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ABSTRACT:

One common tool in Cultural Heritage inspections is thermal cameras, which are sensitive to the infrared part of the electromagnetic
spectrum. But the resolution of these sensors is quite lower than other kinds like visible spectrum range cameras. Typically, the
sensors in thermal cameras do not exceed the megapixel frontier. This limitation becomes a problem when trying to combine the
information from the thermal images with data from other sensors with much higher resolution such as visible RGB cameras in the
same project.
In Remote Sensing, algorithms have been designed to fuse multispectral images with panchromatic images (in origin from satel-
lite platforms) to enhance the resolution of lower resolution images with higher resolution ones. These processes are known as
pansharpening. Although pansharpening procedures are widely known, they have not been tested working with thermal imaging.
The first approach of merging thermal and visual spectrum images to enhance the resolution of the original thermal image involved
applying the intensity-hue-saturation (IHS) algorithm (Lagüela et al., 2012, Kuenzer and Dech, 2013). These works only studied
one particular algorithm and they did not include any quality study of the results.
Our work contains a complete review of a bigger pansharpening algorithms’ set and provides an in-depth study of thermal imaging
pansharpening, with a numerical assessment. Our research allows the use of thermal sensors with a lower resolution than other
types of sensors used simultaneously in the same project.

1. INTRODUCTION

Thermal cameras, with sensors sensitive to the long-wave in-
frared part of the electromagnetic spectrum (wavelengths from
9 to 14 micrometers), are becoming commonly used tools in
inspection, and, for extension, in Cultural Heritage document-
ation works. But, unlike other types of sensors, such as visible
spectrum cameras, the resolution of thermal sensors has barely
increased in recent years. The most advanced sensors hardly
go beyond the megapixel boundary. The most commonly used
thermal imaging cameras are based on uncooled sensors oper-
ating at room temperature called microbolometers. These mi-
crobolometers receive radiation, absorbing it and heating up,
thus varying their electrical resistance. Technical limitations
in the manufacture of microbolometers make their miniaturiza-
tion difficult: the signal-to-noise ratio is inversely proportional
to their size. It can therefore be stated that the resolution of
thermal sensors, at least with this technology, will not equal
that of other sensors in the short and medium term.

Thermal camera manufacturers have followed different
strategies to improve the resolution of their thermal images.
The manufacturer FLIR with its Ultramax c© technology com-
bines several slightly different shots (16 shots per second)
due to the inevitable movements and vibrations during cap-
ture. This manufacturer claims to double the resolution with
this technique. Another manufacturer, Infratec, has designed a
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hardware-type solution where a high-speed rotating wheel takes
four images, merging them into the final image.

Other techniques aimed at improving the resolution of thermal
images use deep learning tools, where the thermal image and
the corresponding image from a ”traditional” visible spectrum
camera are provided. Passing through the designed neural
network architecture, the final product is the super-resolution
thermal image. These techniques need prior training with a
large set of images, so they may not be suitable for all situ-
ations.

Although pansharpening procedures are commonly known, the
first approaches to fuse visible spectrum and thermal images to
enhance the resolution of the thermal were performed with the
intensity-hue-saturation (IHS) algorithm (Lagüela et al., 2012).
Other authors conducted research combining the information
from high-resolution visible spectrum images with thermal im-
ages from terrestrial sensors (Chen et al., 2017, Poblete et al.,
2018, Turner et al., 2014).

No research to date has analysed such a large set of pansharpen-
ing algorithms applied to thermal images in order to determ-
ine their capabilities. It should be noted that all existing pan-
sharpening algorithms were originally designed for satellite im-
ages. Likewise, no quantitative analysis of the quality of pan-
sharpening results on thermal images appears in the scientific
literature.
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2. PANSHARPENING ALGORITHMS

Pansharpening algorithms belong, within the field of Remote
Sensing, to the branch of image fusion. They aim to enhance
low-resolution images by using images from other sensors with
higher resolution. It should be clarified that both images must
show the same object with the same field of view.

There are two well-defined families of pansharpening al-
gorithms in the scientific literature. They differ essentially in
their approach to the problem: spatial or spectral.

Component Substitution (CS) algorithms are based on the trans-
formation of the colour space of the multispectral image, disas-
sociating spatial and spectral information. The spatial informa-
tion is then replaced by that from the higher resolution image.
Applying the colour space transformation in reverse, we ob-
tain the multispectral image with improved resolution. CS al-
gorithms are global, as they act uniformly over the entire image
extent (Chang and Bai, 2018).

On the other hand, Multi-Resolution Analysis (MRA) methods
use spatially invariant linear filters to extract spatial details from
the high-resolution image and add them to the multispectral im-
age (Chen et al., 2012).

Our work focuses on the following algorithms from among all
the pansharpening methods:

• IHS: Fast Intensity-Hue-Saturation (FIHS) image fusion
(Tu et al., 2001).

• PCA: Principal Component Analysis (Chavez et al., 1991).
• BDSD: Band-Dependent Spatial-Detail with local para-

meter estimation (Garzelli et al., 2008).
• GS: Gram Schmidt (Mode 1) (Laben and Brower, 2000).
• PRACS: Partial Replacement Adaptive Component Sub-

stitution (Choi et al., 2011).
• HPF: High-Pass Filtering with 5 x 5 box filter for 1:4 fu-

sion (Chavez et al., 1991)
• SFIM: Smoothing Filter-based Intensity Modulation

(SFIM) (Liu, 2000), (Wald and Ranchin, 2002).
• INDUSION: Decimated Wavelet Transform (DWT) using

an additive injection model (Khan et al., 2008).
• MTF-GLP: Generalized Laplacian Pyramid (GLP) (Aiazzi

et al., 2002) with Modulation Transfer Function (MTF)
matched filter (Aiazzi et al., 2006) with unitary injection
model.

• MTF-GLP-HPM: GLP with MTF-matched filter (Aiazzi
et al., 2006) and multiplicative injection model (Aiazzi et
al., 2003).

• MTF-GLP-HPM-PP: GLP with MTF-matched filter (Ai-
azzi et al., 2006), multiplicative injection model and post-
processing (Lee and Lee, 2010).

• MTF-GLP-ECB: MTF-GLP with Enhanced Context-
Based model (ECB) algorithm (Aiazzi et al., 2006).

Algorithms IHS, PCA, GS, BDSD, and PRACS belong to the
CS category, and we selected HPF, SFIM, INDUSION and the
different MTF variations from the group of MRA algorithms.
All these algorithms have been computed using a MATLAB lib-
rary distributed by (Vivone et al., 2015).

To perform the pansharpening processes, we designed a meth-
odology for testing the possibilities of the algorithms. Start-
ing from a raw thermal image in full resolution, we simulated

a pseudo-multispectral image from it. Then, a low-resolution
’synthetic’ thermal image was created by simulating one that
would come from a lower-resolution sensor than the original.
We needed to do this to compare the results of the enhancement
with the original full resolution thermal image.

3. METHODS AND MATERIALS

Multispectral images are images composed of different bands
representing different parts of the electromagnetic spectrum.
The typical bands in these images correspond to colours within
the visible spectrum (red, green and blue), along with other
bands such as those from the near-infrared (NIR), the short-
wave infrared (SWIR) or parts of the ultraviolet spectrum.

In summary, we can define a multispectral image as a set of
images (usually between 3 and 15) corresponding to the same
frame with different parts of the electromagnetic spectrum.

Thermal images are usually expressed with different colour
masks, thus defining a false colour image (figure 1). This aids
correct analysis and makes it easier for the user to interpret the
information provided by the thermal image. The most com-
mon colour chart expresses lower temperatures with cool col-
ours (blues and violets) and higher temperatures with warm col-
ours (yellows, oranges and reds). Although this is an artificial
representation of the raw values of the thermal image, it will
help us to compose our pseudo-multispectral (PS-MS) image.

Figure 1. False colour thermal image at original resolution

The pseudo-multispectral (PS-MS) image is the one composed
of the three RGB bands of the false-colour thermal image (fig-
ure 1) together with the image corresponding to the raw thermal
values in grey scale (figure 2). To clarify, PS-MS is a multis-
pectral image with 4 bands.

To test the performance of different pansharpening algorithms,
we have to simulate a low-resolution pseudo-multispectral im-
age (PS-MS LR). Applying a Gaussian pyramid algorithm with
ratio 4 and σ= 4/3, we achieved this low-resolution pseudo-
multispectral image. Pansharpening algorithms will be applied
to improve its resolution and analyse its quality.
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Figure 2. Raw grayscale thermal image at original resolution

Another element common to all pansharpening algorithms is
the necessary panchromatic image (PAN). This image must
come from a higher resolution sensor. Usually, thermal cam-
eras, mount a RGB visible spectrum sensor next to the thermal
sensor, which helps to frame correctly the scene, as thermal im-
ages sometimes lack contrast. This visible spectrum sensor has
much higher resolution so it will provide us with our PAN pan-
chromatic image, expressing the RGB image in greyscale.

We can now apply all the pansharpening algorithms under study
on the PS-MS LR image, which, when fused with the PAN im-
age, will give us the pseudo multispectral enhanced image (PS-
MS HR*). This product image is composed, like the PS-MS,
of three RGB bands representing the false colour and a fourth
band corresponding to raw thermal(4 bands in total). For further
quality analysis, this final product has been separated into two
images: the corresponding false-colour image (3 bands) and the
”raw” thermal image in greyscale (1 band).

Now that we have defined the methodology applied, we must
establish what characteristics the final products of the image
fusion should have. With those in mind, we did determine the
quantitative evaluation.

3.1 Quality Assessment of Pansharpening Products

3.1.1 Wald’s Protocol Before further use, the images res-
ulting from the resolution enhancement must be evaluated by
quantitative quality indices. A visual evaluation is completely
insufficient to check their suitability.

Among the research community, the so-called Wald’s protocol
(Wald et al., 1997) is accepted as establishing the essential prop-
erties that image fusion products should exhibit whenever pos-
sible. This protocol is defined in three theorems (Chen et al.,
2012):

1. Consistency: any fused image Â, once degraded to its ori-
ginal resolution, should be as identical as possible to the
original image A

2. Synthesis: any image Â fused by means of a high-
resolution (HR) image should be as identical as possible
to the ideal image AI that the corresponding sensor, if it
exists, would observe at the resolution of the HR image.

3. The multispectral vector of images Â fused by means of a
high-resolution (HR) image should be as identical as pos-
sible to the multispectral vector of the ideal imagesAI that
the corresponding sensor, if it exists, would observe at the
spatial resolution of the HR image.

As the original image AI was available in our research, we can
comply with Theorem 2 and 3 of Wald’s protocol.

The quality of the images resulting from pansharpening al-
gorithms must be measured. A visual inspection is necessary
but not sufficient. Several image fusion quality indices have
been proposed to ensure the quality of this fusion.

3.1.2 Quality Indices Image fusion quality indices measure
spatial and spectral distortion based on different statistics with
variations between them. While some focus on spatial recon-
struction, others are designed to assess spectral variation.

The following indices have been selected and calculated in our
study:

• RMSE: Root Mean Squared Error between the two im-
ages. It expresses both distortions (spatial and spectral).
Its optimum value is 0.

• ERGAS (Erreur Relative Globale Adimensionnelle de
Synthèse): Proposed by (Ranchin and Wald, 2000), it is
a global statistic that expresses the quality of the final im-
age. It measures the transition between spatial and spectral
information. Its optimum value is 0.

• SAM (Spectral Map Angle): It measures the spectral dis-
tortion by the angle formed by the two spectrum vectors of
both images. Its optimum value is 0.

• PSNR (Peak Signal to Noise Ratio): It describes the spatial
reconstruction of the final images. If the two images were
identical, the PSNR would tend to infinity.

• UQI (Universal Quality Index): Proposed by (Wang and
Bovik, 2002). It estimates distortion by combining three
factors: correlation loss, luminance distortion and contrast
distortion. UQI values move within the range [-1,1] with
1 being the optimal value.

All these indices have been calculated from the processed im-
ages differentially. The pseudo-multispectral enhanced image
(PS-MS HR*) was split in two: one image with the three false
colour bands and the last band alone, which will be compared
with their corresponding originals. This allows us to distinguish
the quality of the transformation independently of the chosen
false colour mask.

4. DATASETS

Two different image datasets were built in order to test the per-
formance of the pansharpening algorithms in thermal imaging.
A terrestrial dataset was chosen as the first approach. Then a
second dataset from an Unmanned Autonomous Vehicle (UAV)
was built because, nowadays, these platforms are widely used
in Cultural Heritage documentation studies .
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4.1 FLIR ADAS Thermal Dataset

The FLIR Thermal Starter Dataset (FLIR, 2019) was originally
designed to supply a thermal image and a set of RGB images
for training and validating neural networks for object detection.
It provides thermal and RGB images simultaneously, making it
optimal for applying pansharpening methods.

The dataset was acquired via a RGB and thermal camera moun-
ted on a vehicle (car). All pictures were taken on streets and
highways in Santa Barbara, California, USA, under generally
clear-sky conditions during both day and night.

Thermal images were acquired with a FLIR Tau2 (13 mm f/1.0,
45-degree horizontal field of view (HFOV) and a vertical field
of view (VFOV) of 37 degrees). RGB images were acquired
with a FLIR BlackFly at 1280 X 512m (4-8 mm f/1.4-16 mega-
pixel lens with the field of view (FOV) set to match Tau2). The
cameras were 48 ± 2 mm apart in a single enclosure.

4.2 Illescas UAV Dataset

This second dataset comprises images taken from an unmanned
aerial vehicle over an industrial building located in the town of
Illescas (Toledo, Spain) on August 13, 2019 (40◦ 8’ 41” N, 3◦

49’ 12” W).

The aerial vehicle was equipped with two sensors: a 4K RGB
CMOS sensor with a resolution of 3840 x 2160 pixels; and
an uncooled VOx microbolometer radiometric thermal infrared
sensor with a pixel size of 17 micrometres. The thermal images
have 640 x 512 pixels, spectral bands of between 7.5 and 13.5
micrometres, and a temperature sensitivity of 50 mK.

5. RESULTS

As indicated in the section 3, the thermal images have been
processed following the necessary steps to obtain the pseudo
multispectral image in the original resolution (PS-MS HR) and
the pseudo multispectral image in low resolution (PS-MS LR).
On the other hand, the RGB visible spectrum camera image was
expressed in grayscale giving the panchromatic image (PAN).

Applying all selected pansharpening algorithms to the low res-
olution pseudo-multispectral image (PS-MS LR) in combina-
tion with the panchromatic image (PAN), the final product will
be called pseudo-multispectral enhanced image (PS-MS HR*)
corresponding to each of the algorithms (figures 3, 4).

The quality indices have been calculated, as mentioned above,
in a differentiated way: on the one hand, the false colour im-
age and on the other, the raw thermal image in greyscale.
The indices were calculated based on the original resolution
image (PS-MS HR) and the enhanced resolution image (PS-
MS HR*). In tables 1, 2, 3 and 4 we show the values of the
indices for each dataset.

6. DISCUSSION

Having analysed the results obtained, we can affirm:

• The results for the false colour and the corresponding raw
greyscale images are quantitatively different. The grey-
scale thermal images perform much better than the false

Figure 3. Enhanced thermal image in false color by the IHS
pansharpening algorithm, from the UAV image dataset

Figure 4. Enhanced thermal image raw band by the IHS
pansharpening algorithm, from the UAV image dataset

colour ones. The RMSE index of the greyscale images is
similar or even lower than in other research works consul-
ted (Mandanici et al., 2019). Therefore, greyscale images
should be the ones used in subsequent processes, even in
the case of applying the same or another false colour mask.

• Except for some specific values, the two families of pan-
sharpening algorithms obtain similar values in the qual-
ity scores. Minor differences in the way the different al-
gorithms process the data produce better results. In the
family of Component Substitution (CS) algorithms, the
BDSD algorithm performs better than all the others.
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Algorithm RMSE ERGAS SAM PSNR UQI
Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 72.565 31.019 118.645 98.245 0.811 0.187 6.117 1.147 0.488 0.077
IHS 57.025 33.458 71.754 55.219 0.766 0.234 6.318 1.080 0.462 0.151
BDSD 59.318 32.405 55.732 43.369 0.765 0.279 6.205 1.095 0.530 0.092
GS 67.068 30.342 77.425 57.028 0.815 0.190 5.866 1.151 0.472 0.091
PRACS 46.300 35.710 51.463 44.451 0.728 0.219 6.233 1.067 0.558 0.097
HPF 46.014 36.066 53.070 45.810 0.722 0.217 6.254 1.081 0.443 0.164
SFIM 49.102 35.220 56.999 48.461 0.756 0.251 6.208 1.078 0.555 0.097
INDUSION 39.666 29.428 48.817 41.172 0.736 0.218 6.196 1.078 0.435 0.170
MTF-GLP 46.426 35.898 53.918 46.157 0.723 0.214 6.255 1.072 0.440 0.168
MTF-GLP-HPM 49.816 35.031 58.035 49.192 0.759 0.243 6.186 1.080 0.553 0.097
MTF-GLP-HPM PP 50.127 33.860 60.282 53.623 0.884 0.360 5.913 1.400 0.481 0.150
MTF-GLP-ECB 47.818 35.316 54.997 47.433 0.740 0.250 6.277 1.035 0.426 0.196

Table 1. Quality indices for the False Colour Thermal Pansharpened images from the FLIR ADAS dataset for each pansharpening
algorithm tested

Algorithm RMSE ERGAS SAM PSNR UQI
Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 51.432 23.291 22.231 11.541 0.424 0.143 13.692 5.176 0.751 0.117
IHS 41.121 16.668 18.692 10.303 0.329 0.048 15.152 3.569 0.783 0.105
BDSD 34.386 18.594 17.346 12.541 0.300 0.390 17.486 6.454 0.765 0.264
GS 38.844 16.334 17.767 10.694 0.311 0.065 15.756 4.101 0.800 0.109
PRACS 23.521 17.460 11.548 12.030 0.085 0.048 21.132 4.960 0.918 0.131
HPF 23.769 17.956 11.491 12.244 0.062 0.004 22.499 6.956 0.917 0.137
SFIM 24.098 17.842 11.582 12.136 0.073 0.020 22.307 7.105 0.921 0.134
INDUSION 21.525 15.616 10.243 10.554 0.084 0.008 22.892 6.929 0.926 0.117
MTF-GLP 24.326 17.910 11.718 12.228 0.073 0.005 22.074 6.728 0.916 0.137
MTF-GLP-HPM 24.854 17.780 11.879 12.088 0.087 0.025 21.780 6.907 0.919 0.134
MTF-GLP-HPM PP 23.432 15.712 10.940 10.374 0.104 0.032 22.146 7.108 0.927 0.113
MTF-GLP-ECB 24.489 17.868 11.733 12.143 0.076 0.014 21.870 6.508 0.911 0.134

Table 2. Quality indices for the raw band grayscale Thermal Pansharpened images from the FLIR ADAS dataset for each
pansharpening algorithm tested

Algorithm RMSE ERGAS SAM PSNR UQI
Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 66.084 13.109 40.524 5.339 0.323 0.069 11.883 1.597 0.854 0.046
IHS 46.524 3.162 27.716 1.736 0.224 0.018 14.798 0.599 0.891 0.020
BDSD 26.167 1.415 17.235 1.079 0.125 0.008 19.789 0.472 0.925 0.014
GS 88.872 11.741 29.372 3.428 0.438 0.065 9.241 1.253 0.798 0.044
PRACS 42.932 5.172 17.977 1.444 0.207 0.026 15.537 1.026 0.919 0.015
HPF 38.962 3.236 23.463 2.332 0.187 0.016 16.350 0.758 0.947 0.006
SFIM 44.139 4.425 29.593 1.927 0.212 0.023 15.284 0.961 0.951 0.007
INDUSION 40.867 4.060 24.698 2.753 0.197 0.020 15.951 0.932 0.917 0.020
MTF-GLP 39.435 3.128 23.585 2.266 0.190 0.015 16.243 0.726 0.945 0.006
MTF-GLP-HPM 44.432 4.259 29.617 1.790 0.214 0.022 15.222 0.913 0.951 0.007
MTF-GLP-HPM PP 42.047 2.671 39.971 25.048 0.202 0.014 15.675 0.584 0.950 0.006
MTF-GLP-ECB 43.876 3.439 33.677 2.671 0.211 0.018 15.314 0.699 0.931 0.009
MTF-GLP-CBD 30.612 4.561 18.023 2.340 0.147 0.021 18.503 1.231 0.959 0.008

Table 3. Quality indices for the False Colour Thermal Pansharpened images from the Illescas UAV dataset for each pansharpening
algorithm tested

• In general, multi-resolution analysis (MRA) algorithms
perform better than component substitution (CS) meth-
ods. Among them, the BDSD algorithm performs the best
(RMSE = 7.400, ERGAS = 1.084, SAM = 0.048, PSNR =
31.014, UQI = 0.995, from UAV image dataset). (Kuenzer
and Dech, 2013) suggests that the best pansharpening al-
gorithm for thermal image enhancement is IHS (RMSE =
39.167, ERGAS = 5.837, SAM = 0.250, PSNR = 16.322,
UQI = 0.940), but here we have demonstrated that IHS is
not the best choice.

• From the radiometric point of view, there is no clear op-
timal choice over the others. The ERGAS and SAM in-

dices have similar values between the different methods,
although the MRA algorithms perform slightly better. This
is in accordance with the general behaviour described in
the literature (Aiazzi et al., 2009).

• Spatial reconstruction is better in multi-resolution analysis
(MRA) algorithms. The PSNR index is higher, reporting
better reconstruction of spatial details. Again, the BDSD
algorithm is the best in terms of geometric quality.

• This work allows the use of thermal sensors with lower
resolution than others used simultaneously in the same
project, because these pansharpening algorithms improve
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Algorithm RMSE ERGAS SAM PSNR UQI
Mean Std Mean Std Mean Std Mean Std Mean Std

PCA 31.774 7.927 5.209 2.353 0.208 0.071 18.353 2.127 0.954 0.038
IHS 39.167 4.122 5.837 0.851 0.250 0.028 16.322 0.939 0.940 0.015
BDSD 7.400 1.933 1.084 0.504 0.048 0.017 31.014 2.107 0.995 0.007
GS 32.743 4.492 4.974 1.326 0.211 0.038 17.915 1.242 0.954 0.022
PRACS 25.352 9.352 2.885 1.413 0.159 0.058 20.934 4.354 0.972 0.014
HPF 15.108 2.883 2.274 0.468 0.096 0.016 24.693 1.569 0.994 0.003
SFIM 16.610 2.933 2.436 0.504 0.106 0.017 23.847 1.436 0.994 0.002
INDUSION 16.848 3.282 2.565 0.521 0.106 0.018 23.754 1.609 0.991 0.004
MTF-GLP 15.441 2.866 2.315 0.474 0.098 0.016 24.496 1.525 0.993 0.003
MTF-GLP-HPM 16.892 2.885 2.471 0.509 0.107 0.017 23.693 1.388 0.994 0.002
MTF-GLP-HPM PP 17.210 2.770 2.540 0.517 0.109 0.017 23.519 1.322 0.993 0.003
MTF-GLP-ECB 26.334 5.769 3.640 0.922 0.168 0.039 19.917 1.826 0.982 0.008
MTF-GLP-CBD 8.567 3.627 1.283 0.573 0.054 0.021 30.125 3.244 0.997 0.002

Table 4. Quality indices for the raw band grayscale Thermal Pansharpened images from the Illescas UAV dataset for each
pansharpening algorithm tested

Figure 5. Enhanced thermal image in false color by the BDSD
pansharpening algorithm, from the FLIR image dataset

and homogenise the resolution. A limitation could be the
resolution ratio between the thermal and visible sensors. A
ratio between PAN and thermal image’s resolution greater
than 4 can lead to unexpected artefacts and process failure
(Dumitrescu and Boiangiu, 2019).

• Although the results may depend on the false colour mask
chosen to express the thermal information in the pseudo-
multispectral image, the validation of the pansharpening
algorithms on thermal images demonstrated here high-
lights the interest in future developments and research to
adjust the algorithms parameters to specifically adapt them
to thermal images.

7. CONCLUSIONS

The use of certain pansharpening algorithms applied to thermal
imaging had been studied in previous research. Our work con-
tains a complete review of a large number of algorithms, and
provides an in-depth study of their performance and a quantit-
ative analysis, which has not been done to date.

Figure 6. Enhanced thermal image raw band by the BDSD
pansharpening algorithm, from the FLIR image dataset

The availability of an accurate estimation of the quality of the
products of pansharpening algorithms on thermal images will,
in the future, facilitate the development of robust and reliable
remote sensing systems, leading to their use in Heritage studies.
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