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ABSTRACT: 
 
Accurate, reliable, and cost-efficient approaches to forest monitoring are critical for sustainable forest management. The use of digital 
photogrammetry for tree height estimation is well-known among forest managers and remote sensing researchers. Satellite remote 
sensing has not been very successful in providing detailed and reliable estimates of tree height. Unmanned Aerial Vehicles (UAVs) 
are one of the latest remote sensing platforms to get forest attributes information at very high temporal and spatial resolution. This 
study assessed the potential of using digital aerial photogrammetry point clouds and UAV acquired high-resolution imagery to 
estimate red pine seedlings' height in Adirondacks, New York. Seedling's location, height, crown width, and diameter were measured 
from 16 fixed area sample plots, and multispectral imagery was acquired with DJI Matrice 100- UAV fitted with Micasense RedEdge-
M camera. UAV was flown under clear sky conditions at 93-meter height in a single grid pattern with 80% front and side overlap. 
PIX4D software was used to process UAV multispectral imagery and generate Digital Surface Model (DSM) and Orthomosiac at 
6.08 cm/pixel resolution along with 3D Digital Terrain Model (DTM). 3D densified point cloud layers of regeneration canopy were 
generated at an average density of 1.54 per m3. Seedlings were differentiated from bare ground cover through supervised image 
classification methods. Preliminary results of this study highlight that multispectral imagery acquired from UAVs has the potential 
to characterize and provide detailed structural information to estimate red pine seedlings' height. 

 
1. INTRODUCTION 

Forest monitoring activities such as field inventory are critical to 
sustainable forest management. One crucial element of this 
monitoring program is assessing regeneration or restoration 
success as the entire life cycle of a forest/timber stand is 
influenced by the extent of the stand's establishment. Also, the 
financial and ecological investment in plantations relies on 
monitoring and assessing these young regenerating stands. The 
primary purpose of a forest regeneration survey is to determine 
current stocking levels, potential future stand density, and spatial 
arrangement of the desired forest stand (Brand, 1988; Brand, 
Leckie, & Cloney, 1991; Gougeon & Leckie, 1998;). However, 
additional information on species, competition, and forest 
productivity can also be collected as part of a regeneration survey 
(Brand et al., 1991). Farmers, forest land planners and managers, 
woodlot industry, and natural resources management groups are 
some users of forest and natural resources inventory data. Timely 
and accurate assessment of regeneration is critical for landowners 
and foresters to make future stand management decisions 
(Matney & Hodges, 1991). Furthermore, effective silvicultural 
treatments such as pre-commercial thinning and replanting 
choices are dependent on stand stocking levels, health, and 
competing species abundance (Pouliot, King, Bell, & Pitt, 2002). 
 
The monitoring frequency of these young stands is dependent on 
the cost of field-based regeneration assessment methods and can 
result in poor stands with limited assessment frequency (Pouliot 
et al., 2002). Even though field-based measurements produce 
unbiased estimates of plant density over repeated sampling, 
spatial patterns characteristics such as site productivity, 
competing vegetation, and survival are not completely acquired 
during field-based measurements. Traditional regeneration 
assessment activities based on field sampling can be cost and 
time-prohibitive, prompting managers to seek alternatives such 
as reducing sample plots to accommodate cost and labor 
requirements (Green & Burkhart, 2020). Evaluating new 

methodologies to improve monitoring efficiency is an important 
and valued research activity. UAV are among the latest cutting-
edge geo-spatial technologies used to monitor and acquire 
information on forest attributes at the high spatial and temporal 
resolution to support decision making, increase timber farming 
efficiency and enhance profitability. Ease of flight mission 
planning, accessibility to remote areas, low operating costs, and 
time effectiveness of UAV applications allow users to conduct 
research periodically and frequently. The high-resolution 
imagery maximizes individual tree detection and measurements 
of canopy gaps and improves understory plant identification. 
 
Additionally, farmers and foresters can utilize UAV-derived 
imagery to perform stem counts early in the season and detect 
nutrient deficiency. Photogrammetric point clouds and plant 
height models will help determine plant height and estimate plant 
biomass. Multispectral bands can be used to detect a plant's 
chlorophyll content and assess the plant's health status.  
 
The goal of the study is to employ an unmanned aerial vehicle 
(UAV) to capture forest structure information in a young red pine 
plantation stand and support farmers and foresters in the 
decision-making by estimating the seedling heights. Specifically, 
young plants will be detected and mapped based on the imagery 
products derived from UAV, which will visualize plants and help 
understand the stands' current stocking level. Study sites include 
recently cut areas with red pine plantations in Adirondack, New 
York. 
 

2. METHODS 

2.1 Study area 

The study area is in Adirondack Park, New York (Figure 1). It is 
a 1.5-hectare red pine plantation area managed by the State 
University of New York (SUNY), College of Environmental 
Science and Forestry (ESF). The study site was harvested in 
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2009-10, and red pine plantation was done in 2020 with a seed 
tree treatment method where healthy and mature red pine trees 
were left to provide seed for regenerating new stand.   

 
Figure 1: Location of the study area 

 
2.2 Sampling design 

Field-based data collection involved remeasuring or creating a 
systematic grid of a minimum of sixteen 1/200th-acre fixed area 
plots. We adopted a random/systemic design where starting 
location was flagged with a line number and walked one chain in 
from the starting point. The closest tree within one chain was 
identified at the plot center so that we can avoid having gaps with 
no plantation in sample plots. We traveled along the same 
transect with assigned bearing and used tape as a guide for the 
centerline of the transect. The distance between each plot and 
transect line was set up to be one chain. We acquired data from 
16 sample plots.  
 
2.3 Field data collection  

The plot-centered plant is tagged with a line and plot number 
(Figure 2). The precise location of the plot center was recorded 
using the Trimble Geo XH 3000 global positioning system (GPS) 
unit (Figure 3). Every seedling/tree within each plot meeting 
minimum size criteria was tallied by species, diameter-at-breast 
(dbh), top height, and average crown width. The distance and 
azimuth of plants within the plot were measured from plot-
centered species to determine the spatial location of those plants. 
The diameter was measured at the plant Crown cover photo was 
captured at Jake's staff's height with a fisheye lens mounted on 
the cell phone (Figure 4). The foliage was categorized into ferns, 
shrubs, and herbaceous, and coverage was estimated through 
visual inspection.     
 

 
Figure 2: Plot centered plant with a tag 

 

 
Figure 3: Trimble Geo XH 3000 global positioning system 

(GPS) unit 
 
 

 
 

Figure 4: Crown cover photo taken with the fisheye lens 
mounted on a cell phone 
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2.4 UAV imagery acquisition  

DJI Matrice 100-UAV (Figure 5) equipped with Micasense 
RedEdge-M camera (mounted under the batteries), and Zenmuse 
X3 camera (mounted to front through 3-axis gimbal) was used 
for image collection. Pix4D mapper was used for planning UAV 
mission parameters such as flight speed, angle, and altitude. It 
was flown under clear sky conditions at a 93-meter height in a 
single grid pattern (Figure 6) with 80% front and side overlap. 
The acquired images were checked and transferred to the 
memory card in the field. 
 
The RedEdge camera consist of a five-sensor collection and 
measures Blue (center wavelength = 475 nm, bandwidth = 20 
nm), Green (center wavelength = 560 nm, bandwidth = 20 nm), 
Red (center wavelength = 668 nm, bandwidth = 10 nm), Near 
Infrared (NIR) (center wavelength = 840 nm, bandwidth = 40 
nm), and Red Edge (center wavelength = 717 nm, bandwidth = 
10 nm) respectively. Two ground control points were 
implemented in the study site.  
 

 
Figure 5: DJI matrice 100 

 

 
Figure 6: UAV flight path. 

 
2.5 UAV image processing 

Images acquired from the RedEdge camera were radiometrically 
utilizing the workflow developed by Micasense. We used 
PIX4DMapper to generate a point cloud, Digital Surface Model 
(DSM), and five separate reflectance orthomosaic.  
 
 

The image processing workflow started with initial processing in 
PIX4DMapper, where the software first computes key points on 
the images and utilizes these images to find matches between the 
images. 335 out of 375 images were calibrated with a median of 
10224.5 matches per calibrated image with a Ground Sampling 
Distance (GSD) of 6.08 cm. The total time required for initial 
processing was 3 minutes and 13 seconds. After initial 
processing, a text file with the spatial location of Ground Control 
Points (GCPs) was loaded in PIX4DMapper to geo-tagged the 
images. 2 GCPs were used for georeferencing, which were 
distributed inside the study area. The resulting Root Mean Square 
Error (RMSE) of the collected points was 0.04 meters.  
 
Final processing in PIX4DMapper included radiometric 
processing and calibration. The reflectance index for each five 
bands was verified and calibrated. Digital Surface Model (DSM) 
and Orthomosiac (Figure 7) were generated at 6.08 cm/pixel 
resolution along with the 3D Digital Terrain Model (DTM). 3D 
densified point cloud layers of regeneration canopy were 
generated at an average density of 1.54 per m3. The resulted point 
clouds were exported in LAS format.  
 

 
Figure 7: Orthomosiac generated at 6.08 cm/pixel resolution. 
 

3. RESULTS AND DISCUSSION 

3.1 Point clouds processing height estimation 

The resulted point clouds were processed using LAStools 
(Isenburg, 2019). The datasets were first classified into ground 
and non-ground and denoised using 'lasnoise.' The 
'lasground_new tool was used to classify dense point clouds into 
ground points with a step size of 10 m. Then, 'lasheight' tool was 
used to derive the normalized heights for each point. The 
normalized height point cloud was then processed in ArcGIS Pro 
software and converted into TIN format (Figure 8). The point 
cloud height ranged from 0.1 meters to 6.5 meters. Plants' heights 
were then derived by iterating through TIN and orthomosiac and 
converted into a point shapefile. These points were validated with 
field data.  
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Figure 8: Normalized point cloud converted to TIN. 

 
 

4. CONCLUSION AND FUTURE WORK  

This study utilized the field-based measurements and UAV-
derived point cloud to estimate red pine seedling's height in 
Adirondack, New York. Initial results look promising as we were 
able to classify point clouds into ground and non-ground and 
derived normalized point clouds for plants' height. Initial results 
show promise but require further investigation potential to serve 
as reference data for mapping, detecting, and estimating 
individual seedlings' height. Additionally, further investigation is 
needed to explore the possibility of machine learning and deep 
learning approaches in individual plant detection and height 
estimation. The author plans to continue with this study in the 
near future with advancements in point cloud processing, 
classification, and young plant height estimation. The point cloud 
data will be further analyzed through deep learning and machine 
learning algorithms.  
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