
SPATIAL PATTERN EVOLUTION AND DRIVING FACTORS OF PM2.5
CONCENTRATIONS IN THE GRAND CANAL REGION FROM 2000 TO 2018

Xi Wang1, Miaole Hou1*, Shisong Cao1, Bolun Li1

1School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing

KEY WORDS: PM2.5, Spatiotemporal Pattern, Spatial Autocorrelation, Trend Analysis, Geographical Weighted Regression
(GWR), Driving Factors

ABSTRACT:

In recent years, air pollution related to PM2.5 has caused a significant impact on human health. The Grand Canal (GC) is not only a
great Cultural heritage created in ancient China but also the longest and largest canal in the world. Based on remotely sensed PM2.5

gridded data in the GC region covering 2000 to 2018, we used the holistic methods of standard deviation ellipse, local moran
index, slope trend analysis to reveal the spatiotemporal evolutions of PM2.5 concentrations in the GC regions and investigated the
driving factors of PM2.5 concentrations by using the geographically weighted regression (GWR) model. Results show that (1)
PM2.5 concentrations in the GC region exhibited an increasing trend and followed by a decreasing trend from 2000 to 2018 (the
turning point emerged in 2010). (2) The standard deviation ellipse analyses show that the spatial distributions of PM2.5

concentrations featured more and more concentrated over time, whereas, after the year 2010, the distributions gradually featured
scattered. (3) The concentrations of PM2.5 exhibited the strong effects of local spatial autocorrelation and areas with "high-high"
agglomeration were mainly located in the central and west regions of the GC region and gradually expanded to the north over time.
(4) The areas of regions with rapidly increasing in PM2.5 concentrations gradually decreased over time, however, those with
rapidly decreasing in PM2.5 concentrations increased. (5) The influences of the natural factors and socio-economic factors on the
distributions of PM2.5 concentrations varied spatially. In detail, the elevation was negatively correlated with PM2.5 concentrations,
whereas an opposite relationship between industrial structure and PM2.5 concentrations was observed. The coefficients of rainfall,
population density, GDP per capita and foreign investment show different results in positive and negative correlations depending
on the position.

* Corresponding author

1. INTRODUCTION

Air pollution dominated by inhalable particles seriously
affected people's physical and mental health. The “Plan for
the Protection, Inheritance and Utilization of the Grand
Canal Culture”, released in 2019, stated that, accounted for
less than 10% of China’s land area, the eight provinces
(cities) along with the GC, carry more than one-third of
China’s population and contribute nearly half of China’s
GDP in 2017. The provinces (cities) along the GC are one of
the regions with the most developed economic and the
strongest development momentum in China. Therefore,
studying the temporal and spatial distribution of PM2.5

concentrations in the GC is of great significance for the
health of one-third of the population in China, understanding
the relationship between economic development and air
pollution and formulating corresponding policies.

Scholars have conducted a series of studies on the spatio-
temporal variation law of PM2.5. From the perspective of
time span, air pollution studies in china mainly discussed the
changing law of PM2.5 in different seasons, months, and days
in a certain year, or the changing law of PM2.5 concentrations
in some years over time (Li et al., 2017). From the
perspective of space, the study areas of most scholars are
mainly concentrated in the Beijing-Tianjin-Hebei region,
Pearl River Delta and Yangtze River Delta (Wu et al., 2020).
There are few studies on the central and eastern plains, so it
is urgent to strengthen the research on the spatiotemporal
variation of PM2.5 concentrations over a

long-time span in the central and eastern plains. To explore
the source of air pollution, studies focus on exploration of
PM2.5 concentrations driving factors. In order to
quantitatively analyze the driving factors of PM2.5

concentrations, Scholars mainly start from two aspects:
natural factors and social factors, natural factors including
rainfall, topography, temperature, humidity, vegetation cover,
wind speed, etc., and social factors including population
density, per capita GDP, private cars holdings, industrial
structure, foreign investment, etc. (Zhao et al., 2018). As for
research methods, correlation analysis, generalized additive
models (GAM), gray correlation model, geographic detector
and spatial econometric model (Ding et al., 2019) were used
to study the influencing factors of PM2.5.

The GC region includes not only the densely populated areas
in the central and eastern regions, but also the developed
coastal areas in the east. Therefore, it is very important to
take the GC region as a typical case study. Based on the
above discussion, the research objectives of this article are as
follows:
(1) To explore the characteristics of the time-series change of
PM2.5 concentrations in the GC region from 2000 to 2018.
(2) To explore the spatial pattern evolution of PM2.5

concentrations in the GC region from 2000 to 2018.
(3) To explore the driving factors of PM2.5 concentrations
change in the GC region in 2015.
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2. STUDY AREA AND DATA

2.1 Study Area

Figure 1. Study area

Figure 1 shows the geographical location of the GC. It is the
longest artificial canal in the world, which is located in the
central and eastern part of China and spans two municipalities
(Beijing and Tianjin) and six provinces (Hebei, Shandong,
Jiangsu, Zhejiang, Henan and Anhui). The eight provinces
(cities) along the GC account for less than 10% of China’s land
area, carry more than one-third of China’s population and
contribute nearly half of China’s GDP in 2017. It was
excavated in the 5th century BC and in China's long history, it
has always been a strategically important North and South
material Transportation channels. At the same time, as the
framework of the regional water system, it plays an important
ecological service function, which is one of the main factors for
the formation of many cities in this region. In 2014, the GC of
China was successfully inscribed on the World Heritage List
and has played an important role ever since.

2.2 Data

In this study, the average annual concentrations of PM2.5 is used
to express the degree of air pollution. The annual
concentrations of PM2.5 comes from the Organization for
Atmospheric Composition Analysis (ACAG). The data is
integrated with the data of remote sensing monitoring, model
simulation and site measurement. The original data is 0.01×
0.01 grid data from 2000 to 2018, which has high accuracy and
was widely used. Data from atmospheric composition analysis
group (https://sites.wustl.edu/acag/). Natural factors and social
factors include rainfall, elevation, population density, per capita
GDP, industrial structure (ratio of secondary industry GDP to
GDP) and foreign investment. Among them, rainfall and high
range data come from the Center of Environmental Science and
Data (https://www.resdc.cn/), social factors including
population density, per capita GDP, industrial structure and
foreign investment all come from the Yearbook of Chinese
Urban Statistics.

3. METHODOLOGY

3.1 Spatial Pattern Analysis

3.1.1 Mean Center and Standard Deviation Ellipse:
Standard deviation ellipse first put forward by Lefever in
1926, now it is mostly used to reveal the various
characteristics of geographic elements from a global and
spatial perspective. It is a spatial statistical method that
reveals the spatial distribution and spatial evolution of
geographic elements. It quantitatively describe the centrality,
directionality, and other characteristics of the spatial
distribution of elements through parameters such as spatial
distribution range, center, long axis, short axis, and azimuth
(Lefever, 1926). The mean center of PM2.5 concentrations
can be calculated by the following formula:

�� = �=1
� ��∗��2.5��

�
; �� = �=1

� ��∗��2.5��
�

, (1)

where ��, �� = the latitude and longitude of the centroid
of PM2.5 concentrations in year t

��, �� = the latitude and longitude of point i;
PM2.5i = the PM2.5 concentrations of point i
n = the number of PM2.5 concentrations points

3.1.2 Spatial Autocorrelation: Spatial autocorrelation is
mainly used to study the potential interdependence among
variables. Spatial autocorrelation is measured using global
and local indicators. Local Moran 's I index was used to
identify spatial agglomeration and spatial heterogeneity (Ye
et al., 2018). The formula is as follows:
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where �� , �� = the average annual concentrations of
PM2.5 in unit i and j

�� = the average value of all units
��� = the spatial weight matrix of unit i and j

3.1.3 Trend Analysis: A linear slope analysis was used to
determine the variation trend of PM2.5 concentrations in the
GC region, the formula is as follows:
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where slope = the trend in the PM2.5 concentrations
PM2.5 = the grid unit PM2.5 concentration
n = the time span
i = the time unit

3.2 Analysis of Driving Factors

Geographically Weighted Regression (GWR) Model
combines spatial correlation and linear regression to improve
the traditional model and has certain advantages over
traditional models such as the ordinary least squares (OLS).
GWR is a local statistical method, which adds the spatial
location of data into the regression parameters to effectively
reflect the neglected local characteristics (Brunsdon et al.,
1998). The model is defined as:

�� = �0 ��, �� + � �� ��, �� ��� + ��� , (4)

Where (��, ��) = the central coordinate of position i
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�� ( ��, �� ) = the regression coefficient of the k-th
variable in position i

�0 ��, �� = the intercept of the model at position i
�� = the error of the model at position i

In this study, Gauss function method is selected as the
weight function, which is expressed as follows:

��� = exp ( − ( ���

�
)2) (5)

Where ��� = the weight between city i and j
b = the bandwidth
��� = the distance between city i and j

4. RESULTS

4.1 Time Series Variation Characteristics of PM2.5

Concentrations

Figure 2 shows the variation of the average PM2.5

concentrations in the GC region from 2000 to 2018. The PM2.5

concentrations is divided into five categories using the Natural
Breaks （ Jenks ） . As shown in Figure 2, The PM2.5

concentrations generally shows a trend of increasing first and
then decreasing. From 2000 to 2010, PM2.5 concentrations
showed an overall trend of increase and gradually decreased
from 2010. The average concentrations of PM2.5 in the region
was low in 2000 and the overall environmental quality was
good, with the PM2.5 concentrations less than 76.16μg/m³.
From 2000 to 2010, the concentrations of PM2.5 over
76.16μg/m³ has been increasing, mainly in central and southern
Hebei Province, central and eastern Henan Province, western
Shandong Province and northern Anhui Province and in most
other regions. Since 2010, the environment in the GC region
has gradually improved, the average PM2.5 concentrations has
been decreasing. By 2018, the average PM2.5 concentrations in
all provinces and cities except Shijiazhuang, Hebei Province,
and Anyang, Henan Province had dropped below 76.16μg/m³.

Figure 2. Temporal and spatial changes of PM2.5 concentrations in the GC region from 2000 to 2018.

4.2 Spatial Variation Characteristics of PM2.5

Concentrations

4.2.1 Mean Center and Standard Deviation Ellipse:
In order to explore the evolution characteristics of the
temporal and spatial pattern of PM2.5 concentrations in the
GC region, this study uses the standard deviation ellipse to
quantitatively explain the centrality, ductility, directionality
and spatial shape of the PM2.5 concentrations in the GC
region.

Figure 3 shows the spatial variation of mean center and
standard deviation ellipse of PM2.5 concentrations in the GC
region from 2000 to 2018. It can be seen from the figure 3:
(1) From the perspective of the coverage area of the

ellipse, the area of the standard deviation ellipse first
decreased from 67.93km² in 2000 to 65.12km² in 2010,

and then increased to 65.37km² in 2018. It decreased
from 2000 to 2010 and increased slowly from 2010 to
2018. This shows that the spatial distribution of PM2.5

concentrations is becoming more and more
concentrated from 2000 to 2010, and the spatial
distribution of PM2.5 concentrations is gradually
dispersed from 2010 to 2018.

(2) From the perspective of azimuth changes, PM2.5

concentrations in the GC region generally presents a
"northwest - southeast" spatial distribution pattern,
with the turn Angle increasing from 165.17° in 2000
to 168.85° in 2010, and then slowly decreasing to
168.48° in 2018. It shows that the spatial distribution
pattern of PM2.5 in the GC region shifts first to the
direction of "North - South" and then slowly shifts to
the direction of "East - West".

(3) From the perspective of the mean center, the center of
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gravity of the spatial distribution of PM2.5

concentrations in the GC region gradually shifted
northward from 2000 to 2015, and shifted southward
from 2015 to 2018.

(4) There is a big difference between the length of the
long axis and the short axis of the standard deviation
ellipse, which also confirms that the spatial
distribution of PM2.5 concentrations has obvious
directivity. In the GC region, the ratio of long axis to
short axis increased from 2000 to 2005, decreased
from 2005 to 2010 and then increased slowly from
2010 to 2018.

!(
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'
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Figure 3. Spatial variation of mean center and standard
deviation ellipse of PM2.5 concentrations in the GC region

from 2000 to 2018.

4.2.2 Local Spatial Autocorrelation: Figure 4 shows the
results of local spatial autocorrelation of PM2.5 concentrations
in the GC region from 2000 to 2018. The research units are
divided into four types:
(1) The "high-high" correlation type (HH) refers to the

spatially high concentrations of PM2.5. This type of
PM2.5 concentrations has small spatial differentiation,
showing a significant positive spatial correlation and
the pollution in and around the area is relatively serious.
It can be seen from the figure 4 that the high-value
clusters between 2000 and 2018 were mainly
concentrated in the central and southern part of Hebei,
central and eastern part of Henan, western part of
Shandong and northern part of Anhui. Moreover, the
high-high agglomeration gradually expanded
northward from 2000 to 2010 while the high-high
agglomeration gradually expanded southward from
2015 to 2018.

(2) "Low-low" association type (LL) means that the PM2.5

concentrations is a low-value aggregation state in space.
Low-low aggregation is mainly distributed in the south
and north of the GC and a small part is distributed in
the east. From 2000 to 2015, the low-low aggregation
in the north and east gradually decreased while the
low-low aggregation in the south gradually increased.
From 2015 to 2018, the low-low aggregation increased
in the north and east while the low-low aggregation
decreased in the south.

(3) Other associations include "high-low" associations
(high PM2.5 concentrations surrounded by low PM2.5

concentrations) and "low-high" associations (low PM2.5

concentrations surrounded by high PM2.5

concentrations). It can be seen from the figure 4 that
only a small number of cities are distributed in "high-
low" agglomeration areas. This result is credible
because PM2.5 has strong spatial dispersion so that
isolated high or low values are difficult to appear.

Figure 4. Local Moran Index of PM2.5 concentrations in the GC region from 2000 to 2018

4.2.3 Slope Trend Analysis: Figure 5 shows the spatial
distribution of PM2.5 concentrations trends in the GC region
from 2000 to 2018. It can be seen from the figure 5 that area

with rapid growth of PM2.5 in the GC region gradually
decreased while area with rapid reduction of PM2.5 gradually
increased from 2000 to 2018.
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Figure 5. Change trend of PM2.5 in GC region from 2000 to
2018

(1) The ecology of the GC region deteriorated and PM2.5

increased sharply during 2000-2005. Rapidly
decreasing, slowly decreasing, stable, slowly increasing
and rapidly increasing accounted for 22.02%, 5.59%,
19.79%, 7.76%, and 44.53% respectively.

(2) From 2006 to 2010, the area where PM2.5 increased
rapidly in the GC region decreased while area where
PM2.5 decreased rapidly increased. The area where the
rapidly decrease was mainly concentrated in the middle
of the GC region. Rapid decrease, slow decrease, stable,
slow increase and rapid increase accounted for 22.02%,
5.59%, 19.79%, 7.76%, and 44.53% respectively.

(3) PM2.5 in the GC region decreased rapidly During 2011-
2018. A few area in the north remain stable, no rapid
increase area and a few area increase slowly. Rapid
decrease, slow decrease, stable, slow increase, and
rapid increase accounted for 93.20%, 3.53%, 3.28%,
0.02%, and 0.00% respectively.

4.3 Spatial Heterogeneity Analysis of Influencing
Factors

In this study, the GWR model was used to explore the spatial
difference of PM2.5 concentrations in 2015 under the
influence of different factors. Influencing factors include
rainfall, elevation, population density, per capita GDP,
industrial structure (the ratio of gross domestic product of
secondary industry to GDP) and foreign investment. Figure 6
shows the spatial distribution of the fitting degree R2 of the
results of the geographically weighted regression model. It
represents the degree of fit between the indicators
selected by the GWR model and the actual PM 2.5

concentration. The results show that the R² distribution of
all the prefecture-level cities ranges from 0.68 to 0.84 and all
greater than 0.5, which indicates that the indicators selected
in this study have a strong explanatory power for PM2.5

concentrations.

Figure 6. Spatial distribution of fitting degree R2 of GWR
model

Figure 7 shows the spatial distribution of regression
coefficients of influencing factors in the GWR model. It can
be seen from Figure 7 that precipitation, population density,
per capita GDP and foreign investment show different
correlations with different cities while the elevation has a
negative correlation with PM2.5 and the industrial structure
has a positive correlation with PM2.5. From the perspective
of the absolute value of the coefficient, the order of the
degree of influence of each factor from high to low is:
elevation, precipitation, population density, industrial
structure, foreign investment, per capita GDP. The specific
analysis results are as follows:

Population density has a negative correlation effect on the
PM2.5 concentrations in the southern area of the GC,
accounting for 35.51% of the proportion of prefecture-level
cities in the total area of the GC. Since the southern part of
the GC is mostly economically developed coastal areas,
population growth may promote the growth of science and
technology, thereby changing the industrial structure: from
high energy consumption, high pollution industries to low
pollution, technology-based industries. This is why the
population density and PM2.5 concentrations in the southern
area of the GC are negatively correlated. For the central and
northern areas of the GC, population density has a positive
correlation with PM2.5 concentrations and the positive
correlation coefficient from south to north is getting larger,
which means that with the increase of population density in
the central and northern areas of the GC, the air pollution is
getting more and more serious. This is because in the central
and eastern plains, with the increase in population density,
traffic flow has increased and pollution has become more
serious.

The influence of per capita GDP on the PM2.5 concentrations
in the GC region shows a trend of "Northeast-Southwest"
changes. In the southwest of the GC region, per capita GDP
and PM2.5 concentrations are positively correlated,
accounting for 34.58% of the city in the GC region. It can be
seen from Figure 7 that in the southwestern region of the GC,
especially the central and western parts of Henan Province,
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with the increase of per capita GDP, the concentrations of
PM2.5 has increased which indicating that the economic level
of the region has increased at the expense of the environment.
In the northeastern part of the GC, the per capita GDP and
PM2.5 concentrations are negatively correlated which
indicating that the region's economic growth does not rely on
highly polluting industries.

The industrial structure of the GC region is mainly positively
correlated with PM2.5 concentrations, which also confirms
that industrial production is the main cause of air pollution.
From the southwest to the northeast of the GC region, the
coefficient gradually increases, which indicating that the
industrial structure of the northeast region of the GC region
has a stronger correlation with PM2.5 concentrations than the
southwest region.

The proportion of prefecture-level cities with negative
correlation between foreign investment and PM2.5

concentrations accounted for 81.31%, indicating that as the
amount of foreign investment increases in most regions, the
PM2.5 concentrations will gradually decrease. Among them,
the areas where foreign investment and PM2.5 concentrations
are negatively correlated are mainly concentrated in the
central and northern parts of the GC while a small part of the
southern area shows a positive correlation, indicating that

foreign investment in the southern coastal areas has
increased air pollution.

The influence of rainfall on PM2.5 presents a stepwise change
from west to east. Rainfall has a negative correlation with
the PM2.5 concentrations in the western and central regions
of the GC and a positive correlation with the PM2.5

concentrations in the eastern region of the GC and the closer
to the east coast, the stronger the positive correlation. The
positive correlation is mainly distributed in the eastern
coastal area of the GC while in the central and western parts
of the GC, the impact of rainfall on PM2.5 is negatively
correlated. That is, in Hebei, Beijing, Henan, western
Shandong and Anhui, abundant Rainfall can improve PM2.5

concentrations.

Elevation is negatively correlated with PM2.5 concentrations
in the entire GC region, indicating that as the elevation
increases, the PM2.5 concentrations tends to decrease. The
regions with the strongest negative correlations are located
in Hebei, the western part of Henan Province, and the
southern part of Zhejiang Province. The region with the
weakest negative correlation is located in the northernmost
part of the GC region, that is, northern Hebei Province.

Figure 7. Spatial distribution of regression coefficients of influencing factors in the GWR model.

5. DISCUSSION

In this paper, the spatial pattern evolution and driving factors
of PM2.5 concentrations in GC region were studied for the
first time. This paper uses three spatial analysis methods:
mean center and standard deviation ellipse, spatial
autocorrelation, and trend analysis to explore the spatial

distribution of PM2.5 in the region and obtain the result that
the PM2.5 concentrations center in the GC region from 2000
to 2018 shifted northward and then southward. Through
spatial autocorrelation, we know that PM2.5 "high-high"
accumulation in the GC region is mainly distributed in the
western and central parts of the region, namely Henan and
Hebei. Through trend analysis, it is found that the PM2.5
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concentrations in most regions increased rapidly from 2000
to 2005, and the PM2.5 concentrations in most regions
decreased rapidly from 2011 to 2018.For the research on the
driving factors of PM2.5 concentrations in the GC region, it is
concluded that the driving effect of each influencing factor
on the PM2.5 concentrations in the GC region is spatially
heterogeneous. Therefore, for the management of PM2.5 in
different regions, it is necessary to1 adapt measures to local
conditions and propose different treatment measures
according to the size of the driving factor coefficients of each
region.

Figure 8.Area change of PM2.5 concentrations in GC from
2000 to 2018

Studies have shown that the increase of PM2.5 concentrations
not only leads to the decrease of atmospheric visibility but
also increases the incidence and mortality of cardiovascular
diseases, respiratory diseases and lung cancer, bringing
serious risks to human health(Xing et al. 2016). The Ministry
of Environmental Protection officially listed PM2.5 as an
important monitoring index in the "Environmental Air
Quality Standard" (GB3095-2012) issued by the Ministry of
Environmental Protection and set the PM2.5 concentrations
standard according to the domestic economic development
and air pollution status, among which the first-level standard
is the 24-hour average concentrations no more than 35μg/m³
and the second-level standard is no more than 75μg/m³(Chow
1995). According to this standard, PM2.5 annual average mass
concentrations values in the GC region from 2000 to 2018
were divided into 4 sections (Figure 8) and the area
proportions of different sections were analyzed. The results
showed:
(1) only in 2000 and 2018, there was no area where the

concentrations of PM2.5 was greater than 75μg/m³.
(2) Taking the annual average PM2.5 concentrations limit of

35μg/m³ proposed by China's Ambient Air Quality
Standard (GB3095-2012) as the measurement standard,
the average annual PM2.5 concentrations above 35μg/m³
in the nine years from 2006 to 2014 accounted for a
large proportion (over 83%), indicating a high pollution
level in most areas of the GC in recent years.

(3) In 2010, 2011 and 2013, more than 30% of areas with
PM2.5 concentrations greater than 75μg/m³ accounted
for 33%, 36% and 35% of the total area, respectively,
further indicating the high pollution in these three years.

Figure 9. The proportion of population exposure in different
PM2.5 concentrations intervals in the GC region

According to the above four intervals divided by the
annual average concentrations of PM2.5 in the GC region,
every five years is a unit, the proportion of population
exposure in different intervals in each year is calculated
(Figure 9). It can be discovered:
(1) Only 4% of the population in 2000 and 1% in 2005

were exposed to PM2.5 concentrations below 10μg/m³
and only in 2000 did not exist populations exposed to
PM2.5 concentrations above 75μg/m³.

(2) In these years, 78%, 86%, 90% and 89% of the
population were exposed above the PM2.5 mass
concentrations limit (35μg/m³), which indicating that
the air quality in the region where most of the
population lived was not optimistic.

(3) Based on the regional area variation chart of PM2.5

concentrations in the GC region from 2000 to 2018, it
can be seen that the population is mainly concentrated
in areas above the annual average PM2.5 concentrations
limit of 35μg/m³, resulting in a prominent high-density
population in the GC region concentrated in areas with
high pollution.

6. CONCLUSION

Through time series analysis, it is found that the PM2.5 in the
GC region generally increased first and then decreased from
2000 to 2018. From 2000 to 2010, the PM2.5 generally
showed an increasing trend and gradually decreased from
2010. Since 2010, the environment in the GC region has
gradually improved and the average PM2.5 concentrations has
been declining. By 2018, except for Shijiazhuang City in
Hebei Province and Anyang City in Henan Province, the
average PM2.5 concentrations in other provinces and cities
has fallen to below 76.16μg/m³. Analyze the reasons, the
pollution concentrations of PM2.5 is closely related to the
population density and the density of economic activities in
geographical space. This is closely related to the inclusion of
the construction of ecological civilization in the overall
layout of the cause of socialism with Chinese characteristics
in the 18th National Congress of China and the Air Pollution
Prevention and Control Action Plan issued by the State
Council in 2013. For Shijiazhuang City and Anyang City,
PM2.5 remains high because the two cities have relatively
developed steel industries.

There are obvious regional differences in the spatial
distribution of PM2.5 concentrations in the GC, mainly in
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central and southern Hebei Province, central and eastern
Henan Province, western Shandong Province, and northern
Anhui Province. The length of the long axis and the short
axis of the standard deviation ellipse is quite different, which
also confirms that the spatial distribution of PM2.5

concentrations has obvious directionality. From the
perspective of changing trends, the areas where PM2.5 rapidly
increased in the GC region gradually decreased from 2000 to
2018, and the areas where PM2.5 decreased rapidly increased
gradually.

For the driving factors of PM2.5 concentrations, this article
uses Geographically weighted regression model to carry out
research. From the perspective of the absolute value of the
coefficient, the degree of influence of each factor from high
to low is: elevation, precipitation, population density,
industrial structure, foreign investment and per capita GDP.
The influence of various factors on the PM2.5 concentrations
in the GC region shows obvious spatial heterogeneity.
Among them, the influence of elevation on PM2.5 is
negatively correlated, and the influence of industrial structure
on PM2.5 is positively correlated. The coefficients of rainfall,
population density, GDP per capita and foreign investment
show different results in positive and negative correlations
depending on the city. Therefore, it is necessary to consider
the spatial heterogeneity of various factors when conducting
PM2.5 governance, and propose different governance
strategies for the specific conditions of different regions.
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