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ABSTRACT: 

Providing an accurate above-ground biomass (AGB) map is of paramount importance for carbon stock and climate change monitoring. 

The main objective of this study is to compare the performance of pixel-based and object-based approaches for AGB estimation of 

temperate forests in north-eastern of New York State. Second, the capabilities of optical, SAR, and optical + SAR data were 

investigated. To achieve the goals, the random forest (RF) regression algorithm was used to model and predict the AGB values. Optical 

(i.e. Landsat 5TM, Landsat 8 OLI, and Sentinel-2), synthetic aperture radar (SAR) (Sentinel-1 and global phased array type L-band 

SAR (PALSAR/PALSAR-2)), and their integration have been used to estimate the AGB. It is worth mentioning that the airborne light 

detection and ranging (LiDAR) AGB raster has been used as a reference data for training/testing purposes. The results demonstrate 

that the OBIA approach enhanced the RMSE of AGB estimation about 5.32 Mg/ha, 8.9 Mg/ha, and 5.29 Mg/ha for optical, SAR, and 

optical + SAR data, respectively. Moreover, optical + SAR data with the RMSE of 42.63 Mg/ha and R2 of 0.72 for pixel-based and 

RMSE of 37.31 Mg/ha and R2 of 0.77 for object-based approach provided the best results.    

1. INTRODUCTION

Besides being habitat for plants and animals, forests provide 

oxygen, wood, fuel, medicine, prevent soil erosion and sever 

floods (Simonian 1995). Forests play important role in global 

ecosystems. Forest management requires accurate, timely, 

consistent, and comprehensive monitoring (S. Li, Quackenbush, 

and Im 2019). In particular, forests are a crucial part of carbon 

cycle which can impact the climate change (Jackson et al. 2008). 

Above-ground biomass (AGB) is one of the key parameters for 

carbon stock calculations. Accurate AGB prediction provides 

useful information for carbon emission and sequestration 

assessment (Jackson et al. 2008).   

Forest AGB can be estimated by cutting and measuring the dry 

weight of the trees or applying allometric equations using the 

measured tree height or diameter at breast height (Silveira, Santo, 

et al. 2019). However, these techniques are destructive, 

laborious, time consuming, and practical for small regions. As a 

solution, remote sensing presents a non-destructive method for 

AGB estimation by using airborne or spaceborne optical and 

synthetic aperture radar (SAR) imagery (Dube et al. 2016; Issa et 

al. 2020). Although optical datasets provide valuable spectral  

information, they suffer from saturation issue and weather 

condition influences their quality. Saturation occurs when the 

pixels’ spectral reflectance value is not matched with the real 

reflectance in forested regions with dense canopy (Zhou et al. 

2016; Urbazaev et al. 2018). In comparison to optical data, SAR 

imagery are captured at longer wavelengths which makes them 

to be able to penetrate through forest canopy. SAR images are 

independent of weather conditions and they provide information 

about the physical structure of the trees (Berninger et al. 2018; 

Urbazaev et al. 2018). It is worth mentioning that SAR data may 

also be affected by saturation specially in dense forested areas 

(Urbazaev et al. 2018). Thus, many studies have recommended 

to use the combination of optical and SAR data to improve the 

results of AGB estimation (Boudreau et al. 2008; Karlson et al. 

2015; Dube et al. 2016; Berninger et al. 2018; Cao et al. 2018; 

Dang et al. 2019; Duncanson et al. 2020; Issa et al. 2020; C. Li, 

Li, and Li 2020). In this study, optical (i.e. Landsat 5 TM, 

Landsat 8 OLI, and Sentinel-2), synthetic aperture radar (SAR) 

(global phased array type L-band SAR (PALSAR/PALSAR-2) 

and Sentinel-1) datasets, and their combination was used to 
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examine the efficiency of different remote sensing sources. It is 

worth mentioning that airborne light detection and ranging 

(LiDAR) data was used to produce AGB rasters as reference 

maps.     

 

One of the crucial steps in estimation AGB is to find a well-suited 

algorithm. Generally, AGB can be estimated using statistical and 

mathematical regression models (Wu et al., 2016). Traditionally, 

multiple linear regression models are used to model the 

relationship between input predictors and AGB sample plots. 

Multiple linear regression model is easy to implement while it 

does not match with the remote sensing data as they are 

distributed non-linearly. Thus, recently, machine learning 

algorithms are being used to predict the AGB accurately. (Y. Li 

et al. 2020) have shown that decision-tree based models such as 

random forest (RF) provide promising results. Other studies have 

also used the RF regression algorithm for AGB estimation 

(Mutanga, Adam, and Cho 2012; Karlson et al. 2015; Dang et al. 

2019; Huang et al. 2019; Hudak et al. 2020).  

 

Feature extraction method is another parameter that influences 

the AGB predictions. Pixel-based technique is widely used while 

object-based image analysis (OBIA) has gained attention during 

recent years (Salehi, Daneshfar, and Davidson 2017). OBIA 

categorizes similar pixels into objects and can overcome the 

limitations of mixed pixels (Salehi et al. 2012). So far, two 

studies have focused on estimating AGB using an OBIA 

approach (Hirata et al. 2018; Silveira, Silva, et al. 2019). Hirata 

et al. (2018) used an OBIA and a multiple linear regression 

model for AGB estimation of seasonal tropical forests in 

Cambodia. Silveira et al. (2019) used the RF regression to model 

the AGB over mountainous Brazilian forest. These two studies 

have been focusing on AGB prediction of tropical forest, thus, 

this research focuses on temperate forests of northeastern New 

York State.      

 

The primary objective of this study is to compare pixel-based and 

object-based feature extraction approaches for temperate forest 

AGB estimation. Since RF model is capable of handling non-

linear datasets and it provides accurate estimations, we decided 

to model the AGB using the RF regression. The second objective 

is to investigate the potential of different remote sensing data 

such as optical and SAR data, separately. Third, the performance 

of the combination of optical + SAR data for AGB estimation 

was examined.                 

   

2. STUDY AREA AND DATASETS 

2.1 Study Area 

This study focuses on estimating forest AGB of two forest 

properties in the Adirondack Park located in the north-eastern 

New York State (Figure 1). Huntington Wildlife Forest (HWF) 

covers an area of 6,000 ha, and the elevation changes from 473 

m to 908 m above mean sea level. HWF is a temperate forest with 

a mean annual temperature of 4.4 ºC and mean annual 

precipitation of 1010 mm. Pack Demonstration Forest (PDF) 

which covers an area of 2,500 ha is located in the southern 

Adirondacks. PDF elevation changes from 204 m to 377 m above 

mean sea level, the mean annual temperature is 5.07 ºC, and the 

mean annual precipitation is 1158 mm.         

   

 

  

 

Figure 1. Location of the study area (Essex and Warren, NY). 

White circles indicate sample plots located in Huntington 

Wildlife Forest (HWF) and Pack Demonstration Forest (PDF). 

 

2.2 Field Inventory Data Collection  

Continuous Forest Inventory (CFI) field measurements were 

used as reference datasets for training/testing purposes. These 

datasets were collected by the State University of New York, 

College of Environmental Science and Forestry (ESF) during 

July and August of 2011 and 2013 in HWF and PDF, respectively 

(Breitmeyer et al. 2019). There are 288 sample plots in HWF 

with a radius of 16.02 m. CFI data over PDF contains 95 sample 

plots with the radius of 11.3 m. The AGB of the sample plots has 

been calculated using measured diameter at breast height (DBH) 

and species-specific Component Ratio Method (CRM) 

allometric equations (Woodall et al. 2011; Clough et al. 2018). 

AGB at HWF ranges from 0 to 433.18 Mg/ha with an average of 

183.43 Mg/ha while AGB at PDF ranges from 72.32 to 416.03 

Mg/ha with an average of 191.35 Mg/ha.        

 

2.3 Remote Sensing Data 

2.3.1 Airborne LiDAR: Airborne LiDAR data acquired over 

Warren, Washington, and Essex counties by New York State GIS 

program office (NYSGPO) between April 2015 and June 2015 

using the Leica Airborne Laser Scanner 70 (ALS70). This data 

contains a 2.5 point per meter squared LiDAR point cloud. In 

order to process the LiDAR data, first, raw point clouds were 

converted into height-normalized point clouds using a k-nearest 

neighbor imputation algorithm (k = 5). Then, height and intensity 

predictors were computed using the height normalized LiDAR 

data to create a 30 m grid cell dataset.       
 

Optical Data: For optical data, Landsat 5 TM, Landsat 8 

OLI/TIRS, and Sentinel-2 imagery in 2011, 2013, and 2016 were 

used, respectively. The Google Earth Engine (GEE) cloud 

platform was used to download and pre-process the imagery 

(Gorelick et al. 2017). First, the surface reflectance data of July 

and August for each year was collected. Second, spectral bands 

were extracted and some vegetation indices such as normalized 

difference vegetation index (NDVI), Soil Adjusted Vegetation 

Index (SAVI), Ratio Vegetation Index (RVI), normalized burn 

ratio (NBR), and normalized difference moisture index (NDMI) 

were calculated based on spectral bands. All input layers were 

resampled using bicubic interpolation and re-projected to 

NAD83 Conus Albers EPSG: 5070 coordinate system to be 

aligned with 30 m LiDAR grid cells.   
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2.3.2 SAR Data: Both L-band and C-band SAR data were 

used in this study to leverage the potential of structural 

information provided by these sensors to improve the accuracy 

of the AGB estimation model. First, global phased array type L-

band SAR (PALSAR/PALSAR-2), onboard the advanced land 

observing satellite (ALOS), yearly mosaic with 25 m resolution 

was utilized (Gorelick et al. 2017). In this research, the dual 

polarization (horizontal transmit/horizontal receive (HH) and 

horizontal transmit/vertical receive (HV) polarizations) yearly 

mosaic in 2011 and 2013 for HWF and PDF was utilized. 

Second, Sentinel-1 dual polarization (VV and VH) C-band data 

with 10 m resolution in 2015 was used. Then, we used a 

smoothing speckle filter in GEE to reduce the speckle noise (Lee 

and Pottier 2009). Finally, dual polarization backscatters were 

used to calculate span and band ratios.        

 

  

3. METHODOLOGY  

In this study, an RF machine learning model was used to estimate 

the AGB of HWF and PDF using the combination of optical and 

SAR data. In order to provide more training/testing samples for 

the RF model, we decided to use airborne LiDAR data to produce 

the AGB rasters and use them as reference data for pixel-based 

and object-based approaches. First, height and intensity 

predictors of airborne LiDAR data were used to generate the 

AGB raster of HWF and PDF using CFI plots as field 

measurements. Then, the generated AGB rasters were used as 

reference data for training/testing purposes. Finally, the results 

of both pixel-based and object-based models were compared 

using the integration of spaceborne optical and SAR data.   

  

3.1 Random Forest (RF) 

The RF regression model is an ensemble machine learning 

algorithm which combines a large set of regression trees 

proposed by Breiman (Breiman 2001; Zhou et al. 2016). The RF 

starts with bootstrapping samples that are randomly replaced 

within the training dataset. Then, a regression tree is fitted to each 

bootstrap sample. At each node, a subset of input predictors is 

randomly selected for binary partitioning (Zhou et al. 2016; 

Izquierdo-Verdiguier and Zurita-Milla 2020). The regression 

tree splitting method is based on the Gini Index. Finally, the 

predicted value is obtained by calculating the average of all the 

trees (Zhou et al. 2016; Izquierdo-Verdiguier and Zurita-Milla 

2020).   

 

3.2 LiDAR AGB raster as reference data 

Generally, machine learning algorithms require large amount of 

training data to perform better. To increase the number of 

training/testing samples, we used AGB rasters derived from 

airborne LiDAR predictors as reference datasets. Several studies 

used LiDAR-derived AGB maps as reference samples (Hirata et 

al. 2018; Hudak et al. 2020). The purpose was to include a full 

range of AGB values; thus, a stratified random sampling 

technique was used to generate training/testing samples from 

AGB rasters. Pixels of LiDAR AGB raster were sorted from 0 to 

maximum AGB with 5 Mg/ha bins. Then, 200 pixels/ objects 

were randomly chosen within each bin. One-half of samples were 

selected when the bin had less than 200 pixels/objects (Hudak et 

al. 2020). For the OBIA approach, the boundaries were overlaid 

on LiDAR-derived raster to calculate the mean AGB of the 

object. The reference samples were divided into 70% training 

and 30% testing samples. The performance of the model was 

evaluated using the root mean square error (RMSE) and R 

squared (R2) metrics.             

3.3 Object-based Image Analysis (OBIA) 

Recently, object-based approach is getting more attention in 

remote sensing applications (Blaschke 2010). While pixel-based 

approach considers each pixel separately, OBIA categorizes 

pixels with similar spectral reflectance into objects (Addink and 

Coillie 2010). OBIA is capable of reducing mixed pixels issues 

by clustering similar pixels (Salehi et al. 2012). In this study, we 

used the simple non-iterative clustering method in GEE (Achanta 

and Susstrunk 2017) to segment forest canopies in HWF and 

PDF. SNIC segmentation parameters (i.e. size, compactness, 

connectivity, neighborhoodSize, and seeds (Tassi and Vizzari 

2020)) were selected based on trial and error and size of objects. 

The SNIC parameters were set as follows: size=5, 

compactness=0.1, connectivity=8, neighborhoodSize=60, and 

seeds=10. Mean, variance, and some other gray level co-

occurrence matrix (GLCM) features such as angular second 

moment (ASM), contrast, entropy, and homogeneity were 

calculated as input predictors.   

 

4. RESULTS AND DISCUSSION  

The results of the RF model for optical, SAR, and optical + SAR 

data is listed in Table 1 for both pixel-based and object-based 

approaches. As Table 1 shows, the OBIA outperforms the pixel-

based model in all datasets. Since OBIA segments pixels into 

objects, mixed pixels issue is mitigated resulting in reducing 

prediction errors. Object-based approach improved the R2 from 

0.72 to 0.77 for optical imagery, 0.61 to 0.67 for SAR imagery, 

and 0.73 to 0.78 for optical + SAR data in comparison to the 

pixel-based approach. Other studies also have proven that the 

OBIA improves the results of AGB predictions (Hirata et al. 

2018; Silveira, Silva, et al. 2019). Although OBIA provides 

better results, finding the appropriate parameters and optimum 

objects are the challenges. Thus, in this study, a trial and error 

method based on the RMSE metric and the objects’ shape was 

used to select the best objects.  

 

As shown in Table 1, in both pixel-based and object-based 

approaches, optical + SAR data provides the best results by 

improving the RMSE and R2 values. Then, optical and SAR data 

are in the second and third places, respectively. It can be 

concluded that spectral and structural information provided by 

the combination of optical and SAR data improves the AGB 

estimation. 

 

Optical datasets have been widely used in some studies for forest 

AGB estimation (Singh et al. 2012; Zhang et al. 2019; Li et al. 

2020). Although optical imagery provide valuable spectral 

information, saturation and weather conditions limit their 

capabilities. Thus, other studies have used SAR data to overcome 

the limitations of optical imagery (Saatchi 2019). In addition, 

SAR signals are more sensitive to geometrical and physical 

characteristics of forest canopies. It is worth noting that SAR 

data may suffer from saturation depending on the wavelength 

and the forest canopy density (Zhou et al. 2016; Saatchi 2019). 

Therefore, some studies have been focusing on combining 

optical and SAR data to enhance the AGB estimation (Boudreau 

et al. 2008; Karlson et al. 2015; Dube et al. 2016; Berninger et 

al. 2018; Cao et al. 2018; Dang et al. 2019; Duncanson et al. 

2020; Issa et al. 2020; C. Li, Li, and Li 2020). This study also 

emphasizes the importance of the integration of optical and SAR 

data for improved AGB estimation.         
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 Pixel-based  Object-based  

Data 
RMSE 

(Mg/ha) 
R2 

RMSE 

(Mg/ha) 
R2 

Optical 

imagery 
42.63 0.72 37.31 0.77 

SAR 51.23 0.61 42.33 0.67 

Optical + 

SAR 
40.11 0.73 34.82 0.78 

Table 1. Comparison of pixel-based and object-based AGB 

estimation in HWF and PDF forests using the RF model for 

optical, SAR, and optical + SAR data. 

 

Figure 2 shows the comparison between the RMSE values of 

pixel-based and object-based approaches for optical, SAR, and 

optical + SAR data. The OBIA approach enhanced the RMSE of 

AGB estimation about 5.32 Mg/ha, 8.9 Mg/ha, and 5.29 Mg/ha 

for optical, SAR, and optical + SAR data, respectively.    

 

 

Figure 2. Comparison the RMSEs of pixel-based and object-

based approaches for optical, SAR, and optical + SAR data.  

 

  

5. CONCLUSION  

This study compared the results of AGB estimation for pixel-

based and object-based approach using optical, SAR, and optical 

+ SAR data, separately. The RF regression model was used to 

predict the AGB of HWF and PDF temperate forests in north-

eastern New York State. In addition, multiple freely available 

optical (Landsat 5TM, Landsat 8 OLI, and Sentinel-2) and SAR 

(Sentinel-1 and global phased array type L-band SAR 

(PALSAR/PALSAR-2) data, and their combination were 

utilized. According to results, the object-based approach 

provided the best results regardless of datasets. Moreover, the 

combination of optical and SAR data enhanced the AGB 

prediction in both pixel-based and object-based approaches.           
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