 (Chu et al., 2020) 

Low Immunity 0.0131 (QC Government, 2018b) 

Table 1. ABM Parameter Values 

 

The designation “Low-income earners” was estimated by 

district, and it appears as part of the ε (epsilon) in the non-linear 

infection rates (Minoza et al., 2020). Epsilon represents disease 

resistance factors (natural predisposition to disease, malnutrition, 

lack of exercise, pre-existing conditions). Based on QC 

Government  2018b, an ε value was calculated per district using 

a simple average of data on dengue deaths, population density, 

and percentage of informal settlers (in consultation with the 

Quezon City Statistics Office), see Table 2. 

 
District Income Normalized Score 

3 Highest 1 

4 2nd Highest 0.858538 

1 3rd highest 0.729528 

6 low 0.704542 

5 lower 0.684754 

2 lowest 0.502494 

Table 2. ε (epsilon) values for the six districts. 

 

The values generated from the multi-objective linear 

programming model were then treated as the number of vaccines 

allocated to the susceptible agents in each age group, resulting in 

the number of vaccinated agents in Quezon City. Meanwhile, the 

values for the initial infectious, dead, and recovered were taken 

from the COVID-19 data released on March 21, 2021 by the 

Department of Health (DOH) (2021). Due to the lack of reliable 

data, we only assumed that the number of exposed is twice the 

number of the infectious. Finally, for the susceptible, the sum of 

the exposed, infectious, dead, recovered, and vaccinated were 

subtracted from QC’s projected 2021 population. 

 

We ran the model 10 times for each of the scenarios, with 150 

steps each run. The averages of the results were then computed, 

and the results for the no vaccination scenario were validated 

with the COVID-19 data from March 21 to May 21, 2021 (60 

days). 

 

 

3. RESULTS AND DISCUSSION  

 

Results in Table 3 show that with respect to the no vaccination 

scenario, prioritizing the mobile and front-line workers 

minimizes exposures and infections the most (1.89% and 4.34%) 

while prioritizing the low-income earners and front-line workers 

minimize deaths the most (1.93%). 

 

Since the pandemic began, we have known that COVID-19 

spreads through the interaction of a susceptible and an infectious 

individual. The case of prioritizing the mobile workers and front-

line workers demonstrates the effectiveness of vaccines in 

stopping this spread. Although these workers are the most 

exposed individuals among the groups considered in this study, 

especially in contrast with the elderly who were in quarantine 

since non-pharmacological measures were implemented in 

Quezon City, our model demonstrates that their frequent social 

exposure would not increase their infection risk once they get 

vaccinated. 

 

 Decrease in cases with respect to 

control scenario (%) 

Scenario E I D 

No Vaccination (Control) - - - 

Elderly 1.80 4.28 1.52 

Mobile Workers 1.89 4.34 1.09 

Low-income earners 1.74 4.28 1.93 

Table 3. Simulation Results 

 

With these results, we suggest prioritizing the mobile workers in 

the vaccination program of the Philippine government. This way, 

we afford these workers the protection that they need to fight 

COVID-19. Protecting the mobile workers will also allow our 

economy to roll. However, the elderly, together with the front-

line workers, shall still be given the highest priority in the 

vaccination program.  

 

 
Figure 2. Validation of the recovery age distributions for the no 

vaccination scenario. 

 

The front-line workers are the de facto priority of the 

vaccination, and this is intuitive. The front-line workers provide 

the primary services, i.e., health services, logistics, etc., that 

allow us to control the spread of the virus and reduce infections 

and deaths. Without the services of the front-line workers, our 

nation’s fight against COVID-19 is bound to fail, resulting in 

avoidable deaths. Thus, the front-line workers are the default 

priority in the vaccination.  

 

After the front-line workers, the case of the elderly shall be given 

attention, too. This is already reflected in the vaccination priority 

of the Philippine government. The elderly (60+) are placed after 

the front-line workers, i.e., group A2, in the prioritization, and 

we support this decision. 

 

As early as March 2020, we already pointed out the bias of 

COVID-19 against the elderly from the Hubei data, inspiring our 

formulation of the Age Stratification Theory: that the younger 

individuals recover and the older ones die from COVID-19 

(Bongolan et al., 2021). Later, the same dynamics is observed in 

the Philippines  (Rayo et al., 2020 and Minoza et al., 2020). Now, 

our model also demonstrates the said age dynamics of COVID-
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19. Figure 3 shows that deaths are more common among older 

individuals (60+), while the younger ones tend to recover. We 

ground-truthed this result with the COVID-19 data from the 

Department of Health Philippines (2021) from March 21 to May 

21, 2021 (60 days), and the projected dynamics validates with 

actual observation (see Figures 2 and 3). These results add to the 

catena of reasons why prioritizing the elderly is only right.  

 

 
Figure 3. Validation of the death age distributions for the no 

vaccination scenario.  

 

Finally, our simulations offer new insights concerning the 

vaccination of low-income earners. Results in Table 3 show that 

prioritizing them in the vaccination will result in the least number 

of deaths. We speculate that there is an overlap among the groups 

of low-income earners, mobile workers, the elderly, and those 

with comorbidities, thus resulting in the lowest projection of 

deaths. However, it is also fitting to point out the financial 

difficulty of low-income earners. When infected, these 

individuals would not have the capacity to afford hospitalization 

and medication. Hence, the government shall also look at their 

status in the vaccination prioritization. The prioritization of the 

low-income earners is where we might disagree with some 

decisions made, but will otherwise hold off on making other 

judgments.   

 

Since the two objectives of minimizing infections and deaths 

involve different priorities, most countries, including the 

Philippines, chose to minimize deaths, by prioritizing the elderly, 

and people with comorbidities. This decision was made in spite 

of the fact that infections peak at the younger age groups (where 

most of the mobile workforce is found), something observed in 

most countries. 

 

 

4. CONCLUSION  

 

In this study, we asked: How would we maximize the limited  

COVID-19 vaccines to minimize infections and deaths? Our  

COVID-19 agent-based model suggests that if we want to 

minimize exposures and infections, we shall prioritize the mobile 

workers and front-line workers; while if we want to minimize 

deaths, we shall continue to prioritize the elderly and consider 

the low-income earners in the prioritization, too. The policy-

makers of Quezon  City may take insights from these results.  
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