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ABSTRACT: 
The accelerated warming conditions of the high Arctic have intensified the extensive thawing of permafrost. Retrogressive thaw slumps 
(RTSs) are considered as the most active landforms in the Arctic permafrost. An increase in RTSs has been observed in the Arctic in 
recent decades. Continuous monitoring of RTSs is important to understand climate change-driven disturbances in the region. Manual 
detection of these landforms is extremely difficult as they occur over exceptionally large areas. Only very few studies have explored 
the utility of very high spatial resolution (VHSR) commercial satellite imagery in the automated mapping of RTSs. We have developed 
deep learning (DL) convolution neural net (CNN) based workflow to automatically detect RTSs from VHRS satellite imagery. This 
study systematically compared the performance of different DLCNN model architectures and varying backbones. Our candidate CNN 
models include: DeepLabV3+, UNet, UNet++, Multi-scale Attention Net (MA-Net), and Pyramid Attention Network (PAN) with 
ResNet50, ResNet101 and ResNet152 backbones. The RTS modeling experiment was conducted on Banks Island and Ellesmere Island 
in Canada. The UNet++ model demonstrated the highest accuracy (F1 score of 87%) with the ResNet50 backbone at the expense of 
training and inferencing time.  PAN, DeepLabV3, MaNet, and UNet, models reported mediocre F1 scores of 72%, 75%, 80%, and 81% 
respectively. Our findings unravel the performances of different DLCNNs in imagery-enabled RTS mapping and provide useful 
insights on operationalizing the mapping application across the Arctic. 

1. INTRODUCTION

The Arctic is going through rapid changes in recent years. The 
temperatures in the region are rising at two to fourfold the global 
average (Screen, 2010). Due to the warming Arctic, the 
occurrence of permafrost disturbances, such as retrogressive 
thaw slumps (RTSs) has increased (Lants 2008). It is important 
to perform continuous monitoring of these disturbances to 
evaluate the impact on the Arctic environment. However, 
monitoring these disturbances is difficult in the Arctic compared 
to other parts of the world due to extreme weather, remoteness, 
and logistical challenges.  
RTSs are thermokarst features created by the rapid thaw of ice-
rich permafrost on slopes of permafrost. An active thaw slump 
consists of an exposed headwall that defines the upslope 
boundary of the RTS.  Below the headwall, there is a scar zone 
consisting of muddy exposed soil. The materials in the scar zone 
can move downslope by creating a tongue-like shape at the other 
end of the RTS (Figure 1).   

Figure 1. Retrogressive thaw slump headwall, scar zone, and 
debris tongue. 

RTSs impact infrastructure, and aquatic and terrestrial 
ecosystems (Kokelj et al. 2013). Sediment and solutes released 
by RTS alter the properties of soils and surface waters. A mass 
movement of sediments and runoff can change the turbidity of 
adjacent rivers, lakes, and coastal environments. (Segal, 2015)  

There are many attempts have been made to map RTSs in the 
Arctic region. Most of the mapping has been done using remote 
sensing images with manual techniques. There are only a few 
attempts have been made to automatically map RTSs using 
remote sensing images. Huang et al 2020 used Planet CubeSate 
images of 3m resolution to map RTSs in Tibetian Platue with 
DeepLabV3+. Recently Nitze et al. 2022 utilized PanetScope 
satellite imagery of 3.15m resolution to map RTS using UNet and 
UNet++. Witharana et. al 2022 employ high-resolution satellite 
images of 0.5m resolution to detect RTS using UNet. In that, they 
analyze the effect of different image tile sizes and spatial 
resolutions on the deep learning model prediction performances. 

The morphometric features of RTSs (headwall, scar zone, and 
debris tongue) are well suited to be exploited with machine/deep 
learning algorithms. We use Deep Learning Convolutional 
Neural Networks (DL-CNN) to automatically detect RTSs. The 
main objective of this study is to investigate how different DL-
CNN networks perform on RTSs detection using very high-
resolution satellite imagery. Based on five candidate DL-CNN 
architectures, we systematically compared their training and 
detection performances.  

2. METHODS

2.1 Mapping of RTS using satellite images 

We used a transfer learning strategy to train the 
candidate DL-CNNs. In transfer learning, we have 
two stages. In the first stage, we use backbone CNN 
and in the second stage, we use classifier network. 
Figure 2 shows a schematic diagram for this 
approach. The backbone CNN is used to extract 
features from the images. The backbones of the 
networks have been pre-trained on ImageNet 
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datasets. Therefore, we can use a small number of 
samples to train the CNN.  The extracted features are 
used to segment the RTSs in satellite images. We 
use different CNN networks for the segmentation of 
RTSs.  
 
 

 
 
 
Figure 2. Simplified schematic diagram of transfer learning in 
convolutional neural networks. (Imagery © 2016 DigitalGlobe, 

Inc). 
 
We tasked three convolutional backbone networks, 1) ResNet50, 
2) ResNet101, and 3) ResNet152 (He, 2016) in this study. We 
used the pre-trained weights on the ImageNet dataset and froze 
weight values while training on our custom RTS dataset.  Our 
comparative analysis entailed five semantic segmentation 
algorithms: UNet (Ronneberger, 2015), Pyramid Attention 
Network (PAN) (Li, 2018), Multi-scale Attention Net (MANet) 
(Fan, 2020), and UNet++ (Zhou, 2018). Table 1 shows the 
number of total parameters and the number of trainable 
parameters in each network.   
 
 

Model Backbone Number of 
parameters 
(millions) 

Number of 
trainable 
parameters 
(millions) 

UNet Resnet50 32M 9M 
 Resnet101 51M 9M 
 Resnet152 67M 9M 
PAN Resnet50 24M 1M 
 Resnet101 43M 1M 
 Resnet152 58M 1M 
MANet Resnet50 147M 123M 
 Resnet101 166M 123M 
 Resnet152 182M 123M 
DeeplabV3 Resnet50 26M 3M 
 Resnet101 45M 3M 
 Resnet152 61M 3M 
UNet++ Resnet50 48M 25M 
 Resnet101 67M 25M 
 Resnet152 83M 25M 

Table 1. Comparison of the size variation of candidate DL-CNN 
models 
 
 
2.2 Model Training 

The RTS modeling was conducted based on the high res satellite 
imagery from Banks Island and Ellesmere Island in north Arctic 
Canada (Figure 3). We selected 12 WorldView-2 satellite images 
from Banks Island and 14 WorldView-2 satellite images from 
Ellesmere Island to generate hand-annotated RTS training data. 
Image scenes were acquired during July - Aug at 0.5m spatial 
resolution with 4 spectral channels (red, green blue, and near 
infra-red). Pansharpened and orthorectified imagery were 

provided by the Polar Geospatial Center, University of 
Minnesota.  
 

 
 

Figure 3. Selected study areas from Banks Island (left) and 
Ellesmere Island (right) in Canada. 

 
For the model training, 475 image tiles (2048 x 2048 pixels or ~ 
1km x 1km on the ground) were selected from each of the study 
sites shown in Figure 3.  The dataset was split into 80%, 10%, 
and 10% for training, validations, and testing, respectively.  
 
We utilized Adam optimization algorithms with a learning rate 
of 10-4 for the first 25 epochs and 10-5 for the rest of the epochs. 
We used dice loss for calculating training and value loss while 
training. All models were trained across 100 epochs. We 
employed 3 augmentations (horizontal flip, vertical flip, and 
random 90-degree rotation) to the datasets with 50% probability 
in each epoch. 
 
Figures 4-8 show the training F1 scores for different CNN 
architectures coupled with three backbone networks 
ResNet50(blue), ResNet101(orange), and ResNet152(green). 
Figure 4 shows the F1 scores for MANet. All backbone networks 
achieved 97% accuracy at the end of epoch 50.  Figure 5 shows 
the F1 scores for the DeepLanV3 network. Here all three 
backbones reported 96% accuracy at the end of the training.  
Training accuracy for the UNet model is shown in Figure 6. At 
the end of the training, all three backbones achieved 97% 
accuracy. Figure 7 shows the training F1 scores for the PAN 
network. All three backbone networks scored 96% accuracy.   As 
seen in Figure 8, UNet++ with Resnet50 showed elevated F1 
scores (at epoch 50 it's around 98%) compared to the other two 
backbones. 

 
 

Figure 4. F1 score for training with ResNet50(blue), 
ResNet101(orange), and ResNet152(green) for MANet 

network. 
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Figure 5. F1 score for training with ResNet50(blue), 

ResNet101(orange) and ResNet152(green) for DeepLabV3 
network. 

 

 
Figure 6. F1 score for training with ResNet50(blue), 

ResNet101(orange) and ResNet152(green) for UNet network. 
 

 
 

Figure 7. F1 score for training with ResNet50(blue), 
ResNet101(orange) and ResNet152(green) for PAN network. 

 
Figure 8. F1 score for training with ResNet50(blue), 

ResNet101(orange) and ResNet152(green) for UNet++ 
network. 

 
Based on the training accuracy budget (Figures 4-8), we selected 
the UNet++ model with the ResNet50 backbone as our best-
performing model to detect RTSs in the study area. Automated 
detection of RTSs using high-resolution imagery is a challenging 
task. A typical 0.5m resolution image scene is about 20 km x 20 
km in size and contains about 1.6 billion pixels. An image scene 
as it is does not fit the GPU memory, therefore we need to split 
the image scene into small tiles. As shown in Figure 9, we first 
partitioned the image into  2000 x 2000 pixel tiles. Then we feed 
these tiles into the trained DL-CNN model for predictions.  

 
 

 
Figure 9. Semantic diagram of high-resolution satellite imagery 

workflow. 
 
We used NVIDIA A100 GPU with 40Gb memory to run our DL-
CNN models. The different models were executed using the 
PyTorch Segmentation Models library (Yakubovskiy 2019). We 
further utilized other libraries such as  OpenCV for image 
processing,  GDAL for accessing satellite images, and 
Albumentations for image augmentation.    

 
 

3. RESULTS 

 
3.1 Model Comparison 

ResNet50 backbone network consistently performs better in the 
training stage according to Figures 4-8. Figure 10 exhibits CNN 
model performance with respect to the test dataset. Here we have 
chosen ResNet50 which was the best performing network for 
proceeding CNN model comparison. Accuracy scores from the 
comparative model analysis (Figure 10) elected the UNet++ 
model as the best contender The lower F1 scores were reported 
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by the DeepLab V3. The MANet and the UNet demonstrated the 
second and third best performances, respectively.  
 

Figure 10. F1 score for training with ResNet50 with different 
DL-CNNs. DeepLabV3(blue), MANet(orange), PAN(green), 

UNet(red), UNet++(purple) 
 

Figure 11 shows the training times for each model combination. 
The UNet++ model is slower compared to the other models. 
DeepLabV3 was the fastest among the candidate networks. The 
use of a lighter Resnet50 is faster in training than a larger 
backbone of Resnet152. Both PAN and UNet exhibited similar 
training time to that of DeepLab V3.  
 
 

 

Figure 11. Time taken for training for different models with 
different backbones combinations.  

 
 
 
Figure 12 depicts the F1 scores pertaining to the test data. The 
UNet++ outperforms the other CNN models on the test dataset. 
UNet++ with ResNet50 showed the highest F1  and PAN 
network with ResNet101 showed the lowest F1 score. ResNet50 
backbone network consistently showed better F1 scores in all 
combinations. 
 
 

 
Figure 12. Reported F1 scores on test data   for models trained 

with  ResNet50(blue), ResNet101(orange), and 
ResNet152(green) for different DL-CNNs. 

 
 
 
Figure 13 shows three examples of detected RTSs and ground 
truth annotations. Each row shows the image tile (left), ground 
truth (middle),  and predicted RTSs (right), respectively. Visual 
inspections revealed that the UNet++ DL-CNN was able to 
accurately detect and delineate RTSs. Some miss detections were 
observed when the RTSs are smaller in size (see Figure13, last 
row).  
 
 

 

 

 
Figure 13. Three image sample tiles of the test dataset and the 

ground truths and predicted masks of those images. (Imagery © 
2016 DigitalGlobe, Inc). 

 
Among different CNN model-encoder combinations, the 
UNet++ model with the Rsetnet50 backbone demonstrated the 
highest accuracy (F1 score of 87%) at the expense of training and 
inferencing time. The PAN, DeepLabV3, MaNet, and UNet, 
models reported mediocre F1 scores of 72%, 75%, 80%, and 81% 
respectively. 
 
 
3.2 RTS Prediction 

We have applied the trained UNet++ model with the Reset50 
backbone on satellite imagery from Banks Island and Ellesmere 
Island Figure 14(a) shows example detection in Banks Island. 
Over 90% of the RTS were correctly detected by the UNet++ 
with the ResNet50 backbone. Figures 14(b) show the zoomed-
inviews of example areas. The trained model was able to detect 
the RTSs in Banks Island accurately. Figures 15(a) show the 
example detection in Ellesmere Island. Similar to Banks Island, 
over 90% of the RTS were correctly detected by the UNet++ with 
ResNet50 backbone. Figures 15(b) shows the zoomed-in view of 
example detections.  
 
In all the cases the RTS headwall was correctly detected. In some 
cases, the RTS only in the scar zone (refer to an anatomy of RTS 
shown in Figure 1) was detected. In other instances the debris 
tongue was also included, however, it was not consistent across 
all predictions.  
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Figure 16 demonstrates the potential of multi-temporal RTS 
detection. Figure 16(a) and (b) correspond to images acquired in 
2015 and 2019, respectively. The green outline represents 
prediction based on the 2015 image and the yellow outline 
represents the RTS detection based on the 2019 image.  As shown 
in the figures, we can clearly see the upward movement of the 
headwall in 2019. The 2015 scar zone had been stabilized by 
2019. This example elucidates the potential usage of the DLCNN 
approaches for monitoring RTS activity using high-resolution 
satellite imagery. Because of the sub-meter scale spatial 
resolution, it is possible to differentiate RTS’ morphometric 
variations. 
 

4. CONCLUSION  

The central goal of this study was to understand the performances 
of different deep learning CNN algorithms pertaining to 
automated recognition of retrogressive thaw slumps from very 
high spatial resolution commercial satellite imagery.  Our 
comparative analysis entailed five DL-CNN with three encoders 
(backbone) types. 
 
Our findings unravel the performances of different DLCNNs in 
imagery-enabled RTS mapping and provided useful insights on 
operationalizing the mapping application over large areas. We 
also demonstrated that our method can be used to find temporal 
changes in RTS accurately. 
The headwalls of RTS have been detected in all the predictions.  
But the detection of scar zone and debris tongue boundaries were 
not consistent throughout the region. One reason for this can be 
that there is no clear definition to annotate debris tongue and scar 
zone. When we closely inspected RTS annotations from other 
studies, it was evident that the annotation process lacks formality. 

a) 

 
b)  

 
 

    

  
 
Figure 14. (a) Model application in Banks Island. (b) Zoomed-
in views of the detections. (Imagery © 2016 DigitalGlobe, Inc). 

a) 

 
b)  

  
    

  
 
Figure 15. (a) The model application is Ellesmere Island. (b) 
Zoomed vies of the detections. (Imagery © 2016 DigitalGlobe, 
Inc). 
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Among many, some of the important questions that arise in the 
annotation process include, should annotation include debris  
flow? deposition area? if those should be included how far away 
from the headwall?. In some instances, debris flow is way more 
extensive than the RTS itself.  So consistent agreement should be 
prepared for consistent detection of RTS using deep learning 
models. 
The UNet++ model performs well in our study candidate study 
sites. But to employ RTS detection in a circumpolar mapping 
context,   one has to test the selected model in other areas of the 
Arctic. This requires a systematic model transferability analysis. 
Our study area is one of the more challenging to be used in DL-
CNN models as there is no visible vegetation. With vegetation 
cover, the RTS stands out.  Thus, we think that the inclusion of a 
substantial amount of training data representing the heterogeneity 
of multiple permafrost landscapes  would elevate the 
interoperability of the UNet++ model. 
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Figure 16. Multi-temporal RTS detection. (a) and (b) 
represent satellite images acquired in 2015 and 2019, 
respectively. The green outline corresponds to the RTS 
detection based on the 2015 image whereas the yellow 
outline corresponds to the RTS detection based on the 2019 
image. (Imagery © 2016 DigitalGlobe, Inc).  

2015 
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