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ABSTRACT: Tree failure is a primary cause of storm-related power outages throughout the United States. Roadside vegetation 
management is therefore critical to electric utility companies to prevent power outages during extreme weather conditions. It is difficult to 
execute roadside vegetation management practices, at the landscape level, without proper monitoring of roadside forests’ physical structure 
and health condition. Remote sensing images and LiDAR are widely used to characterize the forest edge; however, the limitation on the 
temporal and spatial resolution for most of that dataset is a big challenge.  Also, there is a need for a ground-level dataset that provides the 
vertical profile of the forest trees so that we can more accurately characterize the forest structure and health and recommend the optimal 
management strategies according to the local forest conditions. For the first time, we introduced Dashcam videos as an alternative to the 
existing aerial remote sensing data sources to characterize the roadside forest condition using the deep learning (DL) convolutional neural 
net (CNN) algorithms. In this study, we used dashcam videos taken during the leaf-on and leaf-off conditions and various weather 
conditions along the roadside. We trained a DLCNN model based on the U-Net and YOLO v5 architectures to classify the multilayer 
vegetation and detect utility poles and tree trunks alongside the road. Our experiment results suggest that a dashcam can be a viable 
alternative and complementary way to characterize the roadside vegetation and can be used in the management of roadside forests as a 
cost-effective data acquisition mechanism for utility companies.

 
 

1. INTRODUCTION 
 

Roadside vegetation is defined as the area which consists of all 
trees and shrubs along with all types of roads on all types of land 
ownerships that extend up to the distance from the road to which a 
mature tree could impact the road and utilities (Eric, 2012). 
Roadside vegetation not only has aesthetic importance, but it 
functions as home to different wildlife (Cadenasso & Pickett, 
2000), as well as provide various ecosystem services   (Salmond et 
al., 2016; Weber et al., 2014), improves air quality (Smith, 2012), 
blocks pollutants from vehicles  (Jin et al., 2014; Tong et al., 2015), 
works as a noise barrier (Ow & Ghosh, 2017), etc. However, there 
are major concerns regarding roadside vegetation like highway 
safety and visibility (Forman & McDonald, 2007). Also, utility 
companies are badly affected due to the destruction caused by 
roadside vegetation like a tree falling and ground contact by 
climbers, etc. Proper management of threatful roadside vegetation 
that could be a threat to the utility companies is very necessary. For 
this, we need to have an idea of the status of the vegetation and its 
proximity to the infrastructures.  
Remote sensing images are served as indispensable resources in 
quantifying the forest structure and health condition. Remote 
sensing datasets acquired from multiple platforms, such as satellite 
images (Ingram et al., 2005), aerial images (Hall et al., 2003), or 
(Unmanned Aircraft System) UAS images  (Belmonte et al., 2020) 
is widely used in the field of forestry. Satellite images usually come 
with less temporal and spatial resolution. For instance, Landsat at 
30m resolution with 15-day frequency Aerial images are mostly 
high resolution compared to publicly available satellite images, but 
they lack temporal frequency and are cost-prohibitive. While UASs 
offer super-resolution imagery, they are hampered by scalability 
and deploying ability over a large area. Both distribution and 
transmission lines could occupy tens of thousands of kilometers. 
For instance, the state of Connecticut has xxx long distribution 
network. Thus, repeated monitoring of roadside vegetation along 
powerline corridors inevitably demands data streams acquired at 
high spatial resolution and temporal frequencies without 

compromising the geographical extent. Generally, conventional 
remote sensing data, imagery, and/or LiDAR come with many 
limitations for the precise assessment of the roadside vegetation. 
These datasets only provide the aerial view of the objects of interest 
(e.g., trees), thus, they may overlook actual conditions on the 
ground. The vertical profile of the objects on the earth's surface 
may differ from the image captured above. The aerial view of tree 
crowns from the image cannot provide understory vegetation. 
While LiDAR could capture the vertical structure of upper 
canopies effectively, shortcomings in point densities could limit the 
accuracy of canopy height models, derivation of useful forest 
metrics (e.g., stem density), and potentially prohibit seeing 
understory vegetation.  It is very important to monitor the status 
and growth of the vegetation so that utilities can timely manage and 
prevent any harm from their growth to the surrounding 
infrastructure. Thus, there is a need for a ground-level dataset that 
provides the vertical profile of the forest trees to accurately 
describe the forest characteristics. Ground-level images/videos are 
the potential datasets that can fulfill this demand. These data have 
higher spatial resolution than conventional remote sensing data and 
are providing more information on the entire tree that is comparable 
to the expert view while assessing the tree manually. A sensor on 
the ground could gain a distinctive perspective on the spatial 
composition and characteristics of targets along the roadside. Thus, 
a roadside scene captured as an image or video would closely 
provide a novel and highly valuable assessment of forest structure 
(stem density, trees/branches along electricity lines, cantilevered 
crown, canopy cover) and condition (unhealthy or dead trees, 
broken/damaged trees) relative to conventional remote sensing data 
streams. Such a street viewpoint would also allow for 
characterization of the surrounding infrastructure and its proximity 
to hazardous trees/branches. A dashboard camera (commonly 
known as and hereafter dashcam) is a low-cost vision sensor, 
usually mounted inside a vehicle to record street-level visual 
observation from the driver’s point of view. Besides the objects on 
the road, dashcams can provide unique perspectives of roadside 
objects that are particularly important to vegetation risk modeling. 
Since the data acquisition can be done on-demand basis and it can 
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be an important source of information to open a new perspective in 
forest characterization and management.  
One of the prominent sources of ground-level information is the 
dashcam used in public and privately-owned vehicles. A dashcam 
is widely used in developed countries like Russia, Taiwan, China, 
etc.  (Rea et al., 2018) in vehicles for safety purposes. They serve 
as an important source of evidence during the disputes and to claim 
insurance for the big commercial transportation companies like 
Uber, Lyft, etc. in the United States (Lyft, 2022; UBER, 2022). It 
is an affordable ad ubiquitous technology. Current day, dashcam 
videos are getting popular in the field of transportation to 
characterize and monitor the status of the roads, bridges, traffic 
signs, cracks, etc.  (Dadashova et al., 2021; Hou et al., 2022). 
Dashcam-based video streams can be used in the assessment of the 
roadside vegetation and the status of utility infrastructures. 
Trees' growth rate depends on various factors such as species type, 
microclimate, soil types, nutrient availability, etc. The branches 
and crown size of the trees also depend on such factors. It is found 
that the crown size of the tree extends more in the open areas  
(MacFarlane & Kane, 2017), mainly for the deciduous trees. 
Roadside gives trees more opportunity to extend outwards towards 
shoulder boundary easily. They can impact the visibility of the road 
as well as they can easily encounter the utility infrastructure. It can 
be a serious threat to the powerlines that may lead to the power 
outage in normal as well as severe weather conditions 
(thunderstorms, winter storms). Mostly, mature tree trunks that are 
close and high enough to touch the powerlines are major threats. 
Assessing and monitoring growth conditions like proximity to the 
infrastructures, tree height, and size, greenness, etc. is very 
necessary. Timely management of such vegetation growth is 
critical to ensure safety from all possible threats. Most of the time, 
assessment of such factors is done manually via on-foot scouting, 
which is time-/labor/cost-intense). Given the extensive coverage of 
powerlines, it is almost impractical to employ a real-time 
assessment of vegetational growth in repeated intervals. There is a 
strong need for automated vegetation scouting methods (or digital 
scouting) to cut down the cost, save time, and inform data-driven 
vegetation management decision-making. A dashcam can be one 
of the prudent alternatives to achieve the goal. In this regard, from 
the dashcam technology, we can automate the monitoring of the 
roadside vegetation and can be further used to plan the management 
strategy. 
Automated detection of the roadside vegetation (e.g., invasive 
species, dead trees, threatful branches) electric infrastructure (e.g., 
poles, lamps, wire), and traffic-related infrastructures (e.g., traffic 
signs, lights, roads, shoulders, etc. from the roadside images is very 
important to plan the management strategies. Utility companies 
need to know vegetation status and pre-plan vegetation 
management activities (e.g., tree trimming and hazard tree 
removal) to reduce tree-related power outages during severe 
weather conditions. Also, near real-time vegetation assessments 
help in developing necessary interventions such as the management 
of plant diseases, fire, and invasive species. Even though it is very 
challenging to automate accurate segmentation of roadside 
conditions, dashcams can be taken as a possible alternative. In 
recent studies, dashcam data sources are widely utilized for 
recognition and localization purposes. Many algorithms and 
datasets, such as CamVid  (Brostow et al., 2008), Leuven  (Leibe 
et al., 2007), and Daimler Urban Segmentation  (Scharwächter et 
al., 2013) are successfully used in the semantic understanding of 
urban scenes. A benchmark dataset for vision called KITTI  
(Geiger et al., 2012) is also available that can study vision-based 

self-driving tasks including object detection, multiple-objects 
tracking, road/lane detection, semantic segmentation, and visual 
odometry.  
The central goal of this exploratory study is to detect and segment 
the roadside vegetation with the use of readily available vision data 
sources i.e., dashcam, and try to see the feasibility of such data 
sources as citizen data science in the future. We aimed to address 
two specific objectives 1) to differentiate the canopy structure of 
the roadside vegetation. 2) to detect tree trunks and electricity 
poles. To our knowledge, this is the first research effort to explore 
the utility of dashcam videos in roadside forest risk analysis,  
 

 
 

2. METHODS 
 

2.1 Data Collection: 
 
We collected dashcam video using Think ware U1000 Dashboard 
camera along the roads of Mansfield, Connecticut, US. Thinkware 
U100 is an off-the-shelf, GPS-enabled, camera that records 4K 
video at 60fps and has 150o of wide viewing angles. Video dataset 
was taken in leaf-on (Summer/Fall, 2021) and leaf-off (Spring, 
2021) conditions under different daylight conditions (late morning, 
afternoon, and early evening) and weather conditions (rainy, 
cloudy, bright sunny day, fog, light snow). This was done to train 
the DLCNN algorithm in heterogeneous imaging conditions. 
Acquired videos were further converted to image frames using 
FFmpeg algorithms  (Tomar, 2006). We used the 30th frame and 
the 15th frame per second for leaf-on and leaf-off conditions for 
objectives 1 and 2, respectively. An online web tool “VGG Image 
Annotator”  (Dutta et al., 2016) was used to annotate the image 
frames. For Objective 1, We created a freehand polygon around the 
target whereas for objective 2 we annotated with a rectangle 
polygon around the target. The overall methodology used in the 
study is depicted in Figure 1. 
 

 
Figure 1: Schematic showing the overall methodology used in the 

study. 

 
2.2 Model Training 
 
The U-Net algorithm and the YOLO v5 algorithm were used in 
Objective 1 and Objective 2, respectively. The former involved 
semantic segmentation of roadside forest canopy while the latter 
involved the detection of tree trunks and utility poles.  
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-135-2022 | © Author(s) 2022. CC BY 4.0 License.

 
136



2.2.1 U-Net Model 
 
We applied a transfer learning strategy to re-train the U-Net model. 
The model has a Resnet101 backbone that has already been trained 
based on ImageNet data.  Transfer learning helps faster adaptation 
of an existing model using a limited number of training samples. 
Using the VGG annotator, we delineated roadside vegetation as the 
high canopy and low canopy from dashcam video frames. The high 
canopy class captures the trees that have a height taller than the 
utility wires and the low canopy class engulfs shrubs, saplings, and 
other vegetation with a smaller height than the utility wires. Since 
we are in the preliminary phase of our analysis, we only used 64 
image frames for the annotation purpose with around 525 of a total 
number of targets.  Annotated video frames into high and low 
canopy classes are shown in Figure 2.  
 

 
Figure 2: a) A video frame from the dashcam b) Annotated image 
into different classes using VGG image annotator 

We utilized a Python implementation of the U-Net model.  The 
model was based on the TensorFlow library. Some of the 
specifications used for the U-Net model are presented in Table 1: 
 
Table 1: Key experimental parameters used in the U-Net model 

Parameters Value 
Number of Images 64 
Data Split ratio 80:10:10 
Backbone Resnet 
Epochs 100 
Batch size 8 
Classes 3(high, low, road) 
Augmentation Horizontal flip, vertical flip, 

rotation by 90o 
 
2.2.2 YOLO v5 Model 
For Objective 2, the YOLO v5 algorithm was utilized to train our 
dataset. YOLO v5 is the frontline algorithm of the YOLO series  
(Redmon et al., 2016). In this detection task, we mainly targeted 1) 
tree trunks on the roadside and 2) utility poles during leaf-off 
conditions. For annotation, we used 514 image frames from 
different videos and were given a bounding box annotation in the 
VGG image annotator as shown in Figure 3. A total of 743 poles 
and 1750 trunks were digitized manually.  
 

 
Figure 3: Tree trunks and Poles annotated from dashcam Image 

frames 

Table 2 depicts key parameters used in the YOLO v5 algorithm 
during training. No data augmentation was involved at this point to 
see how well we can detect the tree trunk.  
  

Table 2: Some Experimental parameters used for YOLOv5 
algorithm 

Parameters Value 
Number of Images 514 
Data Split ratio 70:15:15 
Epochs 300 
Classes 2 (l= tree trunk, p=pole) 
Augmentation none 

 
2.3 Results and Discussion 
 
We were able to successfully stratify the vegetation using the U-
Net model from the dashcam video. The overall IOU - score was 
more than 85% and the F1- score was above 91%. For the 
stratification of the roadside vegetation canopy, evaluation for 
training and validation progress is provided in Figure 4. Examples 
of the predicted mask and annotated mask over the test data are 
provided in Figure 5. 
 

 
Figure 4: Training and Validation curve for Loss, IOU, and F1-

Score. 
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Figure 5: a) Annotated video frame b) Prediction mask for high 

canopy (pink color) and low canopy (light green color). 

The class-wise accuracy metric achieved during the analysis is 
provided in Table 3: 
 
 
 
 
Table 3: Results achieved in the classification of vegetation strata 

from dashcam videoframes 

Classes Precision Recall F1-score 
Background 0.909 0.913 0.911 
High Vegetation 0.916 0.919 0.917 
Low Vegetation 0.925 0.953 0.939 
Road 0.969 0.980 0.974 
Accuracy 0.923 0.923 0.923 
Weighted. 
average 

0.912 0.923 0.917 

 
For Objective 2, i.e., detection of the poles and tree trunks along 
the roadside, our algorithm was able to detect most of the tree 
trunks and utility poles. Figure 6 shows the loss performance 
during the training and validation of the algorithm.  
 

 
Figure 6: Training loss and validation loss for the class in YOLO 

v5 

As seen in the confusion matrix (Figure 7), the detection of the pole 
was more accurate than the tree trunks. Almost 92 % of the 
background false positive rate was due to the tree trunk and it was 
producing background false negatives as well. However, poles had 
very less contribution to the false positive rate. Data annotation was 
done by multiple individuals. Even though we had a protocol in 
place for annotations, still there was a bias among the annotators 
toward annotating biforked/multiforked trees into one or multiple 
tree trunks in the stacked forest areas. It could be the possible 
source of noise in detection. Additionally, the presence of deep 
background tree trunks within the bounding boxes could be another 
possible reason behind the false positive and false negative rates 
for the tree trunks.  

 
Figure 7: Confusion matrix showing the accuracy rate for two 

classes: tree trunk (l) and poles (p) 

 

 
Figure 8: Detection of tree trunk and pole on an independent 

dataset 

Lack of sufficient training samples, the difference in the 
background contrast of frames due to variation of daylight time, 
glare on the windshield, and sun angle, could have probably 
contributed to low detection accuracies. Even though the mAP 
value for each class is low, we still were able to detect a substantial 
amount of roadside tree trunks Figure 8). 

 
 

3. CONCLUSIONS 
 

To the best of our knowledge, no other study has yet explored the 
utility of dashcam video streams in roadside forest monitoring 
applications. This work introduces the U-Net-based stratification 
of the roadside vegetation and the YOLOv5-based tree trunk and 
pole detection method. U-Net model was found to be promising in 
the classification of the high and low canopy of the vegetation even 
with a very limited training dataset. Similarly, the YOLOv5 
detection method was also found as a feasible method to detect tree 
trunks and utility poles. Since this is the initial phase of the study, 
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the level of accuracy we achieved from both tasks is motivating. In 
future work, we will expand the training data space via the 
collection of a large volume of video data and hand annotation of 
targets of interest. We will practice standardized protocols to 
maintain consistency in the annotation process among analysts. 
Such measures will help elevate the generalization ability of CNN 
models. Also, various augmentation techniques will be used to 
inflate the training sample space while providing robust scenarios 
to the CNN algorithms. This novel work has opened a cost-
effective data acquisition avenue to characterize roadside forest’s 
physical structure and health condition. When fused appropriately, 
Dashcam video streams are complementary to conventional remote 
sensing data. Further, the ubiquitous nature of this everyday 
technology places it as an ideal citizen science tool for engaging 
the public in the process of near real-time roadside forest 
monitoring.  
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