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ABSTRACT: 
Mapping platforms jointly operating in a formation are increasingly used to improve the efficiency of geospatial data acquisition 
recently. For example, UAS swarm mapping is gaining market share or robot platform are used for indoor mapping. These platforms 
are typically equipped with imaging and navigation sensors as well as have various communication capabilities. Until now, the 
platforms are individually navigated and georeferenced. Since the platforms are typically sharing a small area, and thus, they are within 
their sensing range; for example, they can see and thus track each other in optical or lidar imagery. Furthermore, new communication 
technologies have started to provide ranging information between communication points. Using the ranges between platforms makes 
it feasible to create a local geodetic network defined by the platforms. The geometric strength of the network then can be exploited to 
support platform georeferencing. In this study, the network formation based on ranges is investigated. Initial experiences are reported 
on the impact of the size of the network, the spatial distribution of the network nodes and the number of available ranges.  

1. INTRODUCTION

Mapping sensors are increasingly deployed on multiple platforms 
to increase productivity and/or to provide different observations 
of an area. The use of UAS in mapping and delivery services has 
been steadily rising, so for safety and other reason, the platforms 
must be efficiently positioned and navigated. Similarly, robots 
are supporting indoor mapping at a growing rate, and pose less 
challenges for safety. 

Remote sensing platforms deployed on the ground and in air form 
a network that can be observed by a variety of sensors, such as 
camera, RF signals, LiDAR, etc. (Toth and Jozkow, 2015). The 
most typical measurements are ranges and angular observations. 
When sufficient data are available, the network, the relative 
positions of the platforms can be estimated. The network can 
provide relatives positioning of the platforms that can be used to 
check the quality of the individual platform navigation solutions 
and also to improve the navigation solutions of nodes that may 
lack navigation sensor data and thus may have compromised or 
no navigation solution at all. 

Collaborative navigation or cooperative positioning is a recent 
concept that is based on data sharing between navigation 
platforms, such as a mapping swarm (Masiero et al., 2021). If 
platforms share their navigation sensor data, such as GNSS and 
IMU as well as range and angular observations between 
platforms, then a central navigation filter can compute an optimal 
solution for the entire swarm. The method is somewhat similar to 
aerial triangulation where the number of ground controls can be 
reduced, which is the equivalent of having a few nodes with good 
GNSS data in the swarm that can be propagated to other nodes 
through the network. Obviously, the performance dependence on 
the ranging accuracy and some other conditions. 

The long-term objectives of this effort are: (1) what is theoretical 
foundation for the spatial distribution of points in terms of the 
impact of network or object space reconstructing, and (2) the 
practical goal is to support collaborative navigation of UAS 
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swarm mapping. In this study, the feasibility of using free 
network adjustment is investigated to support the georeferencing 
and navigation of a group of platforms operating in close vicinity. 
So far, we are only considering the 2D case and using range data. 

2. DATA ACQUISITION

When clear LOS is available, obtaining range and angular data 
(AoA) is generally feasible. But when obstacles exist in the space 
where the platforms are deployed, there may be not enough 
information to estimate the network. Therefore, we selected a 
generally open area with a few buildings where reference points 
could be easily established and surveyed at high accuracy. 

Figure 1. Network at NTNU Gjovik campus 
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We have set up a test area on the Gjovik campus of NTNU where 
ground controls were deployed and accurately surveyed to 
support both simulations and UAS flight experiments, see Fig. 1. 
The campus represents a mixed environment of widely empty 
spaces and corridors between buildings, making it ideal for 
investigating the behavior of an UAS swarm flying around 
buildings in an urban area. A static network of 36 points was 
established using a Leica MS60 multistation, from which 22 were 
used in our investigation. The triangulated geometry, derived 
from numerous angular and distance measurements at each 
station ensured mm level final accuracy; clearly, this is better 
than what is required for highly accurate platform 
georeferencing. This static network provides an excellent basis 
for simulations, and the permanently marked points (nails in 
asphalt and pillars) will provide ground control for further UAS 
test flight-based investigations.  

Network Simulation 
Horizontal range observations were simulated between each 
point pairs, and noise was added to each observation based on 
their estimated quality. First, the quality of the range data was 
estimated from the performance of a Leica M60 multistation’s 
distance measurement. Note that the centering reliability was also 
estimated at each point by assuming that all the observations from 
a point were done simultaneously, so the same centering accuracy 
impacted all the sets of observations at one point. Based on the 
estimated standard deviations, a normal distribution-based 
random generator assigned the noise to each observation. The 
weights of observations were also derived from those estimated 
standard deviation values. This error characterized datasets were 
used for testing the implementation of the network computation 
tools and then the initial tests with various network 
configurations.  

3. NETWORK FORMATION

For the 2D network case, there are two methods tested in this 
study. The first one, Method I is based on a conventional 
incremental network formation, while the second one, Method II 
is a single one-step network formation. Both methods can work 
without knowing any absolute coordinates of any nodes; i.e., no 
anchor node information is available. While Method I is proven 
method, it was designed for static networks, and computationally 
somewhat strict, so it is less applicable for an application when 
the network is constantly changing, such as flying drones, and 
thus, a fast solution is needed. Fig. 2 shows a typical network 
formed by 10 nodes (n) with all the possible ranges between 

nodes; i.e., 45 based on ቀ
𝑛
2ቁ.

Method I 
The traditional geodetic solution requires a priori estimates of X 
and Y coordinates, as otherwise the adjustment may not 
converge. Assuming good initial values, the weighted least 
squares method will provide the optimal distribution of residuals 
among the unknown parameters (Ghilani, 2017). While an 
unambiguous solution based only on range observation requires 
three points with known X and Y coordinates, solutions with only 
two anchor points were also tested, with some extra attention. 
When a drone network starts, there may be no reliable initial 
coordinates, in which case Method I may not work at all. Note 
that the network is a sample of the swarm motion at a certain 
epoch. As the swarm operates, there are position estimates 
available for the nodes, and thus Method I can deliver a network 
solution for the given epoch. Then, the solution can be analyzed 

for gross errors, etc., and a clean network solution can be used to 
update the position estimates for the entire network. 

Figure 2. Network of 10 nodes with all the ranges 

Method II 
This approach basically tries to form a network only from range 
measurements; ideally, all the ranges between nodes would be 
available, but in practice, only a subset can be observed. First a 
local coordinate system should be setup, which is based on two 
nodes defined by the largest range. In our implementation, one of 
the this point is considered as the origin and then second defines 
the Y axis; in other words, nodes have the coordinates of (0, 0) 
and (0, rangemax), respectively, see Fig, 2. Next, a Gauss-Markov 
Model with constraints is executed, (Snow and Schaffrin, 2021). 
The adjustment is not guaranteed to provide a unique solution or 
solution at all, depending on several factors. There are additional 
tools which offer more complexity to address these challenging 
networks if needed. One obvious problem with the 2-point 
defined local coordinate system is that there could be two 
solutions, the correct and the mirrored one; assuming that the 
solution is close to horizontal in the mapping frame. Obviously, 
in 3D sense there is only one solution. 

Both methods have been implemented in Matlab and formed the 
tools to test various network configurations. During the 
investigations, the solution provided by Method I was considered 
as a reference, and thus, served to validate Method II. Besides the 
direct comparison of the two solutions, the quality of the 
adjustment of different configurations was assessed by analyzing 
the standard deviation of the adjusted X and Y coordinates and 
the related error ellipses. 

4. PERFORMANCE EVALUATION

Various parameter combinations are tested, including 
 The number of network nodes
 Different network node distributions
 What is the minimum number of ranges available to

form a network?

The initial results of the first two objectives are discussed here. 
Fig. 3 shows typical network adjustment results of Method II. 
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(a) A typical case for 11 points with 7 iterations (b) Using ground coordinates of two nodes, the network is
transformed (rotated) into the mapping frame 

(c) A corridor point distribution case for 16 points with 17
iterations 

(d) Another corridor distribution case for 11 points with 66
iterations 

(e) Divergent case with 7 nodes; solution oscillates

Figure 3. Various network computations

Method II generally converges; the iteration number seems to be 
somewhat correlated to the spatial distribution of the points. Fig. 
3a is nearly even spatial distribution with low iteration number. 
Fig. 3c is a less than ideal distribution, yet the iteration number 
is not too large. Fig. 3d shows a successful but slow convergence 

case. Fig. 3e shows a small network where the solution oscillates. 
In general, for larger number of nodes, the failure rate slightly 
increases, but there are exceptions. The spatial distribution of the 
nodes clearly has a strong influence on the success of the network 
formation. This is a challenging problem. 
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(a) Even spatial distribution of nodes (b) Range histogram

(c) Elongated spatial distribution of nodes (d) Range histogram

Figure 4. Relationship between spatial distribution of points and range histogram 

Fig. 4 shows range histogram of two networks with very different 
spatial distribution of nodes. As expected, the balanced histogram 
in Fig. 4b indicates a likely even spatial distribution of the point. 
In contrast, the skewed range histogram in Fig. 4d suggest a less 
than ideal point distribution.  

The error ellipses are also included in Figs. 4a and 4c for the cases 
when 2 and 3 anchor nodes were introduced. Fig. 4a demonstrates 
that the control information for the two nodes with ground 
coordinates has no real impact on the network accuracy; in other 
words network positions determined by Method II are not 
impacted with the introduction of two control points, as the base 
formed by the two points is comparable to the size of the network. 
In contrast, Fig. 4c shows a totally different case where the 
accuracy of the georeferenced network is noticeably impacted by 
the introduction of the three anchor nodes. Since they are close 
to each other and fall on a line, they have impact only on the 
closest node points and then with distance the errors grow in the 
lateral direction. 

Fig. 5 shows additional illustration for networks absolute 
georeferenced based on 2 and 3 anchors; the very same local 
network computed by Method II is shown in the four subfigures 
with various anchor point selections. Since it is a corridor 
network point distribution, the error ellipses have larger extent in 
the perpendicular direction with respect to the main corridor 
direction, as there is only limited observation in the lateral 
direction. 

Figs. 5a and 5c show that using anchors that are selected from the 
two end areas of the network provide even accuracies; as 
expected, point P4 has larger error ellipses, as it is extrapolated 
as opposed to interpolated. Adding a third anchor point in the 
center makes no difference, as this point fall on the line defined 
by the two original anchor points, see Fig. 5c. 
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(a) Two anchor points with proper spatial separation (b) Two anchor points that are too close to each other

(c) Three anchor points with proper spatial separation (d) Three anchor points that are too close to each other

Figure 5. Impact of the spatial distribution of anchor points on a corridor distributed swarm network 

Figs. 5b and 5d show the situation when the anchors are close to 
each with respect to spatial extent of the network points. As 
expected, the impact of the anchors is only noticeable on the 
nearby points, and then with distance the errors will grow. The 
location of the anchor points, whether it is at the end or the mid 
of the points, has no impact in general, except that the same error 
growth can be seen on one or both sides with respect to the 
location of the anchors. Similarly, to the ideal case, the number 
of anchors has practically no impact on the error patterns. 

5. CONCLUSION

Two network adjustment methods have been investigated using 
a realistic network configuration for urban UAS swarm drone 
mapping. The classical solution served as a reference and the 
proposed one-step method was intended to offer a faster 
computation, which makes it applicable to dynamically changing 

network, such as one formed by the platforms of a mapping 
swarm. 

The preliminary results are encouraging, as the one-step method 
generally performed well in terms of providing a network 
solution based only on ranges observed between the nodes. In 
contrast, the traditional method always delivered the good 
solution, but required more execution time. The compromise 
between faster execution time and the fact that convergence is 
not guaranteed is probably acceptable in real-time applications, 
where the platforms have continuous navigation, so not getting 
an update or improvement once in a while is not causing an 
problem. 

Future work will address the impact of varying ranging accuracy 
on the solution and the contribution of the spatial distribution of 
the nodes for successful network formation. 
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