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ABSTRACT: 

 

In recent years, unmanned aerial vehicle (UAV) imaging is a suitable solution for real-time monitoring different vehicles on the 

urban scale. Real-time vehicle detection with the use of uncertainty estimation in deep meta-learning for the portable platforms (e.g., 

UAV) potentially improves video understanding in real-world applications with a small training dataset, while many vehicle 

monitoring approaches appear to understand single-time detection with a big training dataset. The purpose of real-time vehicle 

detection from oblique UAV images is to locate the vehicle on the time series UAV images by using semantic segmentation. Real-

time vehicle detection is more difficult due to the variety of depth and scale vehicles in oblique view UAV images. Motivated by 

these facts, in this manuscript, we consider the problem of real-time vehicle detection for oblique UAV images based on a small 

training dataset and deep meta-learning. The proposed architecture, called SA-Net.v2, is a developed method based on the SA-CNN 

for real-time vehicle detection by reformulating the squeeze-and-attention mechanism. The SA-Net.v2 is composed of two 

components, including the squeeze-and-attention function that extracts the high-level feature based on a small training dataset, and 

the gated CNN. For the real-time vehicle detection scenario, we test our model on the UAVid dataset. UAVid is a time series oblique 

UAV images dataset consisting of 30 video sequences. We examine the proposed method's applicability for stand real-time vehicle 

detection in urban environments using time series UAV images. The experiments show that the SA-Net.v2 achieves promising 

performance in time series oblique UAV images. 
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1. INTRODUCTION 

The development of remote imaging platforms has induced the 

researchers to use these platforms in many real-world 

applications where is important real-time object detection, and 

robust monitoring method (Giordan et al. 2020; Kiribayashi, 

Yakushigawa, and Nagatani 2018). A drone or an Unmanned 

Aerial Vehicle (UAV) can be equipped with small and compact 

imaging and positioning sensors, such as optical camera, 

thermal sensor, Light Detection And Ranging (LiDAR), and 

Global Navigation Satellite System (GNSS) receiver for 

generating a wide range of geospatial data and details in a short 

time for the study of natural objects and environmental 

monitoring, with very low operating costs (Svedin et al. 2021; 

Mustafah, Azman, and Akbar 2012). In this regard, the variety 

and multimodality data from Earth can impose difficulty on 

both datasets generating and processing methods since it is hard 

to find the right strategy that matches their learning preferences. 

In recent years, UAV imaging is a suitable solution for real-time 

monitoring different vehicles on the urban scale. Real-time 

vehicle detection with the use of uncertainty estimation in deep 

meta-learning for the portable platforms potentially improves 

video understanding in real-world applications with a small 

training dataset, while many vehicle monitoring approaches 

appear to understand single-time detection with a big training 

dataset. 

Deep meta-learning is an inductive transfer system whose main 

goal is to improve generalization ability for multiple tasks 

(Huisman, van Rijn, and Plaat 2021). The investigation of 

previous methods proves that there are still many important 

problems, such as robustness ability for meta-learning from 

UAV images, that have not yet been adequately considered in 

relevant methods. The lack of datasets and algorithms for deep 

meta-learning especially in real-world applications is the main 

motivation of this study.  

The purpose of real-time vehicle detection from oblique UAV 

images is to locate the vehicle on the time series UAV images 

by using semantic segmentation. Real-time vehicle detection is 

more difficult due to the variety of depth and scale vehicles in 

oblique view UAV images (Xie et al. 2018; Lyu et al. 2020). 

Motivated by these facts, in this manuscript, we consider the 

problem of real-time vehicle detection for oblique UAV images 

based on a small training dataset and deep meta-learning. The 

proposed architecture, called SA-Net.v2, is a developed method 

based on the SA-CNN (Khoshboresh-Masouleh and Shah-

Hosseini 2021b) for real-time vehicle detection by 

reformulating the squeeze-and-attention mechanism. The SA-

Net.v2 is composed of two components, including the squeeze-

and-attention function that extracts the high-level feature based 

on a small training dataset, the gated CNN. For the real-time 

vehicle detection scenario, we test our model on the UAVid 

dataset. UAVid is a time series oblique UAV images dataset 

consisting of 30 video sequences (Lyu et al. 2020). We examine 

the proposed method's applicability for stand real-time vehicle 

detection in urban environments using time series UAV images. 

The main idea is to collect all the possible datasets and 

algorithms for deep meta-learning from UAV imagery sensors 

that exist until the writing of this research and use the efficient 

methods to scene understanding for real-world applications, 

such as vehicle monitoring. This study summarizes the novel 

methods of meta-learning and its research progress and real-

world applications in meta-learning from UAV imagery sensors 

introduces the current main challenges in data mining and its 

development of related datasets and focuses on the analysis and 

elaboration of the research status of meta-learning in UAV 

imaging. 
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2. A COMPARISON BETWEEN TRANSFER AND 

MULTI-TASK LEARNING 

Transfer learning is a paradigm to train on one task and transfer 

to a new task (Torrey and Shavlik 2010). Transfer learning 

consists of the transfer of knowledge from an old task to a 

newer task, which has some similarities with the old (Kulkarni 

and Nair 2021). Transfer and multi-task learning algorithms are 

not the same. Multi-task learning tries to learn the new and old 

task simultaneously, while transfer learning only aims at 

achieving high performance in the new task by transferring 

knowledge from the old task (M. R. Bayanlou and 

Khoshboresh-Masouleh 2021), as shown in Fig. 1. Figure 1 

shows the different structures in transfer and multi-task learning 

for a drone image from an urban area. 

In a transfer learning algorithm, a task based on a probabilistic 

viewpoint is defined as follows (Zhuang et al. 2020): 

T= {Y, P(Y|X)}                                                                        (1) 

where X denotes a feature space, Y denotes a label space, 

P(Y|X) denotes a predictive function based on the training 

dataset, and P(X) denotes a marginal probability distribution. 

 
Figure 1. A comparison between transfer and multi-task learning 

 

As a result, transfer learning aims to enhance the conditional 

probability distribution in a new task based on an old task, 

where the new task is against the old task. To review the 

transfer learning topic for the labeled and unlabeled dataset, the 

existing problems can be broadly categorized into homogeneous 

transfer learning and heterogeneous transfer learning. The 

homogeneous transfer learning approaches develop rulesets to 

correct both the marginal and conditional distribution 

differences in the old and new tasks. Heterogeneous transfer 

learning approaches bridge the gap between feature spaces and 

reduce the problem to a homogeneous transfer learning issue 

where marginal or conditional distribution differences will need 

to be corrected (Zhuang et al. 2020). 

 

3. FEW-SHOT LEARNING FOR UAV IMAGE 

UNDERSTANDING 

To learn from a limited number of training samples with labeled 

data, a new strategy called few-shot learning is proposed. In 

real-world applications, annotating images or videos is very 

expensive. To build effective machine learning models in these 

applications, deep few-shot learning methods have been 

developed and prove to be a robust approach in small training 

data (Feng et al. 2021; Voulodimos et al. 2021). 

Few-shot learning can help relieve the burden of collecting 

large-scale supervised data. For example, although a pre-trained 

model, e.g., DeepMultiFuse (Khoshboresh-Masouleh and 

Akhoondzadeh 2021), outperforms humans on multispectral 

UAV images, each class needs to have sufficient labeled images 

which can be laborious to collect. 

 

4. SM DATASET 

The SAMA-VTOL dataset, also known as SM, (M. R. Bayanlou 

and Khoshboresh-Masouleh 2021; M. R. R. Bayanlou and 

Khoshboresh-Masouleh 2020) is composed of much larger 

multi-task information and with more data complexity in terms 

of the number of targets, which makes this dataset more 

adequate for multi-task learning for scene understanding from 

drone images. 

There are 10 classes defined for the semantic segmentation task, 

including water, ground, parcel boundary, waste object, vehicle, 

farmland, vegetation, building shadow, building, and 

vegetation. SM dataset provides a multi-task dataset targeting 

semantic, panoptic, and depth labeling for urban scene analysis 

from fixed-wing drone images. 

SM dataset is a new drone-based image dataset for a wide range 

of scientific projects in civil engineering, such as 3D urban 

modeling, urban/rural mapping, and digital surface model.  

Drone images play a crucial step in providing geospatial 

datasets. This dataset consists of suburb scene images with a 

forward overlap of 80% between images and a side overlap of 

60% between flight lines from part of Esfahan, Iran. The 

characteristics that make the SM dataset an excellent scientific 

dataset are:  

(a) High ground sampling distance (GSD). 

(b) Post Processing Kinematic system for improving the spatial 

accuracy without ground control points (GCPs). 

(c) Different landscape types, including different types of roofs 

for commercial/residential buildings, and vegetation. 
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5. IND DATASET 

The IND dataset (Khoshboresh-Masouleh and Shah-Hosseini 

2021a) consists of high-altitude drone images labeled for multi-

modal building segmentation with a period of 2 years that have 

significant land-use changes from 8 various areas that sit in 

different cities in Indiana of the United States. The fully labeled 

IND contains a total of 300 multi-modal building instances. 

The IND dataset includes major cities in Indiana images 

targeting building semantic labeling for the urban scenes. The 

IND dataset is 15 cm resolution and contains 256 training and 

38 test aerial RGB-Normalized Difference Vegetation Index 

(NDVI)-Depth and pixel-level building labeled maps at 

512×512 resolution, which brings new challenges, including 

shadows and occluded areas, vegetation covers, complex roofs, 

dense building areas, and large-scale variation. 

 

6. UAVID DATASET 

The UAVid dataset (Lyu et al. 2020) is a drone time-series 

dataset for image segmentation from urban scenes with an 

oblique view. There are 8 classes defined for this dataset, 

including building, road, tree, low vegetation, static car, moving 

car, human, and background. 

The UAVid dataset consists of a time-series dataset targeting 

semantic labeling for urban scene analysis from an oblique 

drone perspective. 

An overview of existing datasets for multi-task learning can be 

found in Table 1. 

 
Reference SM IND UAVid 

Data source drone 

High 

altitude 

drone 

drone 

Open access No Yes Yes 

Type Orthophoto Orthophoto Video 

Depth map 
Very high-

resolution 

High-

resolution 
No 

NVDI No Yes No 

Texture 

distortion 
Low Low - 

Semantic 

annotation 
Yes 

Yes (just 

buildings) 
Yes 

Semantic 

classes 
8-10 2 8 

Panoptic 

annotation 

Yes (just 

buildings) 
No No 

Color-based 

3D point 

cloud 

Yes No No 

Image size 

(pix) 
2000×2000 512×512 4096×2160 

GSD 2.5cm 15cm - 

Table 1. List of datasets for multi-task learning in drone 

imaging sensors 

7. SA-NET.V2 

The SA-Net.v2 proposed in this manuscript aims to improve the 

precision and inference time for real-time vehicle detection. 

This method is organized based on the theory of SA-CNN. Our 

network is different from similar models in the feature 

extraction produced by CNN.  The SA-Net.v2 architecture takes 

the HRNet.v2 as the backbone and uses a region-based temporal 

aggregation Monte Carlo dropout (Huang et al. 2018), which 

can further improve the uncertainty modeling to guide the real-

time vehicle detection. HRNet.v2 model is a pair of encoders 

and decoders. The encoder is HRNetV2-W48 and the decoder is 

the one convolution module and interpolation. 

The squeeze-and-attention function learns non-local spectral 

features and multi-scale spatial representations in time-series 

images and therefore overcomes the constraints of 

convolutional blocks and mask generation. The squeeze-and-

attention function is defined as follows: 

Output = Upsampling [ReLU(F(P(input)))]                             (2) 

The gated CNN was efficient in minimizing the unnecessary 

transmission of information by using a convolutional block for 

extracting optimized time-series images and overcoming the 

end-to-end problem posed in target detection. The gated CNN is 

defined as follows: 

gate-cnn = [batch_normal(lower encoder features*convolutional 

layers)].[upsampling(upper encoder features* convolutional 

layers)]                                                                                      (3) 

8. RESULTS 

In this manuscript, the Intersection-over-Union (IoU) used in 

evaluating real-time vehicle detection, which is formulated as: 

IoU = (2* true positives) / (true positives+ false positive+ 

false negative)                                                                        (4) 

Moreover, the entropy measure for uncertainty estimation I 

used. Table 2 shows the quantitative results for real-time vehicle 

detection from oblique UAV images. Figure 2 shows the real-

time vehicle detection based on SA-Net.v2 from oblique UAV 

images. 

 

Time series samples IoU Entropy 

Set1, n=10 79.2 0.31 

Set2, n=10 92.4 0.16 

Set3, n=10 94.8 0.11 

Set4, n=10 89.9 0.23 

Set5, n=10 88.1 0.21 

Set6, n=10 91.4 0.18 

Mean 89.3 0.20 

Table 2. real-time vehicle detection comparisons on different 

types of test scenes based on SA-Net.v2 

 

9. CONCLUSIONS 

The proposed method, called SA-Net.v2, is trained on a few-

shot dataset to provide better real-time vehicle segmentation 

performance for oblique UAV images. The experimental results 

highlight the abilities of the SA-Net.v2 to vehicle segmentation 

that include various challenges with IoU score of 89.3, and an 

entropy score of 0.20. 
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Figure 2. Example time-series vehicle detection from oblique UAV images. Red footprints indicate all vehicle instances
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