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ABSTRACT: 

 

3D city models have found purpose beyond simple visualization of space by serving as building blocks of digital twins and smart 

cities. These are useful to urban areas in the Philippines through diversified applications: urban planning, disaster mitigation, 

environmental monitoring, and policy making. This study explored the use of free and open-source software to generate an LOD1 and 

LOD2 3D city model of Tanauan City, Batangas using building footprints from OpenStreetMap and elevation models from Taal Open 

LiDAR data. The proposed approach consists of GIS-based methods including data pre-processing, building height extraction, roof 

identification, building reconstruction, and visualization. The study adopted methods from previous studies for building detection and 

from Zheng et al. (2017) for LOD2 building reconstruction. For LOD1, a decision tree classifier was devised to determine the 

appropriate height for building extrusion. For LOD2, a model-driven approach using multipatch surfaces was utilized for building 

reconstruction. The workflow was able to reconstruct 70.66% LOD1 building models and 55.87% LOD2 building models with 44.37% 

overall accuracy. The RMSE and MAE between the extracted heights from the workflow and from manual digitization has an accuracy 

lower than 1 m which was within the standards of CityGML. The processing time in test bench 1 and test bench 2 for LOD1 took 

00:12:54.5 and 00:09:27.2 while LOD2 took 02:50:29.1 and 01:27:48.2, respectively. The results suggest that the efficient generation 

of LOD1 and LOD2 3D city models from open data can be achieved in the FOSS environment using less computationally intensive 

GIS-based algorithms. 

 

 

1. INTRODUCTION 

A 3D City Model is a simplified virtual representation of an 

urban environment for the mathematical calculations and 

predictions of the systems and processes in that area. The 

accelerated evolution of modern computing power has allowed 

three-dimensional digital spatial analysis and modelling to be 

more common and accessible as compared to the traditional two-

dimensional counterpart. Three-dimensional models give 

vertical information a more intuitive visualization and 

perspective.  

 

CityGML is the international standard adopted by the Open 

Geospatial Consortium (OGC) for the representation, storage, 

and exchange of 3D City Models (Gröger et al., 2012). It 

differentiates multiple representations of a 3D city model 

through five consecutive Levels of Detail (LOD) based on its 

geometric and semantic complexity (Arroyo Ohori et al., 2018). 

Biljecki et al. (2014) define LOD as the model’s degree of 

adherence to its corresponding counterpart such that increasing 

the LOD, increases the quality, accuracy, and complexity of the 

model. The LOD also reflects the quality of data acquisition and 

specific application requirements for efficient visualization and 

data analysis (Gröger et al., 2008). 

 

A building model may be represented in different LODs from 

LOD0 to LOD4. LOD0, the coarsest level, is a two and a half 

dimensional polygon (Gröger et al., 2012) with its roof level 

height as an attribute (Biljecki et al., 2013). Models in LOD0 

mark the transition from two dimensional (2D) to three 

dimensional (3D) GIS and thus contain no volume. LOD1 is a 

generalized block model with a flat roof (Gröger et al., 2008) 

obtained by extruding the building footprint or LOD0 model to 

a uniform height (Arroyo Ohori et al., 2018).  LOD2 is 

essentially an LOD1 model enhanced with a generalised roof 

form as well as roof superstructures (Arroyo Ohori et al., 2018) 

such as chimneys and dormers (Biljecki et al., 2013). LOD3 is 

the most complex and most detailed representation of the 

outermost form of a building (Gröger et al., 2008). Lastly, LOD4 

completes the LOD3 model with the addition of indoor structures 

such as rooms, interior doors, stairs, and furniture (Gröger et al., 

2008).  

 

Several studies focused on automating or semi-automating the 

3D reconstruction of buildings highlighted the importance of 

identifying and establishing the basic geometric unit for the 

reconstruction mechanism, which also defines the appropriate 

modelling process (Fu et al., 2008). With this, the problem of 

building reconstruction is simplified into the subsequent process 

of building region identification and geometric reconstruction 

based on established strategies or approaches (Rottensteiner et 

al., 2014 in Awrangjeb et al., 2013; Zheng et al., 2017; Chen et 

al., 2006).  

 

In general, these approaches can be categorized into two major 

strategies: data-driven and model-driven, however, an 

occasional hybrid of the two was also demonstrated in some 

studies (Zheng et al., 2017). The data-driven approach, also 

known as the non-parametric (Sajadian et al., 2014), generic, or 

polyhedral approach (Lafarge et al., 2010 and Satari et al., 2012 

in Awrangjeb et al., 2013) is identified as a bottom-up strategy 

(Chen et al., 2006) owing to its method of modelling which 

prioritizes basic principal structures or components that make up 

the whole building. For this approach, the reconstruction is 

focused on the detection and decomposition of the roof structures 

in point cloud data, which means that the points are segmented 
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into planes characterizing these structures (Tasha-Kurdi et al., 

2019; Awrangjeb et al., 2013). Meanwhile, the model-driven 

approach, also known as the parametric approach (Awrangjeb et 

al., 2013), is defined as a top-down reconstruction strategy, 

which means that the modelling process is anchored on a 

hypothetical building framework (Chen et al., 2006).  Being 

parametric in nature, this approach makes use of a model library 

containing pre-defined synthetic building primitive models 

which are tested for fit on the input data based on different roof 

type detection and fitting algorithms (Zheng et al., 2017; 

Dorninger et al., 2008).  

 

This study aims to create a workflow which can efficiently and 

semi-automatically generate an LOD1 and LOD2 3D city model 

of Tanauan City, Batangas using open data available in the 

Philippines and the free and open source software (FOSS), 

QGIS, for processing. The use of open data and free and open 

source software (FOSS) will allow for replicability, 

reproducibility, and interoperability of 3D city models to 

maximize their potential in representing the complexities of 

urban areas. This will open the doors for more opportunities for 

engagement, participation, and collaboration of citizens in 

developing solutions for smart city initiatives. The success of the 

developed workflow for this research will greatly contribute to 

the development of 3D geoinformation in the country, most 

especially for different smart cities applications. 

 

2. STUDY AREA, DATA SOURCES, & SOFTWARE 

2.1 Study Area 

The choice of study area is limited within the region near the Taal 

volcano in consideration of the availability of the Taal Open 

LiDAR Data. The selected study area is a 4000m x 4000m urban 

area located in Tanauan City, Batangas. It is encompassed by 

four adjacent tiles from the Taal Open LiDAR dataset: tiles 

E299N1558, E299N1559, E300N1558, and E300N1559.  

 

2.2 Data Sources 

This study explored the use of open data in the Philippines. Two 

main data sources were utilized:  OpenStreetMap (OSM) data 

files from Geofabrik and Taal Open LiDAR data from the 

DREAM and Phil-LiDAR Programs.  The datasets obtained are 

freely available online and accessible to the public. 

 

2.3 Software 

This study was implemented using free and open-source 

software namely QGIS and its pre-installed packages such as 

GDAL and SAGA GIS, Python for data processing, and the 

Qgis2threejs plugin for visualization. 

 

3. METHODOLOGY 

For this study, the advantages of the workflow presented in 

Zheng et al. (2017) provided the motivations for developing a 

method for semi-automating the building reconstruction using 

building footprints and LiDAR nDSM. 

 

 
Figure 1. General workflow for generating the LOD1 and 

LOD2 3D city models. 

 

The general workflow for the LOD1 and LOD2 3D city models 

is shown in Figure 1. The process is divided into 4 main parts 

which consist of Building Delineation, Building Height 

Extraction or LOD1 Building Model Generation, LOD2 

Building Model Generation, and Visualization.  

 

3.1 LOD1 Building Model Generation 

 
Figure 2. LOD1 Building Reconstruction Flowchart. 

 

For the LOD1 Building Model Generation, the more detailed 

workflow is shown in Figure 2. To extract the appropriate 

heights for the OSM building footprints, building features were 

delineated and extracted from the LiDAR data through the 
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generation of the nDSM with 1 meter resolution. The presence 

of trees in urban areas similar to the study area poses difficulties 

in delineating building features since it complicates the height 

information extraction especially in areas where trees may 

occlude buildings. To avoid this, the study adopted the methods 

of Martin et al., 2014, Mendes et al., 2011, and Villanueva et al., 

2015 to remove trees and other non-building features from the 

elevation model. Tree features were detected using the Terrain 

Ruggedness Index which was filtered using raster 

reclassification. Morphological filters were applied to the 

reclassified texture raster. The resulting raster containing the 

building features was segmented using the detected edges from 

the Canny Edge Detection algorithm applied to the nDSM. The 

segmented buildings raster was then polygonized. The mean and 

maximum heights for the segmented polygons were extracted 

using the Zonal Statistics tool. The resulting polygons with 

height attributes were intersected with the OSM building 

footprints and the overlap percentage was computed. 

 

A decision tree classifier was devised to carefully choose the 

appropriate building height to be extracted depending on the 

overlap cases. There were six cases considered, four of which 

extracted heights for the building footprints, as summarized in 

Table 1. The percent overlap threshold value used in the 

classification was equal to 20%. This was based on the 

judgement of the authors as observed from the positional offset 

of the OSM building footprints and was assumed as the safest 

value that can extract appropriate heights to most, if not all the 

building footprints. The building footprints were then extruded 

using the Qgis2threejs plugin using the extracted heights to 

generate the LOD1 3D city model. 

 

 Height Assumption 

1:1 (OSM building footprint overlaps with only one nDSM 

building) 

Case 1 Mean height of 

overlapping 

nDSM building 

Area overlap of the nDSM 

building met the threshold and 

is therefore a good 

representative of the building. 

Case 2 No building 

height 

Area overlap did not meet the 

threshold and therefore is not a 

good representative of the 

building.  Difference in date of 

acquisition shall be considered 

as some buildings from LiDAR 

may have been replaced with 

new ones. 

1: many (OSM building footprint overlaps with more than 

one nDSM building) 

Case 3 Mean height of 

nDSM building 

with maximum 

overlap 

If all overlapping nDSM 

buildings meet the threshold, 

then they are assumed to be 

probable step edges. 

Case 4 Mean height of 

nDSM building 

with maximum 

overlap 

If not all overlapping nDSM 

buildings meet the threshold, 

then the one with the maximum 

overlap shall be considered. 

Case 5 Mean height of 

nDSM building 

with highest 

value 

If no overlapping nDSM 

building has met the threshold 

and the height difference is less 

than 1 storey, then the one with 

the highest mean height shall 

be considered. 

Table 1. The decision tree classifier for building height 

extraction. 

 

3.2 LOD2 Building Model Generation 

 
Figure 3. LOD2 Building Reconstruction Flowchart. 

 

The separate workflow for extending the building models from 

LOD1 to LOD2 is shown in Figure 3. The workflow consists of 

Step-edge Detection, Roof Type Identification, and Building 

Reconstruction.  

 

Similar to the building features segmentation in the LOD1 

workflow, Canny Edge Detection was used to extract edges from 

the nDSM. Building footprints were segmented using the same 

method in the previous workflow. Subsequent step-edge 

refinement was done using the method given in Zheng et al. 

(2017) which utilized the Minimum bounding geometry and 

bend simplification method. The output of the step-edge 

segmentation and refinement was to be supposedly used in the 

next steps.  

 

To identify the roof types of the building footprints, the aspect 

and slope maps of the nDSM were computed. The aspect values 

were reclassified based on the orientation values given by Zheng 

et al. (2017). The slope map was reclassified based on the 

assumption that flat roofs have slope less than or equal to 10 

degrees. Both reclassified maps were polygonised and used in 

roof type extraction. 

 

In this study, four roof types were evaluated: flat, gable, hipped, 

and complex roof.  The attributes stored in the polygonized 

aspect and slope maps were used in deriving the percent area of 

the plane and its orientation value. Vector-based methods were 

utilized such as intersection and join attributes by location to 

process the candidate roof planes based on the osm id of the 

intersecting building footprint. The characteristics of each roof 

type was used in the extraction algorithm such as the number of 

planes, the percent by area, and the orientation. 

 

The roof type extracted for each osm building footprint was 

stored as an attribute and used in the model-driven building 

reconstruction. For this, the multipatch generation function in 

PyShp was used. The 3D coordinates of the vertices of an OSM 

building footprint were extracted in QGIS and were processed in 

PyQGIS. The reconstruction utilized triangle strip and triangle 

fan multipatch surfaces. The principal axes of the buildings were 

estimated by computing the bearing of each polygon segment.  

 

Four (4) building footprints shapes were reconstructed for gable 

roofs while the two shapes were reconstructed for hipped roofs. 

Eave heights were assumed to be the mean height extracted. The 

ridge height for the 3D roofs was assumed to be the maximum 

height while the length of the ridge line was only estimated. The 

generated multipatch features were visualized using the 

Qgis2threejs plugin and the flat-roofed buildings were extruded. 
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In Villanueva et al. (2015), the semi-automation of the workflow 

for extracting building footprints from LiDAR data using open-

source GIS softwares like QGIS through python scripting and 

QGIS plug-in development was recommended after successfully 

implementing the methods through the separate tools available 

in the FOSS used. For this study, the semi-automation of the 

tools and methods for LOD1 building height extraction and roof 

type extraction were done through the Graphical Modeler tool of 

QGIS. Meanwhile, the height extraction, roof type extraction, 

and multipatch creation algorithms were executed through 

python scripting. The individual graphical models and python 

scripts were designed to automatically take in outputs from 

previous models or scripts as inputs based on the specific file 

names assigned to them, except for the first graphical model 

which requires the user to select the input DEMs and the OSM 

building footprints. 

  

4. RESULTS AND DISCUSSION 

4.1 LOD1 Building Model Generation 

Using the height extraction workflow developed in this study on 

the 6,633 OSM building footprints found in the four (4) LiDAR 

tiles within the study area boundary, 4,687 or 70.66% were 

assigned with heights.  

 

To assess the vertical accuracy of the heights extracted from the 

LiDAR nDSM, test buildings identified from the subset study 

area were manually digitized using georeferenced Google Earth 

images. Tile E300N1558 was chosen as the subset study area 

since it has the greatest number of building structures within its 

extent, as shown in Figure 4.  

 

For the accuracy assessment, 504 test buildings were identified 

and the heights extracted were used as the reference heights. The 

heights of the test buildings were extracted from the same 

LiDAR nDSM used through the zonal statistics tool. Since the 

heights extracted will be used as the reference heights, the 

manually digitized footprints were assumed to be the accurate 

representation of the buildings on the ground. Thus, the 

assessment was based on the difference in heights extracted for 

the OSM building footprints and the manually digitized footprint 

caused by the positional offset and the discrepancies in the 

building footprints shapes.  

 

 
Figure 4. Manually digitized test buildings and the 

corresponding OSM building footprints. 

 

The descriptive statistics computed and used for height accuracy 

assessment are the root-mean-square error (RMSE), mean error 

(ME), mean absolute error (MAE), and standard deviation (SD). 

 

In this study, the height extraction workflow was able to estimate 

the mean heights of the buildings at an accuracy lower than 1 m 

as shown by the values of the MAE and the RMSE. Considering 

the LiDAR accuracy of ±0.2 m (Paringit et al., 2017), the mean 

heights extracted were within the absolute vertical accuracy of 

5m and 2m set by OGC for CityGML for both LOD1 and LOD2, 

respectively. 

 

The per case height accuracy assessment showed that Case 3 

poorly extracted accurate mean heights with respect to the 

LiDAR accuracy as compared to the other cases while Case 1 

produced the least RMSE and MAE, as shown in Table 3. 

 

Height 

Extracted 
RMSE ME MAE SD R2 

Mean 0.650 0.074 0.410 0.646 0.937 

Maximum 1.759 -0.510 0.921 1.685 0.733 

Table 2. Descriptive Statistics for Mean and Maximum Height 

Extraction. 

 

Case 

No. 

No. of 

Test 

Bldgs 

RMSE ME MAE SD R2 

1 229 0.424 0.090 0.298 0.415 0.948 

3 26 1.364 -0.597 0.992 1.250 0.702 

4 219 0.704 0.070 0.437 0.702 0.952 

5 30 0.699 0.570 0.570 0.412 0.737 

Table 3. Descriptive Statistics for Mean Height Extraction (Per 

Case). 

 

Case 

No. 

No. of 

Test 

Bldgs 

RMS

E 
ME MAE SD R2 

1 229 1.407 -0.191 0.665 1.397 0.656 

3 26 2.454 -1.398 1.844 2.056 0.464 

4 219 2.068 -0.844 1.151 1.892 0.759 

5 30 0.652 0.263 0.396 0.607 0.605 

Table 4. Descriptive Statistics for Maximum Height Extraction 

(Per Case). 

 

The maximum height validation results show that the accuracy 

requirement for LOD2 can be achieved using the extracted 

maximum height. Based on the per case analysis, heights 

extracted under Case 3 were the least accurate among others, 

both for mean and maximum heights. Meanwhile, Case 1, which 

performed better in both the mean and maximum height 

extraction, demonstrates the effectiveness of the 20% area 

threshold in the development of the workflow. 

 

Errors in the extracted heights can be attributed to the over-

segmentation and under-segmentation of the nDSM detected 

buildings, which was dependent on the quality of the Canny 

Edge Detection output. The algorithm failed to detect some 

edges which caused the workflow to fail in properly segmenting 

closely spaced buildings. However, it was also observed that the 

under-segmented blocks in the nDSM detected buildings were 

mostly of the same building heights/levels and are mostly found 

in residential blocks (Figure 5). On the other hand, since the 

maximum height extraction gets the elevation of the highest 

point, it was observed to be more sensitive to under-

segmentation than the mean height extraction since adjacent 

buildings have different specific highest points.  
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Figure 5. Areas showing under-segmentation of detected 

nDSM buildings. 

 

Over-segmentation of nDSM buildings was also observed 

(Figure 6). For some cases of over-segmentation, the workflow 

opted to not extract heights to avoid the risk of assigning 

erroneous heights to the OSM building footprints. 

 

 

 
Figure 6. Areas showing over-segmentation of detected nDSM 

buildings. 

 

The extraction method employed in Case 1, as well as Case 4, 

was determined to have performed better in areas with low 

building density and well-distributed open spaces (Figure 7). 

This can be attributed to the performance of the building 

detection and segmentation workflow. 

 

The visualized LOD1 3D building models are shown in Figures 

8 and 9 with the LiDAR DTM as the base map draped with Bing 

Maps using the Qgis2threejs plugin.  

 
Figure 7. Areas showing buildings under Case 1 and Case 4. 

 

 
Figure 8. Panoramic view of the LOD1 3D City Model 

generated using mean heights. 

 

 
Figure 9. Models showing height and shape difference between 

OSM buildings and the reference test buildings. 

 

4.2 LOD2 Building Model Generation 

A model-driven approach was adopted, which made use of 

predefined roof models to be fitted on the footprint and height 

values.  A separate footprint for each roof substructure is ideal 

for roof type identification which can later be followed by roof 

modelling using the decomposed roof planes. However, there 

were several limitations in the reconstruction workflow due to 

the nature of the data used. 

 

 
Figure 10. Daniel O. Mercado Medical Center. (a) aerial view 

taken from Google Earth, (b) LiDAR nDSM, (c) building 

footprint, (d) edge detection from LiDAR nDSM, (e) segmented 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W6-2021 
Philippine Geomatics Symposium 2021, 17–19 November 2021, virtual meeting

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-77-2021 | © Author(s) 2021. CC BY 4.0 License.

 
81



 

test building from LiDAR nDSM, (f) OSM building footprint 

overlaid on the refined test building. 

 

As an example, the building shown in Figure 10 has 5 different 

roof sub structures based on its aerial view. Upon applying 

methods from Zheng et al. (2017), the result only yielded 3 

polygons because nDSM tends to ignore observable visual 

differences when height values are close to each other, resulting 

in the lack of segmentation. Additionally, the nDSM-derived 

polygons exhibit jagged edges even after edge refinement due to 

it being derived from a raster layer.   

 

Both the OSM and LiDAR data were not sufficient for building 

segmentation.  Introduction of another data source was not 

considered since the focus of this study is the efficiency and 

automation of the processes.  As a result, an alternative workflow 

was developed which skipped the building segmentation and 

proceeded directly with the roof identification. It prioritizes the 

OSM data due to the straight edges of the building footprints as 

compared to the jagged edges of the nDSM-derived delineated 

buildings which requires more advanced processing techniques; 

hence, it produced more recognizable building models with less 

intensive computations. However, the roof types obtained are 

prone to overgeneralization because of several limitations such 

as (1) the inaccuracy of the OSM traces leading to incorrect 

analysis of intersecting delineated building polygons, (2) the lack 

of segmentation resulting to the evaluation of all delineated 

building polygons within the OSM building footprint, and (3) the 

medium resolution of LiDAR data over a highly urbanized area. 

 

The slope and aspect information of each pixel from the nDSM 

were extracted and examined to identify the roof type.  The roof 

planes were then classified based on their orientation values as 

prescribed by the initial criteria from Zheng et al. (2017). The 

five roof types were gable, pyramid, flat, complex, and 

undetected.  Undetected roofs can be attributed to the over 

segmented aspect map wherein roof planes were barely 

recognizable and small in area with respect to the building 

footprint as observed in the case of Daniel O. Mercado Medical 

Center. 

 

 
Figure 11. Gable roof building’s OSM building footprints 

overlaid on the aspect and slope map (left) and aerial photo 

(right). 

 

 
Figure 12. Pyramid roof building’s OSM building footprints 

overlaid on the aspect and slope map (left) and aerial photo 

(right). 

 

 
Figure 13. Flat roof building’s OSM building footprints 

overlaid on the aspect and slope map (left) and aerial photo 

(right). 

 

LOD2 3D buildings were generated using a model-driven 

approach thus creating building models with generalized roof 

structures (Figure 14). Multipatch features were utilized for the 

building reconstruction through a combination of triangle strip 

and triangle fan part types. The current workflow can only model 

regularly shaped buildings with basic and symmetric roof types 

such as gable, pyramid, and flat roofs because more complicated 

buildings require step edge segmentation and ridge 

decomposition which is not possible with the data used. Figures 

15 and 16 show samples of the different types of reconstructed 

3D building models together with their aerial view.  

 

 
Figure 14. 3D building models for (a) rectangular gable, (b) l-

shaped gable, (c) irregular pentagon gable, (d) irregular gable, 

(e) rectangular hipped, and (f) l-shaped hipped. 

 

 
Figure 15. Sample 3D reconstructed building models for (a) 

rectangular gable, (b) l-shaped gable, (c) irregular pentagon 

gable, (d) irregular gable. 

 

 
Figure 16. Sample 3D reconstructed building models for (e) 

rectangular hipped, and (f) l-shaped hipped, (g) rectangular flat, 

(h) irregular flat. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-4/W6-2021 
Philippine Geomatics Symposium 2021, 17–19 November 2021, virtual meeting

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-4-W6-2021-77-2021 | © Author(s) 2021. CC BY 4.0 License.

 
82



 

 
Figure 17. Panoramic view of the LOD2 3D City Model. 

 

The workflow was able to reconstruct 3706 out of 6633 or 

55.87% of the buildings in 3D.  These LOD2 3D building models 

were assessed by comparing 462 test buildings to its counterpart 

as seen from Google Earth in replacement of ground validation 

procedures.  A confusion matrix (Table 5) for the roof type 

classification was created resulting in an overall accuracy of 

44.37%.  The roof identification criteria were dependent on the 

number of roof planes and the aspect values.  It was therefore 

prone to misclassification due to over segmentation of roof 

planes. 

 

 Reference Data 

Extracted 

Data 

Gabl

e 

Hip

ped 

Co

mp

lex 

Fla

t 

Uncl

assif

ied 

Total 

User's 

Accur

acy 

Gable 48 20 4 3 0 75 64 

Hipped 99 97 15 6 0 217 44.70 

Complex 25 27 10 8 0 70 14.29 

Flat 23 12 7 50 0 92 54.35 

Not 

detected 
4 2 2 0 0 8 0 

Total 199 158 38 67  0 205 - 

Producer's 

Accuracy 

24.1

2 

61.

39 

26.

32 

74.

63 
- - 

44.37

% 

Table 5. Confusion matrix for roof shape classification. 

 

4.3 Automation in QGIS 

The workflow for both the LOD1 and LOD2 3D city model 

generation were automated using the graphical modeler tool and 

the python console in QGIS. The two test benches used were a 

Lenovo Ideapad 320 (Test Bench 1) and a Dell Inspiron 5570 

(Test Bench 2) with their specifications shown in Table 6. 

 

 

Lenovo Ideapad 

320 

(Test Bench 1) 

Dell Inspiron 5570 

(Test Bench 2) 

Processor 

Intel(R) Core(TM) 

i3-6006U CPU @ 

2.00GHz   1.99 

GHz 

Intel(R) Core(TM) 

i7-8550U CPU @ 

1.80GHz   1.99 

GHz 

Installed RAM 8.00 GB 8.00 GB 

     Storage 240 GB SSD 500 GB SSD 

Operating 

System 
Windows 10 Windows 10 

Table 6. Laptop Specifications. 

The processing time of each tile for both test benches are shown 

in Tables 7 and 8, respectively. Test bench 1, with a lower 

processor, was able to finish the entire procedure with a total 

time of 3 hours, 3 minutes, and 24.6 seconds, whereas test bench 

2, with the more advanced processor chip, took 1 hour, 37 

minutes, and 15.4 seconds of processing time. 

 

Tile Number 

Run Time (H:MM:SS.S) 

Height Extraction 

(LOD1) 
LOD2 Total 

E299N1558 0:03:39.8 0:37:44.9 0:41:24.7 

E299N1559 0:02:39.2 0:31:33.8 0:34:12.9 

E300N1558 0:03:50.2 1:14:20.0 1:18:10.2 

E300N1559 0:02:45.4 0:26:50.4 0:29:35.8 

Total 0:12:54.5 2:50:29.1 3:03:24.6 

Table 7. Overall Processing Time (Test Bench 1). 

 

Tile Number 

Run Time (H:MM:SS.S) 

Height Extraction 

(LOD1) 
LOD2 Total 

E299N1558 0:02:35.5 0:23:14.2 0:25:49.6 

E299N1559 0:02:28.2 0:18:05.8 0:20:34.0 

E300N1558 0:01:41.3 0:30:08.9 0:31:50.2 

E300N1559 0:02:42.2 0:16:19.4 0:19:01.6 

Total 0:09:27.2 1:27:48.2 1:37:15.4 

Table 8. Overall Processing Time (Test Bench 2). 

 

5. CONCLUSIONS 

The LOD1 3D City Model workflow was able to reconstruct 

70.66% 3D building models from the 4 LiDAR tiles with a 

maximum processing time of 12 minutes and 54.5 seconds for 

test bench 1 and 9 minutes 27.2 seconds for test bench 2. On the 

other hand, the LOD2 3D City Model workflow was able to 

reconstruct 55.87% 3D building models with an overall accuracy 

of 44.37% from the 4 LiDAR tiles. The maximum processing 

time for test bench 1 was 2 hours 50 minutes and 29.1 seconds 

while test bench 2 took 1 hour 27 minutes 48.2 seconds. This 

proved that efficient generation of LOD1 and LOD2 3D City 

Model from freely available and already existing data can be 

achieved in the FOSS environment using less computationally 

intensive GIS-based algorithms. 

 

The OSM building footprints are up to date but inaccurate and 

have inconsistent standards. It is therefore recommended to 

obtain building footprints with more accurate tracing and 

positioning.  It would be best to have a standard for tracing such 

as one footprint for each building, so that the methodology can 

adapt better to the available data. On the other hand, the LiDAR 

data is not up to date but is more accurate however it needs to be 

supplemented by other data with better horizontal accuracy.  It is 

recommended to obtain up-to-date and higher resolution data to 

better represent high density urban areas.  It is also recommended 

to explore other data sources such as orthophotos for building 

and edge detection. Validation was done through visual 

inspection via Google Earth Pro.  It is recommended to conduct 

an onsite ground assessment to verify the accuracy of the 

building heights and roof models.  

 

Three dimensional digital maps hold the future of smart cities. 

The resulting model is envisioned as a base map to provide initial 
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estimation, prediction, and simulation of different applications 

such as the following: (1) estimation of building heights and 

levels, (2) valuation of buildings, (3) population estimation, (4) 

visualization, (5) designing green areas, (6) 3D cadastre, (7) 

change detection, (8) routing, (9) evacuation planning, and (10) 

flood application. The sharing and integration of information in 

a developing country, like the Philippines, shall transform its 

urban areas to more inclusive, smarter, and more sustainable 

cities. 
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