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ABSTRACT:

The co-registration of photogrammetric products such as image blocks or point clouds is an essential step before they can be
used for subsequent analysis. Usually this is done by using control points. This has some disadvantages such as the need for
additional measuring devices and a laborious measuring of the coordinates. In prior works we developed a procedure that enables a
marker-less co-registration of an image block with a digital building model. This extended abstract presents our current research as
work-progress. For further facilitating and improving this process we identified two tasks. Using videogrammetry as data capturing
technique and using an enhanced matching algorithm during the co-registration. This paper summarizes essential steps when
making the switch from photogrammetry to videogrammetry and explains the basic principles of the improved matching process.

1. INTRODUCTION

Today the sustainable maintenance and conservation of build-
ings and especially infrastructure such as bridges, tunnels and
roads is a major challenge. New tools for the digital docu-
mentation of the actual conditions can help to detect neces-
sary renovation measures on time. Photogrammetric measur-
ing techniques can help to improve this process. Point clouds
and oriented image blocks can be used for capturing the actual
state of the structure for different points in time and therefore
to monitor the health of it. Modern photogrammetric sensoros
providing a lot of details in a high resolution combined with
artificial intelligence techniques can for example be used to de-
tect cracks or deformations on the structure (Morgenthal et al.,
2021).

An important step in the photogrammetric process chain is the
registration of the generated data. A proper registration either
in respect to a global reference frame or a digital model is very
important to establish the connection of potential damages and
their location in the structure. Usually the registration is carried
out using control points with known coordinates in the world as
well as in the object coordinate system. This well established
procedure has the advantage that high registration accuracies
can be reached. On the other hand it often requires additional
measuring devices such as total stations or GNSS receivers for
obtaining the coordinates of the control points. Additionally,
this requires expert knowledge and manually measuring the
control points in the images is an error-prone, repetitive and
time-consuming task.

In order to get widely adopted by many users it is important that
the complete process including data capturing and the actual
co-registration can be automated as high as possible. With the
emergence of Structure from Motion (SfM) packages it already
became possible to reconstruct accurate 3d scenes if certain
conditions such as enough overlap between the images are met.
For further simplifying the data capturing, video frames can be
used as input data source.

In (Kaiser et al., 2022) we presented a novel approach for the
automated co-registration of (single) image blocks with an ex-
isting digital building model. With our ongoing research we
want to improve and ease the complete workflow by using
videogrammetry as data capturing technique (Section 4) and an
enhanced matching algorithm (Section 5). Section 4 discusses
the various principles of image selection from video frames
in the context of videogrammetric 3d reconstruction. Also
the videoprocessing pipeline is presented. Section 5 prsents a
new principle component based cluster method for the SfM-
generated 3d-lines. This method serves to reduce the of can-
didates and intends do accelerate the matching algorithms from
image blocks to BIM model. Please note, that the two enhance-
ments are theoretically independent, but are practically used in
a common pipeline for the co-Registration of videogrammetric
point clouds with BIM.

2. RELATED WORK

The co-registration of photogrammetric products with digital
building models is a very active research field. The rising usage
of digital methods like Building Information Modeling (BIM)
has accelerated this trend. In projects related to construction
progress monitoring (Vincke and Vergauwen, 2020, Tuttas et
al., 2017) the registration is carried out once at the begin of
the construction using a classical approach with control points.
Image blocks of later points in time are then co-registered with
the initial reference frame.

Other works use the geometry of the digital building model for
an automated co-registration. (Kim et al., 2013) for example
co-registers a point cloud to a model with the help of the It-
erative Closest Point Algorithm. (Kropp et al., 2018) match
lines extracted from video sequences with lines extracted from
a building model for co-registering the image block. Whereas
plane-based registration mainly is used in applications related
to terrestrial laser scanning (TLS). These procedures can either
be used to register the single scan stations into one common
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reference frame (Wujanz et al., 2018) or to co-register the scan
with a building model (Bosché, 2012).

3. EXISTING SOLUTION

As stated in the introduction, we developed a procedure that en-
ables the co-registration of an image block consisting of single
images with a digital building model (Kaiser et al., 2022). More
precisely we focused on the co-registration of indoor scenes.
The basic idea of the method is to match 3d line segments that
are extracted from the images with planar surfaces from the di-
gital building model. By observing the geometric relationships
between lines and planes the required transformation paramet-
ers can be estimated. Figure 1 shows the basic steps for co-
registering an image block with the building model.
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Figure 1. Workflow of existing solution with BIM (blue),
photogrammetry (orange), co-registration (grey), result (red) and
the planned extensions (green). Only the new video data source

and the enhanced matching are discussed in this paper.

After the images have been captured they are relatively oriented
using Structure from Motion (SfM) algorithms. In our imple-
mentation this is done using the open source software COLMAP
(Schönberger and Frahm, 2016). This step delivers the interior
and exterior orientation of the images. The orientation paramet-
ers and the images are processed by Line3D++ (Hofer et al.,
2017) for extracting the 3d line segments. These are defined by
the coordinates of the start and end points in the SfM coordinate
system

The necessary planar surfaces are extracted from a digital build-
ing modeled with the open Industry Foundation Classes (IFC)
standard. Especially for indoor spaces IFC implements the
concept of Space Boundaries that define the individual room
bounding surfaces 1. For planar surfaces with the normal vector
−→n = [abc]T a plane equation can be formulated:

ax+ by + cz − d = 0 (1)
1 https://technical.buildingsmart.org/standards/ifc/

ifc-schema-specifications/

The required transformation parameters consisting of

• three rotations around the coordinate axes, equal to the ro-
tation Matrix R,

• three components of the translation vector −→t ,

• s scale parameter m

are determined in the adjustment stage. Each 3d line seg-
ment that is directly located on an extracted boundary surface
provides two observation equations

f (x, l + v) = ⟨R · u⃗, n⃗⟩ = 0 (2)

and
f (x, l + v) =

〈(
m ·R · p⃗+ t⃗

)
, n⃗

〉
− d = 0 (3)

where R is the rotation matrix, −→t the translation vector, m the
scale parameter, −→n is the normal vector of the plane, −→u is the
direction vector of the 3d line segment and −→p is the mid point
of line.

Equation 2 can be used to calculate the unknown rotation from
the point cloud to the BIM coordinate system whereas equa-
tion 3 also enables to determine the translation and the scale
parameters. By using a Gauß Helmert Model the transforma-
tion parameter can be estimated.

The adjustment process only delivers correct results if the in-
volved 3d line segments are matched to the correct planar sur-
face. However, there is no a priori information about correct
line plane pairs available. Since a brute force approach (where
all possible combinations of line plane pairs would be tested) is
not feasible, we developed a clustering algorithm that assigned
the 3d line segments into multiple clusters. In the next step a
RANSAC (Fischler and Bolles, 1981) inspired random assign-
ment of the cluster’s lines to the planes is performed. In total
four line plane pairs are necessary to calculate the transform-
ation parameters. Due to the random line plane assignment,
numerous minimal configurations have to be processed and af-
terwards filtered to obtain the best suitable seven transformation
parameters R, t⃗ and m.

4. VIDEOGRAMMETRY

In recent years, and by now decades, development in the field
of real-time robotics has come a long way in terms of camera-
based systems. In just a few milliseconds, vehicles can re-
cognize signs and road situations and, in some cases, react
autonomously to them. A very active research focus in this
context uses SfM and pursues Simultaneous Location and Map-
ping (SLAM) solutions to localize themselves in self-generated
maps or 3d models of an environmental situation. The bound-
aries between these real-time applications and photogrammetry
methods are now fluid. Both profit greatly from this. Video-
grammetry (VG) can be understood simplified as an extension
of photogrammetry (PG) by an intelligent image selection (IS)
in the available videos:

VG = IS + PG (4)

The approach of capturing and processing videos instead of
photos has a number of advantages and disadvantages. The

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022 
Measurement, Visualisation and Processing in BIM for Design and Construction Management II, 7–8 Feb. 2022, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

 
142

https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/
https://technical.buildingsmart.org/standards/ifc/ifc-schema-specifications/


biggest disadvantage is certainly the fact that the extracted
single photos usually do not have geotags and thus an automatic
georeferencing is not easily possible. However, this disadvant-
age can be solved satisfactorily in combination with pure pho-
togrammetry. For the image selection we have many different
strategies at our disposal. First of all: Not only one solution
exists for the image selection. If the goal is to generate a point
cloud as quickly as possible, e.g. to ensure on site that the ac-
quired data is complete and to generate a coherent, gapless 3d
model, then a minimal, fast image selection would be an op-
tion. However, if the goal is to generate the densest point cloud
possible, then more time can be invested in image selection and
that may result in a larger image set. Before discussing some
of these strategies, we need to understand the spectrum of data
and the min-max conflict that exists with it.

4.1 Min-Max Conflict

For 3d reconstruction of a point in SfM, there must be at least
three images in which that point has been uniquely determined.
Since we have a continuum of consecutive data available in the
video footage, we could come up with the idea of just taking all
the frames. This would give us the minimum distance between
frames. Given the rule of three, we can derive the min prop-
erty: The smaller the distance between the images, the more
3d points are possible. In practice, we quickly find that using
all the images unfortunately leads to worse results with fewer
3d points than using a smaller number of images. In order to
understand the reason, we need to appreciate another important
property in the SfM approach: The larger the distance between
images, the more accurately 3d points can be determined, and
only accurate 3d points survive later in the 3d model (see Fig-
ure 2).

Figure 2. Relation between baseline length and the resulting
area of uncertainty when triangulating a point.

If for two images A and B1 the image distance of the camera
centers (baseline) is smaller, we get a larger area of uncertainty
for the jointly observed point X than if we choose a larger im-
age distance as for images A and B2. The area of uncertainty
provides us an important quality attribute for the identified 3d
point. Thus, in order to obtain the maximum number of 3d
points for a 3d model, we need to solve the so-called min-max
conflict during image selection: maximize 3d points by choos-
ing an appropriate image (image spacing) between min and max
property.

4.2 Image and correspondence evaluation criteria

The research in feature extraction, the reduction of all image
pixels to some relevant, is as old as the Computer vision itself.
There are several solutions i.e. Harris Corner (Harris and Steph-
ens, 1988), SIFT (Lowe, 2004) or SURF (Bay et al., 2006), and
much more. All candidates for SfM need to be invariant to af-
fine transformations like scaling, rotating, translation and a mix
of them. One of the most common feature detectors and used
in various applications like object recognition, image retrieval
or 3d reconstruction is SIFT, published and patented by Lowe
(2004). There are different approaches to speed them up, like
SiftGPU (Wu, 2010). But in robotics, when Computer vision
needs to work in real-time, other solutions are more common
(Miksik and Mikolajczyk, 2012).

Typically, a feature extracted by a detector has not only a po-
sition. In most cases, i.e. to improve the necessary match-
ing between two feature sets extracted from two images I1
and I2, every feature has a more accurate description (Mikola-
jczyk and Schmid, 2005). We write a set of image keypoints as
Kx,y(I) extracted with detector x ∈ {SIFT, SURF, . . .} and
descriptor y ∈ {SIFT,GLOH, . . .} in image I and ∥Kx,y(I)∥
counts the number of detected features. If there are two im-
ages Ii and Ij with feature sets Kx,y(Ii) and Kx,y(Ij) then
Kx,y(Ii, Ij) is the set of corresponding keypoints for the image
pair using RANSAC (Hartley and Zisserman, 2011). Appro-
priate the number of features is ∥Kx,y(Ii, Ij)∥. To quantify
the relative intersection set in percent, we notice JKx,y(Ii, Ij)K
with:

JKx,y(Ii, Ij)K =
∥Kx,y(Ii, Ij)∥

max (∥Kx,y(Ii)∥ , ∥Kx,y(Ij)∥)
(5)

It is easily comprehensive, that the result for JKx,y(I, I)K
should be always 1. The following sections describe methods
to measure the quality of single images or the quality of corres-
pondences between two images, considering the aim which is
to use them in a 3d reconstruction process. Most of these meth-
ods are based on feature detection. If e.g. a method A(Ii, Ij)
is given to deliver a correlation score between images Ii and Ij
which followed by the step A(Kx,y(Ii),Kx,y(Ij)) we simplify
to A(Ii, Ij)x,y . If selecting one image as the nth keyframe from
a set of {I1, I2, . . . , Imax}, we notice this image In by bold let-
ters. If the position i inside the image set is needed to follow
the algorithm, we give both indices Ini .

A number of solutions are available today for solving the im-
age selection part due to the Min-Max Conflict in real-time
scenarios, let’s take a look at a few representatives of these al-
gorithms.

4.2.1 Sharpness measure While recording video data with
moving systems like UAVs, single images with the same con-
tent may differ strongly in sharpness due to the fact that small
camera movements are applied. In contrast to the relative sharp-
ness measure for an image I , as a mean square of the horizontal
and vertical derivatives:

S(I) =
1

2 ∥I∥

∫ ∫ (
∂I(x, y)

∂x

)2

+

(
∂I(x, y)

∂y

)2

dxdy (6)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022 
Measurement, Visualisation and Processing in BIM for Design and Construction Management II, 7–8 Feb. 2022, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

 
143



Nistér proposes a discretized, faster version with finite differ-
ences except for the image boundaries

S(f,I)= 1
2∥I∥

∑
(x,y)∈I (f(x+1,y)−f(x−1,y))2+(f(x,y+1)−f(x,y−1))2,

(7)
where ∥I∥ conforms to the amount of pixels and f describes an
image function to get pixels from downsampled and normalized
image data (Nistér, 2001).

4.2.2 Normalized Correlation Constraint Nistér uses the
normalized correlation constraint

NC(Ii, Ij) = JKx,y(Ii, Ij)K (8)

between two images Ii and Ij to delete redundant frames
(Nistér, 2001). Redundant in that case means very similar and
will be discussed later.

4.2.3 Distance Constraint Nistér also checked the max-
imum distance in correspondences (Nistér, 2001). The estim-
ated homography mapping H does not violate the maximum
expected disparity d at any point.

In combination with the Normalized Correlation Constraint
(Sec. 4.2.2), he deletes frame Ii when maximum distance is
smaller than Td with Td = image size

10
.

4.2.4 Correspondence Ratio Constraint Seo et. al. (Seo,
2008) considered ∥Kx,y(Ii, Ij)∥, the ratio of the number of cor-
respondences to the total number of features, for correspond-
ence:

CRC(Ii, Ij)x,y =
∥Kx,y(Ii, Ij)∥
∥Kx,y(Ii)∥

(9)

The Correspondence Ratio Constraint CRC depends on the
camera motion and needs to be located between the values tlow
and thigh, which are not specified by the authors. Rashidi et. al.
experimented with scenes of different complexity and different
camera motion speed and suggested estimated values for them
(Rashidi et al., 2013).

4.2.5 Maximum Distance Constraint A simple method
motivated by autonomous robot navigation and proposed by
Royer et. al. selects images with maximum distances while
there are at least M common interest points between two
correlated frames (Royer et al., 2007). They choose always
the first image as the first keyframe I11. When n keyframes
I1, I2, . . . , In are chosen, they select the next keyframe In+1 as
follows: (i) there are as many video frames as possible between
In and In+1, (ii) there are at least M interest points in common
between In+1 and In, (iii) there are at least N common points
between In+1 and In−1.

We can summarize this description as follows

MDC(In−1, Ini , [Ii+1, . . . , Imax])x,y =

max
k

(∥Kx,y(I
n, Ik)∥ > M,

∥∥Kx,y(I
n−1, Ik)

∥∥ > N),
(10)

where i < k. The two unknown parameters M and N are spe-
cified by the authors with M = 400 and N = 300 and were set
experimentally. Royer et. al. (2007) use Harris corner detector
for feature detection.

4.2.6 Optical-Flow-Based Motion Estimation In 2001
Nistér uses the initial step of coarse to fine optical flow based
video mosaicing (Kanatani and Ohta, 1999) to use the result as

a global motion estimation for Structure and Motion (Nistér,
2001). The motivations to use this over feature based ap-
proaches like in Capel et. al. (Capel and Zisserman, 1998)
were that the behavior works fast and also for gravely unsharp
frames. Assuming a rigid world, between two images I1 and I2
a homographic mapping H can be derived.

An image Ii is downsampled and normalized and a position of
pixel −→p = (x, y) is accessible by an image function fi(

−→p ) (see
Sec. 4.2.1). To estimate H the mean square residual R with

R(f1, f2, H, ϑ) =
1

∥ϑ∥
∑
x∈ϑ

(f2(H
−→p )− f1(

−→p ))
2 (11)

will be minimized using non-linear least squares algorithm such
as Levenberg-Marquardt (Press et al., 1988).

4.2.7 Degeneracy Constraint As the fundamental matrix
F better defines general camera motion, the homography H
better defines degenerated camera movements. The Geometric
Robust Information Criterion GRIC introduced by Torr

GRIC(Ii, Ij)x,y =
∑
i

p(e2i ) + λ1dn+ λ2k (12)

computes a score based on the fundamental matrix GRICF and
the homography GRICH separately (Torr, 1998), where p(e2),
a robust function of the residuals, is defined by

p(e2) = min

(
e2

σ2
, λ3(r − d)

)
(13)

where d is the number of dimensions modeled (d = 3 for F ,
d = 2 for H), n the total number of features matched across
the two frames, k is the number of degrees of freedom (k = 7
for F , k = 8 for H), r is the dimension of the data (r = 4 for
2d correspondences), σ2 is the assumed variance of the error,
λ1 = log(r), λ2 = log(rn), and λ3 limits the residual error
(Torr et al., 1998, Ahmed et al., 2010). Torr uses also the Harris
corner detector for feature detection.

4.2.8 Normalized GRIC Difference Criterion The smal-
ler the GRIC score the better the model. If GRICF is better
than GRICH , then a good candidate keyframe is indicated. The
normalized GRIC Difference Criterion GDC was introduced
by Ahmed et. al. (Ahmed et al., 2010) and is defined by:

GDC(Ii, Ij)x,y =
GRICH(Ii, Ij)x,y −GRICF (Ii, Ij)x,y

GRICH(Ii, Ij)x,y
(14)

Unfortunately, Ahmed et. al. didn’t explain explicit, which kind
of feature detection method was used, most likely the Harris
corner detector.

4.2.9 Point-to-epipolarline Cost The point-to-epipolarline
cost PELC is the standard geometric reconstruction error
measure for F given two images Ii and Ij and was named
as the Gold-Standard error function by Hartley and Zisserman
(Hartley and Zisserman, 2011):

PELC(Ii, Ij)x,y =
∑
i

d(xi, x̂i)
2 + d(x′

i, x̂
′
i)

2 (15)

This score depends on the chosen feature detection method.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022 
Measurement, Visualisation and Processing in BIM for Design and Construction Management II, 7–8 Feb. 2022, Prague, Czech Republic

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-141-2022 | © Author(s) 2022. CC BY 4.0 License.

 
144



4.2.10 Weighted GRIC and PELC The Weighted GRIC
and PELC criterion WGP proposed by Ahmed et. al. repres-
ents an alternative keyframe score

WGP (Ii, Ij)x,y = wGGDC(Ii, Ij)x,y +
wP (σ − PELC(Ii, Ij)x,y),

(16)

where σ is the assumed standard deviation of the error. The
weights wG and wP are not specified by the authors and were
set experimentally (Ahmed et al., 2010).

4.3 Shot Boundary Detection

Sometimes uncorrelated frame sequences can be produced
while recording videos. This can happen, if the frame rate is
very low and a large camera motion becomes somewhat arbit-
rary, or if the camera has been stopped and then started again
at a new position. Shot boundaries are detected by evaluat-
ing the correlation between adjacent frames after global motion
compensation (Sec. 4.2.6) (Nistér, 2001). The threshold for
the Normalized Correlation Constraint is set by the authors to
TSB = 0.75.

4.4 Videogrammetry in Archaeo3D

In our experience with recording data while moving, video-
grammetry is the more fault-tolerant, more cost-effective and
easier-to-use approach. The software JKeyFramer, an auto-
matic key frame selection tool, was one of the most import-
ant outcomes of the project Archaeocopter2. This tool uses
the presented videogrammetric methods for image selection and
combines them depending on the objective and was at that time
an important step towards fast 3d reconstruction. Meanwhile,
it has evolved to allow us to render fast preview models on
site. Within the scope of the Archaeocopter project, the semi-
automatic software Archaeo3D was developed to optimize and
control the complete reconstruction process. Videos and photos
are automatically imported and processed. The software is able
to reorder or change the pipeline modules and adjust the para-
meters, according to the current hardware and the real record-
ing situation and complexity. A combination of VisualSFM3,
COLMAP, CMPMVS and Meshroom4 provided the backbone of
the processing toolchain, in all Archaeocopter related projects.
The Archaeo3D reconstruction pipeline includes the following
processing steps and software packages:

1. Data recording (GoPro Hero vidoes or photo sets)

2. Keyframe extraction (VLC5, MPlayer6, ffmpeg7, JKey-
framer)

3. Image undistortion (OpenCV8, JUndistortion)

4. Image enhancement (JResizer, JEnhancer)

5. Feature extraction (SiftGPU, JFeatureManager)

6. Sparse reconstruction (VisualSFM, COLMAP)

2 https://www.archaeocopter.de
3 https://ccwu.me/vsfm/
4 https://alicevision.org/#meshroom
5 https://www.videolan.org/vlc/
6 httsp://www.mplayerhq.hu
7 https://www.ffmpeg.org/
8 https://opencv.org

7. Dense reconstruction (CMVS+PMVS (Furukawa and
Ponce, 2010), OpenMVS9)

8. Compare or reduce point cloud (CloudCompare10)

9. SGM, Surface fitting (Poisson reconstruction (Kazhdan et
al., 2006), CMPMVS (Jancosek and Pajdla, 2011), Mesh-
room, OpenMVS)

10. Producing orthoimages (CMPMVS)

11. Georeferencing, mesh cleaning (MeshLab (Cignoni et al.,
2008))

12. Integrate data into GIS (QGIS11)

Additional software components like JUndistortion, for auto-
matic camera calibration, and JKeyFramer, for automatic key
frame selection, were developed and integrated. The pipeline
automatically shifts processing toward CPU or GPU, depend-
ing on the hardware, on which Archaeo3D is running. The
number of parallel processing jobs is chosen according to the
available system memory. While reprocessing old data and pre-
paring new recording campaigns, we also made progress, both
in terms of reliability and quality of 3d results, by preparing our
software packages JKeyframer, JUndistortion, JResizer, JFea-
tureManager and JEnhancer, and releasing them one by one as
freely available software tools12. The georeferencing step, fol-
lowing the 3d reconstruction process, is an important step due
to the fact that 3d models without spatial reference or scale are
of limited scientific value. In the Archaeo3D workflow, the free
software package QGIS fulfills this task. As an alternative, the
point cloud can also be georeferenced in VisualSFM.

Our Archaeo3D pipeline allows us to produce preview point
clouds and rapidly examine them on-site with the benefit of val-
idating the results immediately. The final reconstruction with
Archaeo3D off-site, with more powerful computing equipment,
will produce more detailed results. This technique was first
used during the campaign in Tamtoc/Mexico 2013 (Block et al.,
2015). Initially, a number of point clouds of an Huastec settle-
ment site were produced, computed and validated on-site, and
afterwards the complete 3d model was produced in the com-
puter lab of the HTW Dresden. We are currently on the way
to integrate some parts (such as Keyframe extraction or Image
undistortion and enhancement) of this pipeline into our BIM
co-registration process.

5. ENHANCED MATCHING ALGORITHM

As it was shown in our previous work the developed co-
registration procedure is able to deliver registration accuracies
in the range of 3-5 cm. The crucial point of the whole process
is the creation of correct line plane pairs. When using manually
assigned line plane pairs, it could be shown that even better re-
gistration accuracies can be reached. This can be explained with
the user’s scene understanding. When choosing the segments
manually, longer and therefore more stable 3d line segments
can be selected. Besides of that, the distribution of selected 3d
lines can be more balanced so that ideally line segments are
chosen from the entire scene. This also delivers more reliable
transformation parameters.
9 https://cdcseacave.github.io/openMVS/
10 https://www.danielgm.net/cc/
11 https://www.qgis.org
12 https://www.archaeocopter.de
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Consequently, it can be said that a reliable classification of the
3d line segments into spatially belonging clusters is of great
importance for the automated line plane matching, having the
overall aim to get better line plane pairs, in mind. Since SfM
reconstructions are not up to scale without further information
(e.g. by using control points), the clustering is a challenging
task because no metric threshold values can be used. As ro-
tations are scale invariant the direction vectors of 3d line seg-
ments play an important role in this context.

The existing solution uses a clustering approach based on es-
tablished plane hypotheses or rather normal vectors hypotheses.
For improving the matching algorithm, we are currently follow-
ing another approach. Figure 3 shows our test data set covering
an indoor scene.

Figure 3. Extracted 3d line segments (left) and dense point
cloud for the test room (right).

Since the built environment in large parts follows a Manhattan
World (Coughlan and Yuille, 2000), we can calculate the main
axes of the reconstructed scene in the point cloud coordinate
system by applying a principal component analysis on the dir-
ection vectors of the 3d line segments. After finding the main
axes, the 3d line segments that are parallel to the main axes are
determined using the dot product (see Figure 4).

Figure 4. Calculated main axes are displayed in red, green, blue.
The parallel lines are colored equal.

In the next step, the distance from the main axes to each mid
point for all non-parallel lines are calculated and stored in a list.
This list is classified using the Jenks Natural Breaks algorithm
(Jenks and Caspall, 1971). This clustering algorithm, which is
applicable for one dimensional data, tries to group the entries in

a way that the variance of the data points inside a group is min-
imized whereas the variance between the groups is maximized.

An important characteristic of the Jenks algorithm is that it is
necessary to specify the number of cluster before running the
algorithm. By default, we set the number of clusters to six
nc = 6. However, using Jenks algorithm it is possible to cal-
culate the goodness of variance fit (GVF) ranging from 0 (in-
dicating a bad fit) to 1 (meaning a good fit) which is a quality
measure for the evaluation of the clustering. Before that, the
sum of squared deviations for array mean (SDAM) and the sum
of squared deviations for class mean (SDCM) need to be calcu-
lated for the Jenks clusters:

SDAM =
∑
xϵL

(x− µ)2 (17)

where L is the list of values to cluster, x represents a single
value in L and µ is the mean of L

SDCM =

nc∑
i=1

(x− µi)
2 (18)

where nc is the number of clusters, x represents a single value
in cluster i and µi is the mean of cluster i:

GV F =
SDAM − SDCM

SDAM
(19)

Using the quality measure GV F we are increasing the number
of clusters as long as GV F ≥ 0.995. As a result (see 5) we ob-
tain 6 clusters roughly equal to the six main bounding surfaces
of the room.

Figure 5. 3d line segments grouped into six major clusters
roughly equal to the main bounding surfaces.

After establishing the cluster, the remaining procedure is quite
similar to the existing one. We first randomly select three lines
from three different clusters. The fourth line is chosen from one
randomly chosen cluster that is opposite of one used cluster. So
in total we have 4 lines that are matched to all possible sets of
four different BIM planes. This process is repeated for a fixed
number of times among other things depending on the present
room geometry and the resulting minimal configurations are
further processed during the adjustment calculation.
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6. CONCLUSION AND OUTLOOK

In this article we presented two extensions for the co-
registration of image blocks with BIM. For videogrammetric
measurements, procedures for optimized image selection were
discussed and an overview of the video processing up to the
dense point cloud was given. After that, we introduced an im-
proved matching algorithm for the matching of 3d lines (from
images) to 3d planes (from BIM). With the new cluster ap-
proach, the number of possible matching candidates is reduced.
This speeds up the computing time.

The approaches must now be tested further with more complex
data. Also, we are currently developing a web service and user
interface so that the pipeline can be accessed online.
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