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ABSTRACT: 

Single-frame super-resolution (SFSR) achieves the goal of generating a high-resolution image from a single low-resolution input in a 
three-step process, namely, noise removal, up-sampling and deblurring. Scale factor and blur kernel are essential parameters of the up-
sampling and deblurring steps. Few studies document the impact of these parameters on the performance of SFSR algorithms for 
improving the spatial resolution of real-world remotely-sensed datasets. Here, the effect of changing blur kernel has been studied on 
the behaviour of two classic SFSR algorithms: iterative back projection (IBP) and gaussian process regression (GPR), which are applied 
to two spaceborne hyperspectral datasets for scale factors 2, 3 and 4. Eight full-reference image quality metrics and algorithm 
processing time are deployed for this purpose. A literature-based re-interpretation of Wald’s reduced resolution protocol has also been 
used in this work for choosing the reference image. Intensive intra-algorithm comparisons of various simulation scenarios reveal each 
algorithm’s best performing Gaussian blur kernel parameters. Inter-algorithm comparison shows the better performing algorithm out 
of the two, thereby paving the way for further research in SFSR of remotely-sensed images. 

1. INTRODUCTION

1.1 Background 

High resolution (HR) images possess high pixel density, thereby 
offering detailed information. Their requirement is usual in 
computer vision tasks to improve image analysis and pattern 
recognition performance. Remote sensing exercises like large 
scale mapping need high spatial and spectral resolution, implying 
the need for HR. Hyperspectral images (HSI) (Goetz et al., 1985) 
have a large number of contiguous bands which provide much 
information about features but at the cost of low spatial 
resolution. On the other hand, multispectral images (MSI) offer a 
high spatial resolution. These images acquired by conventional 
cameras offer little spectral content. Because of innate sensor 
constraints and optics manufacturing technology, a compromise 
between comprehensive spatial and spectral content cannot be 
reached. Resolution improvement techniques can solve this 
predicament. These are fusion (Pohl and Van Genderen, 1998), 
interpolation (Meijering, 2002), super-resolution (SR) (De Santis 
and Gori, 1975) and restoration (Andrews and Hunt, 1977).  
A lower spatial resolution image is combined with a high spatial 
resolution image in the fusion process to obtain an output with 
high spatial resolution. However, the spectral properties may be 
lost, or the resultant output may have pronounced blurring (Kwan 
et al., 2017). In interpolation, the low resolution (LR) image is 
transformed into the HR space, and a function is utilized to find 
the missing figures. But, interpolation operators omit the high-
frequency information of the LR input image (Gotoh and 
Okutomi, 2004). The size of the output and input images remains 
the same in the case of restoration. SR prevails over these 
limitations by retaining the spectral properties as well as 
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enhancing the spatial features of the LR dataset(s) at a larger 
spatial scale (Protter et al., 2008) 
SR is an inverse imaging problem, which reverses the 
degradation process initiated by the imaging model to generate 
the HR image from its LR image (Nasrollahi and Moeslund, 
2014), i.e.,  

I
HR 

= B
-1

[Δ
-1

(I
LR

 – η)] (1) 

Where, IHR = HR output 
B = Blurring operator 

Δ = Down sampling operator 
ILR = LR input 

η  = Additive noise 

B is sensor dependent and provided in the technical specification 
document as the point spread function (PSF) (Fernandez-Beltran 
et al., 2017). Although theoretically represented by a Bessel 
function (Chen et al., 2018), B can be appropriately represented 
by a Gaussian function to account for the lens aberration and 
atmospheric turbulence during image acquisition (Fernandez-
Beltran et al., 2017). Scale factor (SF) governs Δ.  
Depending on the number of input LR images, SR can be multi-
frame or single-frame. Figure 1 shows a functional classification 
of spatial domain SR algorithms depending on the image type 
(Nasrollahi and Moeslund, 2014; Fernandez-Beltran et al., 2017; 
Jiang, J. et al., 2020) 
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Figure 1. Functional Classification of Spatial Domain SR 

 
1.2 Choice of SR Algorithms for HSI SR and Their 
Evaluation 

It is not possible to acquire multiple images of the same scene in 
many exercises or it is costly and time-consuming. There exist 
many case studies of extending grayscale/red green blue (RGB) 
multi-frame SR for real-world HSI SR. However, these 
algorithms succeed only in spatial enhancement and the outputs 
may suffer from co-registration issues or partial preservation of 
spectral information.  
Multi-frame or single-frame methods designed specifically for 
HSI SR require spectral response functions for end member 
estimations or large amount of training data which may lack 
labelling. Moreover, they have a high computation cost owing to 
requirement of parallel processing routines. Their 
implementation is shown only on a few benchmark datasaets 
such as CAVE (Yasuma et al., 2010), Salinas (Plaza et al., 2005), 
and Pavia (Dell’Acqua et al., 2003).  
Dearth of open source real-world HR references makes the 
validation of the generated super-resolved outputs challenging 
(Ghamisi et al., 2017). Only spectral angle mapper (SAM) 
(Yuhas et al., 1992) is used to assess spectral quality during 
quality metric evaluations. No detailed spectral profile 
examinations have been done in existing literature to support the 
claim that grayscale/RGB single-frame SR algorithms do not 
consider the spectral content of the original HSI data during the 
SR output generation.  
Also, there exist applications where application of 
grayscale/RGB single-frame SR algorithms is economically 
feasible (Fernandez-Beltran et al., 2017). Therefore, there is a 
need to revisit use of single-frame SR in HSI and study effect of 
blur kernel on SR algorithm’s performance, which is largely 
absent in many case studies. 
 
1.3 Objectives 

The objectives of the present study are to 
• apply classic (grayscale/RGB) single-frame SR 

algorithms to real world HSI data 
• assess the performance of these algorithms under 

changing blur kernel parameters for different SF 
 

1.4 Study Area 

The area of investigation occupies an area of 38.8 square 
kilometres (sq. km.) in Ahmedabad, Gujarat, India. Figure 2 
shows its location. It is characterized by the densely settled 
walled city, lands of closed textile mills, well-planned 
commercial, residential and educational areas. The Sabarmati 
river is the major natural feature in the scene. 

 
Figure 2. Study Area Location 

  
2. MATERIALS AND METHODS 

2.1 Data Used 

Tables 1 and 2 present the sensor and scene specifications of the 
HSI data used in this study, respectively. 
  

Sensor Name Hyperion  PRecursore 
IperSpettrale della 
Missione 
Applicativa 
(PRISMA) 

Spectral Bands 
 
 
 
  

242 (70 bands in 
Visible and Near 
Infra-Red (VNIR) 
and 172 in Short 
Wavelength Infra-
Red (SWIR)) 
  

239 (66 bands in 
VNIR and 173 in 
SWIR) 

Spatial Resolution 30 m 30 m 
Wavelength 
Range 

400 - 1000 nm 
(VNIR)  
900 - 2500 nm 
(SWIR) 

400 – 1010 nm 
(VNIR) 
920 – 2505 nm 
(SWIR) 

Swath Width 7.5 km 30 km 
Spectral 
Resolution 

10 nm ≤ 12 nm 

Radiometric 
Resolution 

12 bit 12 bit 

Temporal 
Resolution 

16 days 29 days 

Table 1. HSI Sensor Specifications (Pearlman et al., 2001; 
Italian Space Agency, 2020) 

 
Sensor Name Hyperion  PRISMA 

Product Type L1T 
  

L2D 

Entity ID EO1H1490442002
308110PZ_1T 

PRS_L2D_STD
_202010050601
03_2020100506
0107_0001 
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Date of 
Acquisition 

04.11.2002 05.10.2020 

Scene Centre 
Latitude 

22°55'04.24"N 22° 58' 49.8"N 

Scene Centre 
Longitude 

72°31'44.09"E 72°33'57.24"E 

Radiometric 
Resolution 

12 bit 12 bit 

Temporal 
Resolution 

16 days 29 days  

Cloud Cover 0% 0.3438% 

Coordinate 
Projection System 
with Datum 

UTM Zone 43 N 
WGS 84 

Unknown WGS 
84 

Table 2. Scene Specifications 
 
2.2 Methodology 

2.2.1 HSI Data Pre-processing: For Hyperion, a square 
subset of 209 samples and 209 lines bounding the study area is 
extracted. Following this, zero, noisy and water absorption bands 
are removed leaving 128 bands in the dataset. Along track 
destriping is also done for the removal of bad columns, which 
arise due to calibration differences in temporal variation and 
response of Hyperion detector arrays (Han et al., 2002). 
Atmospheric correction by the Fast Line-of-sight Atmospheric 
Analysis of Hypercubes (FLAASH; Adler- Golden et al., 1999) 
provides accurate, physics-based derivation of apparent surface 
reflectance (Kruse et al., 2004). The surface reflectance values 
are scaled band-wise to the range of 0 to 1 through division by 
10000. 
The VNIR-SWIR stacked PRISMA data in Environment for 
Visualizing Images (ENVI) standard format is extracted using the 
R programming language package “prismaread” (Busetto  
and Ranghetti, 2020) along with scene metadata in separate files. 
It is co-registered with Hyperion using 1° affine transformation 
and spatial subsetted into a square patch of identical samples and 
lines. Bands with haziness, single and multiple columns of no 
data or very low radiometric accuracy, and pixels possessing a 
very low radiometric accuracy are removed and only 112 bands 
are remaining in the dataset.  
 
2.2.2 SR Algorithm Execution: The chosen classic SR 
algorithms: Iterative Back Projection (IBP) (Elad and Feuer, 
1996; Yang et al., 2014) and Gaussian Process Regression (GPR) 
(He and Siu, 2011) show outstanding performance in literature in 
terms of quick processing speed, visual appeal of the generated 
HR imagery and efficient extraction of spatial and spectral 
properties from the input data (Yang et al., 2014; Fernandez-
Beltran et al., 2017; Mishra et al., 2019). The SR algorithms are 
executed band-wise on a single machine with configuration: 
Random Access Memory (RAM) = 16 GB, Processing Speed= 
2.5 GHz, Central Processing Unit (CPU)= Intel Core i5-10300H 
to examine its calculation productivity. 
Single-frame IBP focusses on the iterative refinement of an initial 
guess of super-resolved image, i.e., reconstruction error between 
LR image and LR version of  super-resolved image is minimized 
throughout the iterative process. The iterations continue until the 
maximum number of iterations or a limit in the reconstruction 
error is reached. The parameters are: Backprojection Kernel 
Window = Gaussian, size dependent on standard deviation 
(sigma) = 0.1 – 2.1, iterations = 100, SF = 2, 3 and 4 
GPR is a hybrid framework consisting of two stages. In the first 
stage, the input LR image is bicubically interpolated to the target 

spatial resolution. Each pixel in the super-resolved output is 
predicted by that pixel’s neighbours in the interpolated output. 
The structural information defining the pixel’s neighbourhood is 
used for this purpose. In the second stage, the output obtained in 
the first stage is deblurred. The final super-resolved output with 
sharper edges is produced by learning from a training set of LR 
and HR image pairs.  This training set is obtained from the input 
LR image and the interpolated output. The parameters are: Patch 
size = 20 × 20, Overlapping Factor = 0.66, PSF = Gaussian, size 
= SF and calculated according to sigma, sigma = 0.1 – 2.1, SF = 
2, 3 and 4 
It is also assumed that the original HR image of the scene area is 
not accessible, and hence determination of  the optimal value for 
every parameter of each algorithm is not possible. 
 
2.2.3 Performance assessment of SR algorithms: The 
super-resolved image’s quality is assessed using 8 full-reference 
quality indices for every SF and changing blur kernel parameters. 
These metrics are: bias, cross-correlation (CC), difference in 
variance (DIV), error relative globale adimensionnelle de 
synthèse (ERGAS), entropy, root mean square error (RMSE), 
relative average spectral error (RASE), and universal image 
quality index (Q). Reader may refer to Vaiopoulos (2011) for 
more information on these indices.  
In the absence of a suitable HR reference image, reduced-
resolution protocol (Wald et al., 1997) is used. According to this 
protocol, original HSI dataset is the ground truth for SR product, 
assuming that the LR version of the SR product has as much 
resemblance as possible to the original HSI data. Considering the 
ill-posed nature of the SR problem (Lugmayr et al., 2022), 
uniform imaging model parameters are taken: a blur kernel 
window size calculated according to σ = 0.1 – 2.1 and scale factor 
= 2, 3 and 4  for generating the LR version of every super-
resolved output (Loncan et al. 2015). 
 

3. RESULTS AND DISCUSSION 

3.1 IBP 

Figures 3 to 10 show the effect of blur kernel size and standard 
deviation on IBP’s performance using RASE, Q, RMSE, 
ERGAS, E, CC, DIV and bias. 

 
Figure 3. Effect of Blur Kernel Width Using RASE on IBP’s 

Performance 
RASE figures lie between 0.82 – 8.02. Irrespective of SF, 
Hyperion’s RASE values are lower than PRISMA’s RASE 
values. For SF=2, there is a steep rise in RASE values from σ = 
0.5, size = 6 x 6 to the highest RASE at σ = 2.1, size = 16 x 16 
RASE values for x3 Hyperion and x4 PRISMA almost overlap 
each other until σ = 1.3. For each SF, lowest RASE exists for σ 
= 0.1, size = 4 x 4 in case of SFs 2 and 4 and size = 3 x 3 in case 
of SF = 3. 
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Figure 4. Effect of Blur Kernel Width Using Q on IBP’s 
Performance 
Q values are above 0.9 for each scenario. For x2 Hyperion and 
x2 PRISMA, there is a sharp decline from σ = 0.5 onwards 
whereas for other SFs the decline is not so sharp. The lowest 
decline is in case of SF=4 with SF=3 being intermediate of the 
two. Again σ = 0.1 shows the highest Q for each SF irrespective 
of the dataset. 

 
Figure 5. Effect of Blur Kernel Width Using RMSE on IBP’s 
Performance 
RMSE values are very low. For x2 Hyperion and x2 PRISMA, 
there is a steep rise as in the case of RASE from σ = 0.5 onwards.  
There is not much difference in the RMSE values for x3 
Hyperion and x4 PRISMA as the blur kernel parameters change.  
Again σ = 0.1 shows the lowest RMSE for each SF irrespective 
of the dataset. 

 
Figure 6. Effect of Blur Kernel Width Using ERGAS on IBP’s 
Performance 
Range of ERGAS values is almost half the range of RASE values 
irrespective of SF, kernel values and dataset. For x2 Hyperion 
and x2 PRISMA, there is a steep rise from σ = 0.5 onwards 
whereas for other SFs the rise is not so sharp. The lowest rise is 
in case of x4 Hyperion followed by x4 PRISMA and x3 
Hyperion. Again σ = 0.1 shows the lowest ERGAS for each SF 
irrespective of the dataset. 

 
Figure 7. Effect of Blur Kernel Width Using E on IBP’s 
Performance 
E values for both PRISMA and Hyperion show a similar pattern 
except the values being lower in case of Hyperion due to more 
number of bands (128) than the PRISMA data (112). Again σ = 
0.1 shows the highest E for each SF irrespective of the dataset. 

 
Figure 8. Effect of Blur Kernel Width Using CC on IBP’s 
Performance 
CC values are above 0.9 for each scenario. For x2 Hyperion and 
x2 PRISMA, there is a sharp decline from σ = 0.5 onwards 
whereas for other SFs the decline is not so sharp. The lowest 
decline is in case of SF=4 with SF=3 being intermediate of the 
two. Again σ = 0.1 shows the highest CC for each SF irrespective 
of the dataset 

 
Figure 9. Effect of Blur Kernel Width Using DIV on IBP’s 
Performance 
DIV values are positive, increasing with rising kernel size and σ. 
The sharpest rise is in the case of x2 PRISMA from σ = 0.5 
onwards. For x3 PRISMA the rise in values begins from σ = 0.4. 
x3 Hyperion and x4 PRISMA almost overlap each other with 
rising kernel size and σ. Again σ = 0.1 shows the lowest DIV for 
each SF irrespective of the dataset. 
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Figure 10. Effect of Blur Kernel Width Using Bias on IBP’s 
Performance 
Bias values are mostly negative, very small in absolute terms and 
tending towards 0 with rising kernel size and σ indicating 
similarity with the original data. Bias has a uniform value for x2 
Hyperion and x2 PRISMA irrespective of the changing blur 
kernel parameters. 
 
3.2 GPR 

Figures 11 to 18 show the effect of blur kernel size and standard 
deviation on GPR’s performance using RASE, Q, RMSE, 
ERGAS, E, CC, DIV and bias. 

 
Figure 11. Effect of Blur Kernel Width Using RASE on GPR’s 
Performance 
RASE figures fall between 4.04 – 8.84. Irrespective of SF, 
Hyperion’s RASE values are lower than PRISMA’s RASE 
values. For SF=2, there is a steep rise in RASE values from σ = 
0.8 size = 6 x 6 to the highest RASE at σ = 2.1 size = 16 x 16. 
For SF=3, RASE values rise from σ = 0.4, plateauing at σ = 1.5 
and then declining slightly with increasing kernel parameters. For 
each SF, lowest RASE exists for σ = 0.1, size = 4 x 4 in case of 
SFs 2 and 4 and size = 3 x 3 in case of SF=3.  

 
Figure 12. Effect of Blur Kernel Width Using Q on GPR’s 
Performance 
Q values are above 0.9 in each scenario. For x4 Hyperion and x4 
PRISMA, the values decline from σ = 0.5 to σ = 1.5 and remain 
unchanged with rising kernel parameters. For SF = 2, the values 
peak at σ = 0.6 and decline with rising kernel parameters. 

 
Figure 13. Effect of Blur Kernel Width Using RMSE on GPR’s 
Performance 
RMSE values are very low, though slightly higher than IBP. For 
x2 Hyperion and x2 PRISMA, there is a steep rise from σ = 0.7 
onwards. Again σ = 0.1 shows the lowest RMSE for each SF 
irrespective of the dataset 

 
Figure 14. Effect of Blur Kernel Width Using ERGAS on GPR’s 
Performance 
Steepest rise in ERGAS is for x2 PRISMA from σ = 0.6. x3 and 
x4 Hyperion do not show much rise in values. The rise in x4 
Hyperion begins from σ = 0.7, peaks at σ = 1.5 and reduces 
slightly, whereas in x3 Hyperion the rise happens from σ = 0.7 
and the rise continues with increasing kernel size and σ. x3 
PRISMA rises from σ = 0.5 to peak at σ = 1.1 and overlap with 
x2 Hyperion at σ = 1.2, then decrease till σ = 1.5 and rise slightly 
thereafter. 

 
Figure 15. Effect of Blur Kernel Width Using E on GPR’s 
Performance 
E values for both PRISMA and Hyperion show a similar pattern 
except the values being lower in case of Hyperion due to more 
number of bands (128) than the PRISMA data (112). Again σ = 
0.1 shows the highest E for each SF irrespective of the dataset 
Higher information preservation is visible in GPR compared to 
IBP. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-165-2022 | © Author(s) 2022. CC BY 4.0 License.

 
169



 

 
Figure 16. Effect of Blur Kernel Width Using CC on GPR’s 
Performance 
CC values are above 0.9 in each scenario. For x4 Hyperion and 
x4 PRISMA, the values decline from σ = 0.5 to σ = 1.5 and 
remain unchanged with rising kernel parameters. For SF = 2, the 
values peak at σ = 0.6 and decline with rising kernel parameters. 

 
Figure 17. Effect of Blur Kernel Width Using DIV on GPR’s 
Performance 
DIV values are positive, increasing with rising kernel size and σ. 
The sharpest rise is in the case of x2 PRISMA from σ = 0.5 
onwards. For x3 PRISMA the rise in values begins from σ = 0.4 
in a concave shape till σ = 1.1 and then rising slowly to match the 
DIV values of x2 Hyperion from σ = 1.8 onwards. x4 Hyperion 
and x4 PRISMA almost overlap each other with rising kernel size 
and σ. Again σ = 0.1 shows the lowest DIV for each SF 
irrespective of the dataset 

 
Figure 18. Effect of Blur Kernel Width Using Bias on GPR’s 
Performance 
Bias has a uniform value for x2 Hyperion and x2 PRISMA 
irrespective of the changing blur kernel parameters. A parabolic 
curve for x3 PRISMA, x4 PRISMA and x4 Hyperion. 
 

4. CONCLUSION 

Since this is an ongoing work, conclusions can be drawn only 
after compilation of the processing times and and use of peak 
signal-to-noise ratio (PSNR), SAM and structural similarity 
index measure (SSIM) for investigating impact of changing blur 
kernel parameters on SR algorithm’s performance. 
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