The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

PRACTICAL EXAMPLES ON BIM-GIS INTEGRATION BASED ON SEMANTIC WEB
TRIPLESTORES

S. Schilling !, C. Clemen *

! HTW Dresden - University of Applied Sciences, Faculty of Spatial Information, Dresden, Germany
(sebastian.schilling, christian.clemen) @htw-dresden.de

Commission V, WG V/7

KEY WORDS: BIM, GIS, Semantic Web, Linked Data, Ontology, Triplestore, Object-relational Database

ABSTRACT:

The integration of geodata and building models is one of the current challenges in the AECOO (architecture, engineering, con-
struction, owner, operation) domain. Data from Building Information Models (BIM) and Geographical Information Systems (GIS)
can’t be simply mapped 1:1 to each other because of their different domains. One possible approach is to convert all data in a
domain-independent format and link them together in a semantic database. To demonstrate, how this data integration can be done
in a federated database architecture, we utilize concepts of the semantic web, ontologies and the Resource Description Framework
(RDF). It turns out, however, that traditional object-relational approaches provide more efficient access methods on geometrical
representations than triplestores. Therefore we developed a hybrid approach with files, geodatabases and triplestores. This work-
in-progess-paper (extend abstract) demonstrates our intermediate research results by practical examples and identifies opportunities

and limitations of the hybrid approach.

1. INTRODUCTION

In the introduction we want to briefly explain the general back-
ground of BIM / GIS integration in order to motivate our spe-
cific and application-oriented research question.

1.1 Background

A direct and complete conversion of data between the BIM and
GIS domain is not possible, although they may describe the
same things, e.g. buildings. The reason is a fundamentally
different perspective on things, which causes a lack of inter-
operability (Beck et al., 2021). While e.g. buildings are often
described within the context of a city model in GIS, buildings
in BIM are described in context for building construction or op-
eration. The fundamental goal of numerous research projects
(Noardo et al., 2020a, Karimi and Iordanova, 2019) is to eval-
uate and improve the BIM—GIS, GIS—BIM and the common
BIM«+GIS communication without data loss.

One possible approach is to the utilization of semantic web
technologies. Instead of converting BIM and GIS data to each
other, all data is converted into a format of the Resource De-
scription Framework (RDF). RDF is the standard model for
data interchange in the semantic web !. It is readable for hu-
mans and machines, uses URI’s (Uniform Resource Identifier)
to identify each resource and can be used to link resources from
different sources. All relations between resources are structured
as triples. Each triple contains a subject, predicate and object.
RDF is used to describe web resources and can be stored in
files, triplestores or general graph databases.

For each conversion to RDF exists an ontology, a schema which
describes the data of a source format in RDF. The main mod-
eling languages for describing RDF data are the Web Onto-
logy Language (OWL) and the Resource Description Frame-

! https://www.w3.org/RDF/

work Schema (RDFS). On this schema level, different ontolo-
gies can be linked by mapping classes, which define the same
individuals or creating links by adding new predicates and classes.
On this basis links can be created on data level between re-
sources.

For the data integration on the persistence level, all converted
data may be stored in a single triplestore, then all data, domain-
ontologies, link-ontology and previously created links are phys-
ically and logically united. The advantage of this approach is,
that it is now possible to make queries over all data. E.g. to
answer questions, which are needed by both, the ACEOO and
geospatial domain. In this approach all information is stored
within one triplestore. This approach is very useful for many
data integrations, but geospatial data can’t be stored and quer-
ied as efficient as in object-relational databases. In particular,
no or hardly any spatial functions are available. In a triple-
store, each geometry is typically stored as WKT (Well Known
Text) string and typed with a URI for the coordinate reference
system (CRS). Every geometry string needs this URI, even if
they have the same CRS because so far there is no standard-
ized CRS ontology. When a geometry is queried by the client,
triplestores cannot perform datum transformations or coordin-
ate conversions. They only export the geometry in the original
CRS, while an object-relational database can output geometries
in almost any desired CRS. However, if you neglect these typ-
ical geospatial aspects, triplestores offer very effective queries
for linked data.

1.2 Problem statement

That’s why we believe a hybrid approach with

e geodatabase and

e triplestore

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 211

https://www.w3.org/RDF/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

could utilize the advantages of both concepts. In this work-in-
progress paper we show, how we’ve tried to implement and test
this approach with a very small dataset.

1.3 Structure of the paper

The paper is structured as follows. In the next section (2) we
give a short overview of previous data integration methods with
semantic web technologies between BIM and GIS. Then, in
Section 3, we will explain how we’ve implemented our fed-
erated system as micro service architecture. After that we will
show how to apply the system on a very simple test dataset (Sec-
tion 4). In the end we will discuss the results and finally give a
short conclusion and outlook (Section 5).

2. RELATED WORK

The BIM-GIS integration with a semantic web approach is
already discussed for a lot of years by many researches (El-
Mekawy and Ostman, 2010, Guyo et al., 2021, Hor and Sohn,
2021). A comprehensive overview of the use of semantic web
technologies in construction (BIM) is presented by (Pauwels et
al., 2017). The research presented by (Roxin and Hbeich, 2019)
and (Jetlund, 2021) is more specifically addressing BIM/GIS
integration with open standards. They evaluate and demonstrate
the benefits of linking data with the semantic web technology
stack.

In our presented work we tried to convert all data of BIM and
GIS into RDF and import it into a triplestore. With the growing
number of conversion tools, this has been an easy task and is not
the subject of our research. Some examples, e.g. the GIS con-
verters, are presented in (Ulutag Karakol et al., 2018). For the
building models in Industry Foundation Classes (IFC) we used
the IFCtoRDF converter’. More tools for BIM-GIS integration
are discussed e.g. in (Noardo et al., 2020b).

For the linking between spatial data we used the GeoSPARQL
ontology as in (Battle and Kolas, 2011). GeoSPARQL is a
standardized geospatial extension of the SPARQL Protocol and
RDF Query Language, which enables describing and querying
of geometries in RDF’. Geometries are expressed as WKT or
GML strings, however we used the WKT serialization only.

Not every triplestore is able to store geometry and answer spa-
tial questions. Also, triplestores supports GeoSPARQL in many
different ways. (Jovanovik et al., 2021) tested the GeoSPARQL
support of some triplestores and pointed out, that the choice
of the right triplestore is important for a good geometry sup-
port. Their results also show, that there is no triplestore which
fully supports GeoSPARQL. We choose a tiplestore with a good
GeoSPARQL support for our tests, namely GraphDB*.

3. TECHNICAL IMPLEMENTATION

After importing all data we tried to answer questions by query-
ing with SPARQL and GeoSPARQL. Because of our different
sources from GIS and BIM, we had 2D and 3D geometries in
different CRS. However GeoSPARQL only supports 2D geo-
metries, so just the x and y coordinates are used for calculations.

2 https://github.com/pipauwel/IFCtoRDF
3 http:/schemas.opengis.net/geosparql/1.0/geospargl_vocab_all.rdf
4 https://www.ontotext.com/products/graphdb/

Calculations are always made in the CRS of the first geometry
in the query.

These limitations show that neither the GeoSPARQL standard
nor the triplestores are able to provide functionality comparable
to geodatabases at this time. This is the point, where we want
to start with our hybrid solution, which will link a geodatabase
with a triplestore.

For the implementation we decided to develop a microservice
architecture. Microservices allow us to create little lightweight
and independent pieces of software, which can be linked to-
gether to achieve a common goal. This architectural style has
the advantages, that services can be easily added, updated,
tested and deleted.

In this section we will explain, how we developed this archi-
tecture, how each service works and how the services play to-
gether.

3.1 Used Software Tools

The services are mainly developed with the Spring Frame-
work for Java, because it provides many functionalities for mi-
croservices>. Table 1 lists the principal Spring packages, that
were used for our microservices.

main package | sub package
actuator
jersey
Jpa
neo4;j
security
test
thymeleaf
web
bootstrap
config
config-server
eureka-client
eureka-server

spring-boot

spring-cloud

Table 1. Main Spring packages used for the microservice
architecture.

All services shall be accessible over an API, which is doc-
umented with OpenAPI Specification 3.0. OpenAPI 3.0 can
serve the access on applications over HTTP requests in a
simple, reusable, well documented, machine- and human-
readable way.

With the concept of content negotiation the response can be out-
putted in various formats. This could be useful in the future, if
we want to deliver geospatial and BIM data in different formats.
The services, designed and developed within our research, use
API’s for the communication in the microservice architecture
only.

As semantic storage we use a Java based triplestore with
SPARQL and GeoSPARQL support. Geometries are stored in a
PostgreSQL database with the PostGIS extension. An advant-
age of PostGIS is that it can be asked for geometries in a wide
range of coordinate systems. If needed, the geometry will be
converted before output.

All components of the microservice architecture are wrapped
in Docker Container Images. Docker Containers are ideal for

5 https://spring.io/microservices

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 212

https://github.com/pipauwel/IFCtoRDF
http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf
https://www.ontotext.com/products/graphdb/
https://spring.io/microservices

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

microservice architectures, because they are easy to install, up-
date and delete. Docker Images are immutable and can be used
several times, side by side.

These basic components of our system, will be extended by
more services as Docker in the future. Docker offers flexibil-
ity and scalability to our system.

3.2 Microservice Architecture

Our microservice architecture actually consists of seven main
components (Figure 1). Beside the databases of PostgreSQL
and the triplestore there are a Config and a Discovery Server.
Both are typical for a microservice architecture, because they
are used for the administration of all services. The Config
Server is used to serve configurations to the services, with para-
meters related to all or single services.

The Discovery Server manages the communication between
services within our architecture. If a service gets started, he first
registers to the Discovery Server to get part of the network. If
any service wants to communicate with another, the Discovery
Server establishes contact.

Microservice Architecture

Converter Services
e

File Input Handler
Client Is

Imports
Files

Triplestore.

Requests
Answers

Geometry Handler Postgres

DB

))

Config
Server

Figure 1. The basic microservice architecture and the
connections between components. Clients can interact with the
File Input Handler and the Triplestore.

These four services (triplestore, PostgreSQL with PostGIS,
Config Server and Discovery Server) are the general backbone
of the system, but not specifically related to BIM/GIS integra-
tion. Currently, we have implemented three specific services:

e The File Input Handler orchestrates the processing of all
incoming files and imports RDF data into the triplestore.

e The Geometry Handler extracts geometry from files and
imports it into the PostgreSQL database.

e Converter Services summarizes all converters, which can
convert different file types to an RDF file. Examples of this
are CSVtoRDF, XMLtoRDF or IFCtoRDF converters.

All Services have an API, over which they can be reached and
data can be requested. It should be noted that we use the open
source object store minio® for file handling. The communica-
tion and file transfer only takes place via the http(s) protocol.

6 https://min.io/

3.3 General Information Flow

As a starting point of a use-case, we consider the user, who
wants to upload some files to our system. Currently (January
2022) files of the following types can be uploaded:

e CSV/TXT (may containing a geo-feature as WKT) for
Geodata and Annotation (GIS)

e LandXML, especially for Digital Terrain Models (DTM)
e [FC for building models (BIM)

e TTL and RDF/XML for any generic information

Figure 2 shows, how data is proceeded through the microservice
architecture.

b has files
=]
send files
55 i
a % check crea;fomples
2 5 filetype A]
NEE V IFC, metadata
5" csv 7
el RDF ¥
£|g8
[E Qo XML, convert to
<|2 4 Ccsv rdf
olo &
glo?®
<
b RDF v
e|Z5
o g 5 extract return geometry |
= < 1
o® geometry metadata, url
z|ex
9|0 I
=
8 send geometry
©| @ v
al o
g store
[=2]
2 geometry
o
o
o \ 4
2
8 | |store triples [« send triples
ig-

Figure 2. The Dataflow for data input through the components.

The files are sent to the File Input Handler. On the basis of
file type or metadata, this handler decides, how to process the
data. CSV files and IFC models are forwarded to their Con-
verter Services, which return the converted data as RDF file.
The File Input Handler imports the returned RDF data into the
triplestore.

Files containing the RDF/XML or Turtle Syntax are imported
directly to the triplestore.

LandXML and CSV files are forwarded to the Geometry Hand-
ler. CSV files, which were already processed by the RDF con-
verter, are checked, if there is any geometry in the data. In that
case, the geometry is extracted from the WKT and inserted into
the PostgreSQL database by an insert SQL query. The same
is done with the extracted geometry from LandXML files. De-
pending on type and dimension the geo-feature are inserted to
different tables. These tables are simply named by these two

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 213

https://min.io/

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

classifications: type and dimension. For example, 2D polygons
are inserted in the table polygon_2d. During the import, all geo-
metries (points, lines, polygons in 2D and 3D) are transformed
in one coordinate reference system (CRS) for easier storage
and calculations. Please note, that this simple and generic ap-
proach comes without any problem-specific data model. It only
provides geospatial functionality. Any other types of relations
are queryable from the triplestore.

For each geometry, the Geometry Handler collects metadata
and sends them back to the File Input Handler. The metadata
contain geometry type, coordinate dimension, source file name,
id in PostgreSQL database and some other. Additionally, an
IRI (Internationalized Resource Identifier) is part of it. This
IRI is created by the Geometry Handler. It provides the link
to the geometry in PostgreSQL database. This is realized by
the APIL. The API is developed in conformance to the standard
OGC API-Feature—Part 1: Core’ which gives a schema, how
features should be accessible over an API. A specific feature
should be accessed over the path:

/collections/{collectionId}/items/{featureld}
‘We use this to create our IRI. It looks like this:

https://geodatabase.org/collections/polygon_2d/
items/ce8007d3-0798-4712-894a-8ce0c071300d

In our opinion GeoSPARQL is the best ontology to describe
geometry in RDF at the moment. Other ontologies, like the
WGS84, GeoNames or NeoGeo Vocabulary ontology, are less
extensive and mostly support only geometries in WGS84 co-
ordinate system.

The geometry with GeoSPARQL is represented as Well Known
Text (WKT) or Geography Markup Language (GML) and can
be typed with a coordinate reference system. But if calcula-
tions with coordinates of different coordinate reference systems
(CRS) are required, the triplestore uses only the CRS of the
firstly inserted geometry resource.

With GeoSPARQL most basic calculations are accessible from
the triplestore. The specification includes, for example, the cal-
culation of topological relations between geometries, creation
of buffers or convex hulls. But until now, with GeoSPARQL
can’t be calculated more complex things like areas, volumes
and 3D geometries in general. That’s why we created our
own ontology by extending the GeoSPARQL ontology. For ex-
ample, we reorganized the topological predicates and added the
class ‘GeoLink’ to the class ‘Geometry’, appended by the Pre-
dicate ‘url’. The ontology snippet looks like this:

@prefix tto: <https://test-ontology.org/> .
tto:GeolLink rdf:type owl:Class .

tto:url rdf:type owl:0bjectProperty ;
rdfs:domain geo:Geometry ;
rdfs:range tto:GeoLink .

For better querying later we modeled some relations
between the topological predicates. @ We added the ex-
pression ‘owl:disjointWith’ between the GeoSPARQL pre-
dicates ‘geo:sflntersects’ and ‘geo:sfDisjoint’ and defined all

7 https://www.ogc.org/standards/ogcapi-features

other topological predicates (equals, touches, within, contains,
overlaps, crosses, covers, coveredBy) as sub properties of
‘geo:sflntersects’. Instead of calculating the topological rela-
tions with the GeoSPARQL functions, we only use the predic-
ates to describe the topological relations explicitly, which we
calculated in PostgreSQL database. This is also done via an
API. The API sends SQL (Structured Query Language) quer-
ies to the PostgreSQL database, which calculate the topological
relations between all geometries. The results are mapped to
the topological predicates and turned into triples with the two
geometry representations in the triplestore as subject and ob-
ject. Then they are imported into the triplestore. We use the
topological relations as part of our Linked Data concept to link
geometries of different sources.

All imported files are represented as an instance of class ‘Doc-
ument’ in the triplestore. All metadata of one file are appended
to this instance. With the predicate ‘hasSource’ every ‘Feature’
is linked to its source file.

Figure 3 shows the communication between the microservice
components, as the client imports data into the system.

Converter Services

A

Http-Request Http-Response
(file) (RDF file)
- -
) . —_—
Http-R t (fil " Http-Request (triples "
w) File Input Handler preq (trip): X
Triplestore
A N~
Http-Request Http-Response
(XML file) (metadata)
\ 2 _—
e
Http-Request (geometry) —_—
Geometry Handler »| Postgres
DB

Figure 3. Communication between microservices while data
input.

3.4 Requesting data

After the import and transformation the data are accessible with
SPARQL requests. Later this endpoint will be replaced by an
REST API. With this (future) REST API the user doesn’t need
any SPARQL skills and the answers are reproducible. The API
is also needed to interpret the geometry link to the PostgreSQL
database, if geo-feature are the requested output. Because of
the Linked Data, SPARQL requests can be queries across many
data source. These sources were previously (before import to
our system) distributed over many files. Also the queries utilize
cross-source links, that were created by our architecture, e.g.
the persistent topological links.

Figure 4 visualizes, how a query on Linked Data is answered by
the system. The client sends a request to the API of the Event
Handler. The Event Handler translate the incoming request into
a SPARQL query and forward the requests to the triplestore.
For now, we use a SPARQL endpoint in order to directly send
the query to the triplestore. If any geometry is part of the re-
sponse, the link to PostgreSQL needs to be interpreted by the
client. As a matter of work-in-progess reserach this is done
manually/hardcoded until now. Later the Event Handler will
interpret the link by sending a request to the Geometry Hand-
ler, who returns the geometry as WKT string. WKT and non-
geometric response of the SPARQL request is then eventually
forwarded to the client.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 214

https://www.ogc.org/standards/ogcapi-features

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

Http-Request (SPARQL-Query) Http-Request (question)
X Event Handler
Triplestore I
Http-Response y Http-Response (answer)
Http-Request Http-Response
(Geometry-URL) (Geometry)
Y
Http-Request (SQL-Query)
Postgres Geometry Handler
DB

Http-Response (Geometry)

Figure 4. Communication for answering a clients question.

4. SIMPLE TEST-SCENARIO

In this section we will show one of our simple tests. Currently
we convert a complete IFC model to RDF and then import the
RDF document to the triplestore. However, in Section 5, we
will postulate that a pure import is not efficient, due to the
highly decomposed structure of IFC geometries as triples in
RDF.

In our simple test we want to prove our hybrid concept for
BIM/GIS integration. We used geospatial data attached with
additional non-geometric environmental information and a di-
gital terrain model (DTM). The geo-feature are given as WKT
strings in a text file (CSV) and the DTM is uploaded as
LandXML format. In the test scenario a residential house is
delivered as georeferenced BIM model in IFC (Figure 5).

DTM (LandXML)

Geographical data (WKT)

Building (IFC)

Figure 5. 2D view of test BIM and GIS data from
heterogeneous sources.

Our aim is to link these data in order to be able to answer ad-
vanced queries. A use-case could be a building permit sub-
routine, that checks if it is allowed to build the house in this area
or which type of land use is affected by the building. This quer-
ies need the relations between the geometries to be answered.

For the practical integration of BIM and GIS we created the
georeferenced footprint of the IFC Building as WKT string to
make topological calculations. The footprint is imported into
the PostgreSQL database as the other geometries and linked to
the IFC building resource in the triplestore. In the future, the
footprint will be calculated automatically on import of the IFC
file. In the future we intend to add the footprint-service to our
dockered microservice architecture.

Then the Event Handler triggers the calculation of topological
relations by PostGIS. The results are saved explicitly into the

triplestore using our extended GeoSPARQL ontology. As a first
result, our triplestore is filled with Linked Data with a connec-
tion to the geometries in the PostgreSQL database.

In the next step we can answer SPARQL queries on the linked
and extended data. Figure 6 shows a query, where we want to
know, which land uses are affected, if the building is construc-
ted on this position. Additionally, we want to get the geometries
of affected land uses. The query first searches for a building,
which has a footprint geometry object. This footprint object in-
tersects with other geometry objects. From this other geometry
objects is searched for the feature resources and their land use
types. The last triple asks for the link of each land use object to
the geometry in the geodatabase.

PREFIX geo: <http://www.opengis.net/ont/geosparql#>
PREFIX tto: <https://test-ontology.org/>
PREFIX lu: <https://example.org/landuse/>
PREFIX geodb: <https://geodatabase.org/>

select ?building ?landUseType ?furlToGeoDatabase where {
?building geo:hasGeometry ?footprint .
!footprint geo:sfintersects ?landUseGeo .
?landUse geo:hasGeometry ?landUseGeo .
?landUse lu:landUseType ?landUseType .

?landUseGeo tto:url ?urlToGeoDatabase.

Figure 6. SPARQL query for the question: ‘Which forms of
land use are affected by constructing the building? Give the
geometry of these land uses.’

The query especially asks for the building resource, the types of
affected land uses and their geometry links. The query results
are presented in figure 7. The results show two affected land
uses, what is consistent with the two green polygons what can
be seen in figure 5. The full link to the geodatabase can be ex-
ecuted and returns the geometry as Well Known Text and the id
in JSON format. The output format may be changed by content
negotiation.

-

building % landUseType ¥ urlToGeoDatabase 12

bldg:Building_1 "Forest”

bldg:Building_1 "Grassland" geodb:collections/polygon_2d/items

/f48a0c20-98ae-4e9f-a816-713 7b87b

Figure 7. Result of the query, containing the building resource,
the affected land use types and the links to their geometry in the
geodatabase.

{

"id": "ce8007d3-0798-4712-894a-8ce0c071300d",

"geometry": "SRID=25832;POLYGON((685636.701199641 5646606.3536494,
685686.011941892 5646602.44895838,685718.819502458 5646553.76775835,
685713.569069366 5646496.58646396,685652.508571504 5646448.69792641,
685605.234283641 5646452.58222739,685576.576094471 5646496.59665898,
685596.186207196 5646575.49078808,685636.479635002 5646606.11546631,
685636.701199641 5646606.3536494))"

Figure 8. The response of the first geometry link from the
SPARQL query as WKT string together with id in JSON format.

This example shows, that the hybrid approach can be success-
fully applied for BIM-GIS integration.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 215

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

For the semi-automatic linking with topological predicates foot-
prints are needed, of each IFC building or for each IFC element.
If these are not on place but needed for test-scenarios, the link-
ing between BIM and GIS objects can be done manually in our
system.

5. CONCLUSION AND OUTLOOK

It has turned out that geometry can not be saved and calcu-
lated in triplestores as performant as in geodatabases. The Geo-
SPARQL standard is a good basis, but both the standard and its
implementation in the triplestores has to improve to compete
with geodatabases.

That’s the reason why we want to introduce a hybrid approach,
which combines the advantages of a geodatabase, namely the
geometry handling and CRS, with the possibilities of semantic
linking from triplestores and the semantic web technologies in
general. Geometries can be hold in a geodatabase, where the
full range of geospatial calculations can be done on it. Basic
calculations like the topological relations can be calculated ones
and saved explicitly in the triplestore. They can be used for
linking and querying, without calculating every time, which is
good for the query performance.

Using Open API 3.0 makes it possible to reach all geometries
over an IRI. The API is flexible because many requests over dif-
ferent tables and geometries can be made with one base query.
An API provides a standardized access to the geometry data so
that it can also be used in distributed environments.

Our hybrid approach gives us an idea, how geodatabases can
be accessed by semantic web technologies, without the need of
converting all data into RDF. The developed microservice ar-
chitecture is flexible for adding more applications, which can be
developed and tested while the basic system is running, thanks
to the docker system.

In the next step, we will add the BIMserver®. The BIMserver
can publish IFC documents and the single building elements
can be accessed by an API. Because of the IFC structure, geo-
metry is not presented very well in RDF. That’s why a huge
part of IFC triples in RDF is describing geometry. We think,
that it would be better to save the geometry in domain specific
databases (PostGIS, BIMServer). Only the remaining (non-
graphical) parameters will be hold in the triplestore and the
geometry would be linked through the BIMserver API. An API
between BIMserver and triplestore could also solve the prob-
lem, that IFC elements have no absolute coordinates. The ser-
vice behind the API could calculate the absolute position so
that topological relations to other geometries can be found and
be serialized in the triplestore. Also the Event Handler has to
be implemented, that users can easily make standard requests
without the need for SPARQL. The future API should also hide
the link to the feature in the geodatabase, only providing the
requested collection or feature in the desired format.

As future research we plan to extend our ontology to make
other than only topological relations between geometries and
use more problem-specific functionality.

In the course of the research work it has been shown that
the many possibilities of modern IT systems (Semantic Web,
Triplestore, Java Frameworks, Docker, openAPI, etc.) offer
many possibilities if they are specifically applied to the applic-
ation problem.

8 https://github.com/opensourceBIM/BIMserver

ACKNOWLEDGEMENTS

This research was funded by the German Federal Ministry for
Economic Affairs and Energy (BMWi), Central Innovation Pro-
gramme for small and medium-sized enterprises (SMEs), Fund-
ing No. 16KN086446 TerrainTwin

REFERENCES

Battle, R., Kolas, D., 2011. Linking geospatial data with Geo-
SPARQL. Semantic Web Journal — Interoperability, Usabil-
ity, Applicability. http://semantic-web-journal.org/sites/default/
files/swj176.pdf.

Beck, S. F., Abualdenien, J., Hijazi, I. H., Borrmann, A., Kolbe,
T. H., 2021. Analyzing Contextual Linking of Heterogeneous
Information Models from the Domains BIM and UIM. ISPRS
International Journal of Geo-Information, 10(12). https://www.
mdpi.com/2220-9964/10/12/807.

El-Mekawy, M., Ostman, A., 2010. Semantic mapping: an on-
tology engineering method for integrating building models in
ifc and citygml. 3rd ISDE Digital Earth Summit, 12-14 June.

Guyo, E., Hartmann, T., Ungureanu, L., 2021. Interoperability
between bim and gis through open data standards: An overview
of current literature. Technical report.

Hor, A.-H., Sohn, G., 2021. Design and Evaluation of a Bim-
Gis Integrated Information Model Using Rdf Graph Database.
ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences, 8, 175-182.

Jetlund, K., 2021. Harmonizing and linking conceptual models
of geospatial information: Technologies for information mod-
elling in GIS, ITS and BIM. Dissertation, NTNU — Norwegian
University of Science and Technology.

Jovanovik, M., Homburg, T., Spasi¢, M., 2021. A GeoSPARQL
Compliance Benchmark. 10(7), 487. PII: ijgi10070487.

Karimi, S., Tordanova, 1., 2019. Integration of BIM and GIS
for Construction Automation, a Systematic Literature Review.
Archives of Computational Methods in Engineering, 28.

Noardo, F., Arroyo Ohori, K., Biljecki, F., Ellul, C., Harrie, L.,
Krijnen, T., Kokla, M., Agugiaro, G., Stoter, J., 2020a. Geobim
benchmark — isprs scientific initiative 2019 — final report.

Noardo, F., Harrie, L., Arroyo Ohori, K., Biljecki, F., Ellul, C.,
Krijnen, T., Eriksson, H., Guler, D., Hintz, D., Jadidi, M. A.,
Pla, M., Sanchez, S., Soini, V.-P., Stouffs, R., Tekavec, J.,
Stoter, J., 2020b. Tools for BIM-GIS Integration (IFC Geore-
ferencing and Conversions): Results from the GeoBIM Bench-
mark 2019. 9(9), 502. https://www.mdpi.com/2220-9964/9/9/
502. PII: ijgi9090502.

Pauwels, P., Zhang, S., Lee, Y.-C., 2017. Semantic web
technologies in AEC industry: A literature overview.
73, 145-165. https://www.sciencedirect.com/science/article/
pii/S0926580516302928.

Roxin, A., Hbeich, E., 2019. Semantic interoperability between
BIM and GIS - review of existing standards and depiction of
anovel approach. hal-02279633. https://hal.archives-ouvertes.
fr/hal-02279633.

Ulutas Karakol, D., Kara, G., Yilmaz, C., Comert, C., 2018. Se-
mantic linking spatial RDF data to the web data sources. XLII-
4, 639-645.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-211-2022 | © Author(s) 2022. CC BY 4.0 License. 216

https://github.com/opensourceBIM/BIMserver
http://semantic-web-journal.org/sites/default/files/swj176.pdf
http://semantic-web-journal.org/sites/default/files/swj176.pdf
https://www.mdpi.com/2220-9964/10/12/807
https://www.mdpi.com/2220-9964/10/12/807
https://www.mdpi.com/2220-9964/9/9/502
https://www.mdpi.com/2220-9964/9/9/502
https://www.sciencedirect.com/science/article/pii/S0926580516302928
https://www.sciencedirect.com/science/article/pii/S0926580516302928
https://hal.archives-ouvertes.fr/hal-02279633
https://hal.archives-ouvertes.fr/hal-02279633

	Introduction
	Background
	Problem statement
	Structure of the paper

	Related Work
	Technical Implementation
	Used Software Tools
	Microservice Architecture
	General Information Flow
	Requesting data

	Simple test-scenario
	Conclusion and Outlook

