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ABSTRACT:

A Digital Twin is a virtual representation of a physical asset or system with the purpose of optimizing intelligent behaviour of said
physical entity. Digital Twin is a promising tool for asset management as the virtual entity can exist and aid at every stage of a
systems life. However, the infancy of the concept means implementation remains at an early stage and particularly poorly defined
within an asset management context. Practical case studies of digital twinning (the modelling process of generating and updating
Digital Twins) are an important tool to ensure definitions from research are applied rigorously and to aid in their deployment
with practitioners in real industrial applications. This-being-said, there are insufficient case studies for asset management digital
twinning. In particular, the Digital Twinning process for utility-scale solar has not been considered. Utility-scale solar asset
management often suffers challenges due to remoteness and scale of assets, contributing to high labour costs and thus could benefit
enormously from an effective Digital Twin to increase precision and accuracy of fault detection and efficiency of labour for O&M
tasks. In addition, the data sharing and analysis Digital Twins provide is vital for the immature solar sector. However, Digital
Twinning of utility-scale solar has not been well considered and presents issues around cost-effective data collection and modelling.
Therefore, this paper details the current state-of-the-art and challenges surveying utility-scale solar and the progress and application
of Digital Twin to utility-scale solar. Then a novel proof of concept process for digital twinning of utility-scale solar is presented
with a focus on geometric data capture for updating as-is models. Furthermore, the paper will consider Digital Twin requirements
and their prescription to current O&M methods in utility-scale solar. Finally, the paper highlights currently available required
technology as well as highlighting future technological improvements that would benefit the proposed proof of concept.

1. INTRODUCTION The Digital Twin is defined as a “realistic digital representa-
tion of an asset, process or system” (Bolton et al., 2018). It
is an emerging topic that combines sensors, modelling, artifi-
cial intelligence (AI) and Information Communication Tech-
nology (ICT) for the purpose of monitoring, forecasting, and

Photovoltaic (PV) energy is an important resource to transition
towards clean, renewable energy sources. In the UK, PV en-
ergy capacity more than doubled in the 5 years between 2014- - . S T )
2019 (5.5GW to 13.3GW) with utility-scale installation capa-  cOllaboration of a “physical” object (Rasheed et al., 2020). Di-
city nearly tripling (UK Government, 2021). However, Py 8ital Twins have been applied in the AEC community to op-
modules are susceptible to a variety of faults that impact on  timise planning, decision making, and management. Their abil-
their efficiency (Kontges et al., 2014, Djordjevic et al., 2014), 1ty to dynamically update geometric information improve on
The technical and economic challenge of locating and diagnos-  Stati¢ BIM methods, particularly in the operation stage (Lu et
ing these faults in installations of vast number of individual PV ?l" 2020b, Khajavi et al., 2019, Sacks 'e_t al., 2020). The vas,t,
modules is ‘monumental’ and hence many PV plants operate interoperable data they capture and utilise has lead the UK’s

with insufficient monitoring capability (Bosman et al., 2020). N.ational. Infrastructure Commissior} t_o propose a National Di-
gital Twin; an ecosystem of sub-Digital Twins at all scales of

infrastructure (NIC, 2017). The Centre for Digital Built Bri-
tain thus proposed the ‘Gemini Principles’ - a series of rules
and philosophies for Digital Twins within the National Digital
Twin (sub-Digital Twins), and a call for the development of sub-
Digital Twins (Bolton et al., 2018).

Stakeholders of PV plants want to maintain maximal power out-
put by minimising faults while also achieving low operation
and maintenance (O&M) costs and hence must use the correct
maintenance strategy to balance cost (e.g. sending out a ser-
vice team) against performance lost (e.g. due to faults await-
ing resolution) (Peters and Madlener, 2017). When making
this decision, it is important to have comprehensive monitor-
ing and modelling to understand what impact faults are having;
for example, strings of PV modules are electrically connected
in parallel so any performance mismatch can adversely affect
the entire system in complex ways (Bosman et al., 2020). A PV
Digital Twin is thus proposed as a significant aid for deciding,
applying, and evaluating this strategy and hence an important
advancement.

However, a comprehensive Digital Twin for PV plants has not
been considered. In addition, there is a restrictive high cost and
manual labour effort to update high fidelity (module level, or
greater) PV Digital Twins that limits their capacity. Current
solutions cannot provide both detailed monitoring and high de-
grees of automation (Zefri et al., 2021, Mellit and Kalogirou,
2021). Therefore, this paper will present a cost-effective and
high fidelity automated digital twinning process for a utility-
* Corresponding author scale PV Digital Twin.
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The rest of this paper is organised as follows: Section 2 de-
tails relevant literature on digital twinning and utility-scale
solar monitoring, Section 3 presents a digital twinning system
concept for utility-scale solar, Section 4 provides a discussion
on the concept and future research, then Section 5 concludes.

2. BACKGROUND

2.1 Digital Twin

2.1.1 Definition A Digital Twin has 3 main components:
the physical entity, the virtual entity, and the connections that
link the two together. It is a dynamic and comprehensive system
that integrates a variety of data sources (Grieves, 2011). Due to
the infancy of Digital Twins in the AEC community, definitions
will be briefly reviewed using key terminology presented by
Jones et al. (Jones et al., 2020).

Parameters are the factors the Digital Twin has knowledge of.
This may include geometric, health, functionality or environ-
mental state data (Jones et al., 2020). The fidelity is the num-
ber of parameters used, or the accuracy of the twin. Although
generally some works argue the twin should be near-perfect
(Grieves, 2011, van der Valk et al., 2020, Singh et al., 2021),
within the context of the National Digital Twin this should be
suited to the Twin’s purpose (Bolton et al., 2018, Jones et al.,
2020).

A state is a snapshot of the values of all parameters at one in-
stance in time. Updating the virtual entity state by sensing the
physical via a physical-to-virtual connection can be achieved
by a variety of methods which are discussed in the next sec-
tions. The opposite direction (virtual-to-physical) facilitates
actuation commands. Kritzinger et al. defines Digital Twins
with solely manual data connections to be Digital Models and
those with automatic connections from only physical-to-virtual
to be Digital Shadows (Kritzinger et al., 2018). Due to the pres-
ence of ‘semi-automated’ methods, omission from the Gemini
Principles, and focus on the physical-to-virtual connection in
this paper, this distinction will not be made. This is not to say
the advantages of automation are recognised and clear (cost,
time, accuracy). The act of synchronising state is known as
Twinning and hence its frequency is the Twinning Rate. Many
works, partly due to being outside the context of infrastructure,
describe this as ‘real-time’. However, the rate should depend on
constraints of the state-updating technology and requirements
of the twin.

2.1.2 Updating the Digital Twin Digital twinning is the
process of creating and updating the digital model (virtual en-
tity). This involves data acquisition, transmission, and model
creation/updating. These steps are a foremost task in Digital
Twins and vital to the success of later layers (Lu et al., 2020a).
This can be achieved using an array of methods (potentially in
combination), for example, manual methods (perhaps aided by
RFID tags or barcodes), [oT devices, laser scanning, or image-
based techniques (including photogrammetry) (Khajavi et al.,
2019, Volk et al., 2014, Tang et al., 2010, Lu and Lee, 2017).
The choice of method will depend on requirements on level of
automation, twinning rate, and captured parameters. As will be
discussed, two are of particular interest in PV digital twinning:

IoT device approaches use a wired or wireless network of
devices that can measure a wide variety of environmental para-
meters (Khajavi et al., 2019). They have been widely used in

Digital Twins such as pump vibration data in a Digital Twin
of West Cambridge Campus to detect faults (Lu et al., 2020a)
and temperature, humidity, and lighting data of building facades
(Khajavi et al., 2019). They provide direct measurements (i.e.
do not require further processing) at a high twinning rate. How-
ever, the initial economic cost and labour can be significant in
these systems, and these problems scale linearly with increasing
resolution (fidelity) and scale (fixed price/effort per sensor).

Geometric Digital Twinning involves the process of as-is geo-
metric modelling. Geometric Digital Models (e.g. BIM) are an
essential feature of most Digital Twins; this includes both 3D
geometry data and semantic information (Rausch et al., 2021).
Aside from traditional, labour intensive methods, there are two
approaches to geometric digital twinning: laser scanning and
image-based methods (Volk et al., 2014). Laser scanning can
quickly produce accurate 3D point clouds, although requires
power demanding, specialised equipment. Image-based meth-
ods use, for example, visible light, RGB-D, or thermographic
cameras. They have a significant advantage of being able to de-
tect much greater semantic information; since a laser scanner
only measures distance whereas image-based techniques dir-
ectly measure electromagnetic radiation (Lu and Lee, 2017).
Image-based point cloud 3D reconstruction has shown to be
capable of achieving acceptable, although normally poorer than
laser scanned, spatial accuracy for infrastructure related tasks
(Fathi et al., 2015).

In general, there are 4 steps for as-is geometric modelling. (1)
data capture, (2) 3D reconstruction, (3) semantic processing,
(4) geometric modelling (Czerniawski and Leite, 2020, Fathi et
al., 2015). A fifth step is then required, (5) Digital Twin updat-
ing, which associates objects between each update. Geometric
digital twinning can be performed to monitor changes of the
physical entity over time, although is difficult to perform en-
tirely automatically on infrastructure due to the complexity of
real-world environments.

2.2 Image-based 3D Reconstruction

The process of image-based 3D reconstruction is completed us-
ing Structure from Motion and MVS algorithms (StM-MVS).
The typical pipeline of this is briefly given as: data capture; fea-
ture detection and matching; alignment and calibration; dense
point cloud generation (Fathi et al., 2015).

The data captured is a series of 2D images taken from different
locations. Features are detected and described in these images
using a feature detection algorithm, of which there are many
(e.g. SIFT (Lowe, 2004), SURF (Bay et al., 2006)). An initial
estimate of image pose is then calculated by matching said fea-
tures, which is then optimised using Bundle Adjustment. The
resultant sparse point cloud is then densified using MVS tech-
niques. (Fathi et al., 2015)

2.3 PV Module Monitoring Methods

In order to design a PV Digital Twin and associated digital
twinning process, the methods of detecting faults must be ex-
amined. Due to aging, mechanical stresses, thermal stresses,
or environmental factors, PV modules can experience various
faults and inefficiencies such as: cell cracks, delamination, hot
spots, shading, soiling, short circuits, and mismatched modules
(Kontges et al., 2014, Djordjevic et al., 2014, Carletti et al.,
2020). In order to decide on when and how a fault is resolved,
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the fault should be localised and classified accurately in the di-
gital twinning process. This is so performance impact can be
modelled effectively and thus if, where, and how a repair should
be made. There are several, potentially complementary, meth-
ods of monitoring which are described below.

2.3.1 Electrical Monitoring By directly measuring elec-
trical information (e.g. power, current, voltage), it is possible to
detect faults. This method gives a good understanding of impact
(Carletti et al., 2020); however, there is a limited ability to clas-
sify the fault (Mellit and Kalogirou, 2021) which leads to less
actionable information as the cause may not be clear (Bosman
et al., 2020). For example, a work using deep learning of time
series data on outputs of PV inverters gave a recall score of 0.92
for predicting anomalies, but could only identify whether an an-
omaly, serious anomaly, or no anomaly was present (Arafet and
Berlanga, 2021). Commercially available IoT based systems
use a network of devices to give accurate, real-time informa-
tion for the detection of faults. However, when deciding on the
granularity of monitoring (i.e. how many devices are used), the
cost, logistics, power supply issues and set-up effort must be
weighed against the benefits of a higher resolution of monitor-
ing - more accurate detection and localisation of faults (Dali-
ento et al., 2017). Current high granularity solutions are not
economically feasible for utility-scale plants (Mellit and Kalo-
girou, 2021).

2.3.2 Visual-Based Inspection Another form of monitor-
ing is visual-based, non-contact methods by visual inspection
(i.e. visible light) or thermographic inspection. Both meth-
ods can reveal many common PV module faults, with ther-
mographic being particularly efficient and effective (Carletti et
al., 2020). They can, in comparison to electrical monitoring,
identify faults to a significantly greater precision (intra-module
level) and classify faults to a wider range of classes. Further-
more, unlike electrical monitoring, they can capture cause of
faults, and identify potential future issues (Hernandez-callejo
et al., 2019, Denio, 2012). Thermographic inspection should
adhere to specific requirements:

1. Correct capture angle between PV module and camera.
This is for a reliable temperature measurement. Kontges et
al. give 90°as an optimal angle and not less than 60°(Kont-
ges et al., 2014).

2. Correct irradiance on PV module. This is for a reliable
temperature measurement. Kontges et al. give 700 W/m?
(Kontges et al., 2014).

3. Correct Ground Sampling Distance (GSD). Cardinale-
Villalobos et al. suggest 3.0 £ 0.5cm px as this meets
the IEC TS 62446-3 specification for deep inspections that
can detect dirt and white spots (Cardinale-Villalobos et al.,
2020).

Electroluminescence inspection is performed by supplying
power to the PV module and visually inspecting the module
with a specialised sensor (such as a camera with removed in-
frared filter), ideally in dark conditions (Vidal De Oliveira et al.,
2019). Some faults are difficult or impossible to detect visually
or thermographically but can be detected using electrolumines-
cence inspection (Alves Dos Reis Benatto et al., 2020).

2.4 Automating Visual-Based Inspection

Due to the scale and inaccessibility of assets, a cost-effective
visual and thermographic inspection method for large-scale PV
plants is Unmanned Aerial Vehicles (UAVs). This is capable of
a sufficient GSD for deep inspections (Denio, 2012, Herndndez-
callejo et al., 2019). Using this technique, it is feasible to
achieve 100% module coverage in an inspection - albeit over
multiple flights due to UAV battery constraints (Carletti et al.,
2020).

Electroluminescence can also be performed by a UAV survey
(Vidal De Oliveira et al., 2019, Alves Dos Reis Benatto et al.,
2020), although is it not yet clear how to practically achieve
100% module coverage for a utility-scale site due to the re-
quirement of powering each module (Gallardo-Saavedra et al.,
2019).

UAV inspections (visual/RGB and thermographic) still remain
a significant manual process due to the need to analyse the data.
There are 4 key tasks towards full automation after data capture:
(1) module detection, (2) fault detection, (3) fault classification,
(4) module localisation (Daliento et al., 2017). Full automa-
tion of these will produce a significantly less labour intensive,
costly, and error prone digital twinning process. The work on
this is thus reviewed.

24.1 PV Module Detection The problem of PV module
detection is object recognition; given an image, return the loca-
tions of any/all modules. Some works (Gao et al., 2015, Carletti
et al., 2020) utilise the structure of PV arrays to build a grid of
modules using a Hough transform to detect vertical and hori-
zontal lines - although it is not clear how to handle cases of
missing modules or modules not arranged in this regular grid,
as in (Herraiz et al., 2020). (Dotenco et al., 2016) applies a wa-
tershed transform and morphological transforms to first detect
rows, and then individual modules. This however was done on
a small set on a specific layout of modules. (Addabbo et al.,
2017) used a template matching method and normalised cross
correlation similarity measure for thermographic UAV imagery,
however only showed a limited set of results. From visual aerial
imagery (Malof et al., 2016) used both a Random Forest Clas-
sifier based on local features and a Deep Convolutional Neural
Network (CNN). (Wang et al., 2018) instead used an Object-
based image analysis and template matching method which has
the advantage of not needing a large training set.

2.4.2 Fault Detection and Classification The problem of
fault detection is object recognition; given an image, return the
locations of any/all faults. The problem of fault detection is ob-
ject classification; given a fault, return the classification of the
fault. Fault detection/classification can normally be achieved
by statistical methods or deep learning methods. Some works
only consider local hot spots, while others simply differentiate
between local hot spots and global faults. Global faults cannot
be detected on a PV module without the context of other mod-
ules on the site (e.g. the entire module is warmer than it should
be).

(Gao et al., 2015) detected local faults by a simple threshold
of intensity above 3 standard deviations, global faults were de-
tected based on a clustering algorithm due to the small data
size. The detection rate of local faults, 80%, is poor and only
based on a small result set. (Carletti et al., 2020) used a maxima
search using a water filling algorithm to find faults without the
need of a specific threshold. They also highlighted the issue of

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVI-5-W1-2022-231-2022 | © Author(s) 2022. CC BY 4.0 License. 233



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-5/W1-2022
Measurement, Visualisation and Processing in BIM for Design and Construction Management Il, 7-8 Feb. 2022, Prague, Czech Republic

™ e ~

UAV Inspection \ g

Forecasting

Modules, Other Hardware

(—

Electrical Monitoring

Task Scheduling

Irradiance, Shading

Environmental Sensors ) Fault Detection Faults
"» . \_ Simulator y,
Sub-DTs, APIs B Performance Analysis
4 etc...
Manual Inspections Al Controller
- J
API
\ Data Sources Y,
GUI

Digital Model <

Actuation commands

Interface

Owners, Admins, Third Party, Sub-DTs

Figure 1. Proposed PV Digital Twin Framework

junction boxes - which can produce hotter regions on the PV
module that are not defects. They removed these false positives
by removing the outer section of the detected module, although
this will also increase false negatives. (Dotenco et al., 2016)
split the module into its component cells and performed stat-
istical outlier tests (Grubbs’ and Dixon’s Q tests) to detect hot
spots, overheated modules and overheated strings of modules.
The advantage of statistical tests and rule based classifications
is that classifications are more explainable.

(Pierdicca et al., 2020, Herraiz et al., 2020, Zefri et al., 2022)
use CNN based neural networks. Unlike the previous works,
these utilise larger data sets. (Zefri et al., 2022) provides a much
greater range of local defect classes which provides a clearer
resolution action. (Pierdicca et al., 2020) use transfer learning
to improve training speed and accuracy. In addition, (Pierdicca
et al., 2020, Herraiz et al., 2020) apply their fault detection on
the UAV imagery instead of on segmented modules (i.e. results
of module detection are not used). This seems to unnecessarily
increase the complexity of the task.

2.4.3 PV Module Localisation The works previously ana-
lysed fail to resolve this challenge sufficiently; generally, cur-
rent works cannot automatically precisely localise a PV module
on a digital model of the system and instead at best provide an
insufficiently accurate GNSS coordinate of the UAV in a field of
densely packed modules (Mellit and Kalogirou, 2021, Zefri et
al., 2021). Works that track modules between images (e.g. (Gao
et al., 2015)) mean faults are not detected twice, but still do not
localise the module. Due to the highly repetitive nature of PV
plants, this task is tedious and error prone for human analysis.
The proposed solution by Tsanakas et al. to solve module local-
isation is photogrammetry (Tsanakas et al., 2017) (see Section
2.2). This being said, several issues remain.

Firstly, there are several data capture issues that disadvantage
photogrammetric algorithms:

1. Highly repetitive patterns. These cause issues with feature
matching.

2. Moving reflection artifacts due to reflective PV module
surfaces. Moving objects cause issues in SfM as the cam-
era is assumed to be moving and the subject stationary.

3. Restricted image quality. Equipment is restricted to UAV
capable devices with correct weight and power demands.

4. UAV height. Capturing closer to PV modules increases the
percentage of imagery containing modules. While this im-
proves the resolution of captured modules it also increase
the percentage of imagery with repetitive patterns and re-
flections.

In thermographic imagery particularly, Zefri et al. found con-
sistent catastrophic failures and distortions using standard UAV
inspection and photogrammetric methods (Zefri et al., 2021).
Registering spectra (aligning captured RGB visual and thermo-
graphic imagery) is possible if both inspections occur in the
same flight using an appropriately enabled camera. However,
in addition to issues when this not robust enough (see (Tsan-
akas et al., 2017)), this would force a significant cost on the
process. The further problems specifically for thermographic
imagery are:

1. Low resolution. Thermographic cameras have signific-
antly lower resolution than RGB cameras and hence fea-
ture detection will detect fewer features.

2. Poor texture. Thermographic imagery has less texture and
hence feature detection will detect fewer features.

3. Calibration. If the thermographic sensor re-calibrates such
as in (Cardinale-Villalobos et al., 2020), features are less
likely to match due to looking different between images

4. Flight plan. For accurate temperature readings, the camera
should be angled correctly to the PV module. This may
contradict the desired optimal plan for reconstruction.

Fewer features lead to poorer reconstruction accuracy.

Secondly, the solution to the challenges of module detection,
fault detection, and fault classification have not been considered
as part of the photogrammetric localisation solution. The out-
put and process of photogrammetry may enable different ap-
proaches to these.

Finally, the approach is not framed against the 5 geometric di-
gital twinning steps. The final step of digital twin updating is
not immediately clear.
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3. PROOF OF CONCEPT

Figure 1 shows a PV Digital Twin design suitable for inclusion
in a National Digital Twin. Based on the previous literature,
a digital twinning process is proposed. The proposed digital
twinning process (Data Sources to Digital Model) contains 5
modules. A low granularity electrical monitoring IoT system
twins with the Digital Twin frequently, this provides important
real-time data whilst remaining low cost. This IoT network in-
cludes environmental sensors which provide important context
to the other monitoring mechanisms including: irradiance (us-
ing a pyranometer), air temperature, wind speed and direction.
APIs and sub-Digital Twins provide further data - examples
may be a weather forecasting API or a Digital Twin of the na-
tional grid. Manual inspections can provide more specific, ad-
hoc information such as from electroluminescence inspection.
Finally, a high fidelity, module level UAV inspection occurs at
a low twinning rate. Section 3.1 details the improved UAV in-
spection process.

3.1 Improved UAV Inspection Method

The UAV inspection module is a geometric digital twinning
method and detailed in Figure 2. It is designed to handle the
issues and challenges of aerial surveying of PV plants identi-
fied in the previous section. Furthermore, it is designed to be
significantly more automated, with the possibility of full auto-
mation suggested.

3.1.1 Data Capture Data capture involves 3 steps. This is
fundamentally unchanged from the photogrammetric method in
Section 2.4.3. Data can be captured as images or video and be
RGB imagery or thermographic, but data fusion (aligned im-
agery) is not required.

3.1.2 3D Reconstruction The input to this module is 2D
imagery. Image selection will be performed reduce the image
count to optimise between computation time and reconstruc-
tion accuracy. This step is automated by utilising pre-bundle
adjusted GNSS coordinates from the UAV and estimated height
(from the flight plan) to estimate achieving the desired over-
lap. Any blurry images will also be detected and removed.
Image enhancement will reduce re-calibration issues on ther-
mographic imagery by utilising histogram equalisation. Mod-
ule detection will use the methods described in Section 2.4.1 to
find modules in each image. It is proposed a Hough transform
method to detect PV arrays (grids of PV modules) is not used
so the process is more generalised. Feature detection and fea-
ture matching occur as normal. The detected modules can be
used as additional features in the SfM process. By utilising the
domain-specific knowledge that the detected PV modules can
be considered as planes, constraints can be added to the optim-
isation that is being solved; the planes will share a homography
between a pair of images. Dense point cloud generation will
then be performed as usual.

3.1.3 Semantic Modelling Every detected module in all
images will be projected into the point cloud at each corner. If
the distance between two modules is within a given threshold
they can be considered to match and be placed in the same
group - they are the same module viewed in different images.

The number of groups should equal the number of individual
modules inspected, and the size of each group equal the number
of times that module was observed in all images.

The localised module position is then the average module of
each group. This will be based off projected corner positions.
This stage may require thresholds on size and position in 3D
space to remove spuriously detected modules or incorrectly
aligned images. Fault identification and fault classification will
be performed using statistical methods as described in Section
24.2.

3.14 Twin Updating In order to update the twin, a point
cloud registration is proposed using the iterative closest point
(ICP) algorithm (Besl and McKay, 1992). This will allow mod-
ule matching by an appropriate distance threshold.

4. DISCUSSION

The proposed twinning concept provides a combination of data
input with varying degrees of automation, cost, and granularity.
It is suggested that this provides the advantages of all each while
minimising disadvantages. The process also does not require a
significant alternation to current monitoring methods.

In addition, the improvements to the UAV inspection aim to
improve automation levels. Increasing the robustness and ac-
curacy of the 3D reconstruction stage by utilising context spe-
cific information will allow PV module localisation to become
trivial. This removes a large manual tedious effort in fault mon-
itoring, but also means every module can be stored in the Digital
Twin for historical data analysis. Historical data on every mod-
ule will enable greater data analysis for the prediction of faults
and their progression - this is a key benefit of a Digital Twin and
important understanding the aging affect of modern PV plants.

The remaining manual tasks are in the data capture stage.
Drone-in-a-box technology should allow, once a flight plan is
created, to remove this manual step. A UAV could be stationed
at the PV plant and perform scheduled inspections or by in-
struction such as if the Al on the Digital Twin detects a change
in electrical monitoring output.

Faults will be detected using statistical methods as this is more
explainable than deep learning methods. For example, stand-
ardised fault definitions could be more useful in a warranty
claim case.

This work has considered improving digital twinning by im-
proving post-data acquisition advances using the photogram-
metric method. Alternatively, improvements in the data capture
process by adding intelligence to the drone could be considered.
Advantages of photogrammetry include: distortion of imagery
is inherently removed, easily working with off-the-shelf equip-
ment, fitting closely with current practises, and capturing more
information such as PV module angles and vegetation height
which are useful for PV Digital Twin functions like shading
simulation or scheduling maintenance.

4.1 Further research

This work has highlighted the need for further research in sev-
eral areas. Principally, the proposed novel PV geometric digital
twinning process will be developed and tested on a selection
of PV plants. The PV Digital Twins should be developed to
improve the monitoring and intelligence maintenance and also
expose data publicly to enable it work within a National Di-
gital Twin. This will require digital twinning advances as well
as the development of AI, human interactions and machine-
to-machine communication, and interoperable simulation pro-
grams.
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5. CONCLUSION

Current monitoring methods for utility-scale solar cannot cap-
ture PV module level detail without an extreme manual effort.
There is a need for a PV Digital Twin and cost-effective, auto-
mated PV digital twinning process for the detection and loc-
alisation of module faults. In order for a PV Digital Twin to
have a high fidelity and sufficient twinning rate, improvements
to these processes must be made to reduce the dependency of
manual localisation of faults. The key contribution of this work
has been to propose an improved UAV inspection framework
based on geometric digital twinning. In order to determine the
effectiveness of the framework, it will be developed and tested
in a future work.
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