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ABSTRACT:  

 

Food security is highly dependent on three aspects, namely food availability, food access, and food utilization. The availability aspect 

depends on food supply which is identical to agricultural productivity. West Java Province is the third national rice producer with 

16.6%, but West Java Province is the most extensive rice consumer, around 21.1% of the total national rice consumption. Agricultural 

productivity can decline due to natural hazards such as floods and droughts. Monitoring floods and droughts in paddy fields are 

necessary to prevent decreased agricultural productivity. This study aims to monitor the rice fields from the dangers of flooding and 

drought every month. Agricultural hazard monitoring is divided into two parameters, namely static parameters and dynamic 

parameters. Dynamic parameters are observed every month so that the hazard index is generated on a monthly scale. GIS and Remote 

sensing data are integrated to perform agricultural hazard modelling. Furthermore, this agricultural hazard modelling results will be 

strengthened by using big to provide information about an almost real-time event that can be accessed through the Application Program 

Interface (API) service. This study uses a data mining system from Drone Emprit that performs data mining on Twitter and news 

portals with machine learning technology (probabilistic classifier) and Natural Learning Process. The results obtained are around 

15,000 data from January 1 to November 1, 2021, and 37.9% of them are identified by location based on the city or district level in 

West Java Province. It is hoped that the policy-maker can consider the area of agricultural land that requires assistance to increase 

productivity and plan a policy to support agriculture in West Java in the future. 

 

 

1. INTRODUCTION 

Food is a basic human right that must be fulfilled (Perum 

BULOG, 2022). According to Indonesian Law No. 18 of 2012, 

Food Security is the condition of fulfilling food for the state to 

individuals, which is reflected in the availability of sufficient 

food, both in quantity and quality, safe, diverse, nutritious, evenly 

distributed, and affordable. If food availability is smaller than the 

need, it will undoubtedly impact food imbalances that can later 

trigger a food crisis. The food crisis is a widespread food scarcity 

in communities in one region caused by several things, such as 

food distribution difficulties, population explosions, and crop 

failures caused by climate change (Agriculture Organization of 

the United Nations, 2010; Government of Indonesia, 2012; IGI 

Global, 2014). 

 

In developing countries, food crises are affected mainly by 

population increases and climate change. According to the FAO, 

the world's population will grow by 34% from the current 6.8 

billion to 9.1 billion by 2050, where the population increase is 

mainly occurring in developing countries today (FAO, 2009) . On 

the other hand, agricultural productivity growth only reaches 1–

2% per year (Bourne, 2009). This is because most of the world's 

agricultural land is degraded by 33%, so there is little chance to 

expand agricultural areas. Of course, this condition can have 

implications for declining food production. Later, the IPCC 

stated that climate change would consistently affect food 

production in regions with low latitudes (Porter et al., 2015).  

Climate change that reaches extreme severity can cause natural 

disasters such as floods, droughts, tropical storms, heat waves, 

and forest fires, significantly impacting agricultural productivity. 

Drastic climate change is estimated to have the most impact on 

food in developing countries (World Bank, 2010). In developing 

countries, millions of people are still dependent on agriculture so 

it will be vulnerable to a food crisis. Seeing the dependence of 

agricultural productivity on the climate is quite significant, 

climate disasters will be one of the factors that must be 

considered its effect on agricultural productivity. In this study, 

disasters that will be focused on the influence of agricultural 

productivity are floods and droughts in line with the FAO report, 

which states that floods and droughts have an impact of losses 

and damage of 83% as a result of agricultural disasters in 

countries where agriculture is one of the main economic drivers 

(FAO, 2017).Thus, the relationship between floods and droughts 

to productivity is significant. 

 

There are various technologies used to monitor agricultural 

productivity, one of which is big data technology. Big data 

technology can capture data from multiple sources related to 

agriculture. This data capture can be done with various 

technologies such as remote sensing with satellite imagery, 

drones, radar, or even smartphones (Islam Sarker et al., 2019) 
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The basis of big data technology itself is spatial data (Wang & 

Yuan, 2014), which is data that shows the geographical location 

of an object in the real world. To combine big data with spatial 

then the realization of spatial data mining, one of its branches is 

geographic data mining. Geographic data mining discovers new 

knowledge from extensive geospatial data (Rajesh, 2011; 

Setiyono & Mukhlash, 2005). In addition to data related to spatial 

data, at this time, big data is widely associated with non-spatial 

data obtained from news and social media. 

 

The rapid development of technology and information directly 

impacts the use of social media in people's lives. Based on data 

from "Hootsuite, We Are Social," the number of social media 

users in January 2021 in Indonesia is estimated to be 170 million 

population out of a total of 274.9 million total population. There 

was an increase of 6.3% compared to the previous year. 

YouTube, WhatsApp, Instagram, Facebook, and Twitter are the 

five most used social media in Indonesia. Social media plays an 

essential role in community life as a manifestation of freedom of 

speech. Information about events and issues in the community 

can be found on social media through official accounts and 

personal accounts. This allows for interaction between accounts 

and increases awareness of specific problems in society. 

Extracting data through social media, otherwise known as social 

media mining, is very important for stakeholders in decision-

making. In this study, social media data mining will obtain 

geographically based social media data related to food production 

and problems. With the association between spatial data and non-

spatial data, various information can be found in the same spatial 

data so that the information obtained will be more detailed. 

 

There have been several previous studies related to this research. 

The first is research conducted by (Weerasekara et al., 2021) 

which models the multi-hazard hazard dangers of floods, 

droughts, strong winds, and landslides on rice productivity with 

a stochastic approach. The second is a study conducted by 

(Pratiwi et al., 2020) which modelled the multi-hazards of floods 

and droughts on rice fields in Central Java in 2014 - 2018. The 

study (Pratiwi et al., 2020) used statistical data from historical 

data from official government documents. The third is research 

(Chen et al., 2018) which models the multi-hazards of floods and 

droughts against agricultural production with a Bayesian 

hierarchical approach. 

 

The study aimed to model the dangers agriculture poses to rice 

fields by integrating remote sensing data. Furthermore, the 

modelling results will be validated using geographic and social 

media data mining using Drone Emprit API. With this study, it is 

hoped that it can be used as a solution in monitoring agricultural 

productivity comprehensively as an effort to support the 

Sustainable Development Goals (SDGs) in meeting the number 

two goal of ending hunger, achieving better food security and 

nutrition, and supporting sustainable agriculture. 

 

2. METHODOLOGY 

2.1 Area Study 

This research area of study is in West Java. As explained earlier 

in the study, this study has become significant to be carried out 

in West Java because West Java is a national rice barn area. There 

are many agricultural threats in West Java. 

 
 Figure 1. Study area 

 

2.2 Data 

The data used in this study consists of 8 data, including Digital 

Elevation Model (DEM), river network, precipitation, land use-

land cover (LULC), soil moisture, watershed, Keetch-Bryam 

Drought Index (KDBI), and Normalized Difference Vegetation 

Index (NDVI) data. A complete explanation related to the source, 

temporal, resolution, and reference of each data can be seen in 

table 1. The processing is grouped into flood hazard modelling 

and drought hazard modelling. The spatial data used in this study 

are raster data and vector data. 

 

Raster data used are DEM, precipitation, LULC, soil moisture 

KBDI and NDVI data. DEM is used to provide altitude and 

elevation information in the study area. Precipitation is used to 

obtain rainfall information. LULC data is used to get rice field 

cover which is the focus of the area to be studied in this study. 

Soil moisture is used to obtain soil moisture information in the 

study area, where the higher the soil moisture, the higher the 

groundwater supply. KDBI is a unity index of fires to assess 

forest fire hazards. NDVI is an index that shows the greenish 

level of vegetation. The value of NDVI always ranges between –

1 to +1; if the value of NDVI is less than equal to 0, then it is 

classified as non-vegetation, whereas if more than 0 will be 

classified as vegetation which is getting closer to 1, then 

vegetation has a high level of greenery. At the same time, the 

vector data used in this study are river network and watersheds 

data. River network data is used to determine the distance of the 

river to the rice field area, while watershed data is used to 

determine the density of river flow in a watershed. These data 

will be used as parameters in modelling flood and drought 

hazards. 
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No Data Temporal Resolution Reference 

1 DEM by NASA / 

USGS / JPL-Caltech 

2000 30 m (Farr et al., 

2007) 

2 River by Geospatial 

Information Agency 

2017 1:25.000 (Geospatial 

Information 

Agency, 

2017) 

3 Precipitation by 

UCSB/CHG  

 5566 m (Funk et al., 

2015) 

4 LULC by Regional 

Planning Agency 

2021 30 m (Regional 

Planning 

Agency, 

2020) 

5 Soil Moisture by 

NASA GSFC 

2021 10 km (Mladenova 

et al., 2020) 

6 Watersheds by 

Directorate of 

Planning and 

Evaluation of 

Watershed Control 

2018 1: 250.000 (Planning 

and 

Evaluation 

of Watershed 

Control, 

2018) 

7 KBDI by Institute of 

Industrial Science, 

The University of 

Tokyo, Japan 

2021 4000 m (Takeuchi et 

al., 2015) 

8 NDVI by NASA 2021 1 km (NASA, 

2018) 

Table 1. Data 

 

 

2.3 Methods 

In general, the method used can be seen in Figure 2. The methods 

carried out in this study are divided into three parts, namely flood 

hazard modelling, drought hazard modelling, and social media 

data mining using APIs from Drone Emprit. The Multi-Criteria 

Decision Analysis (MCDA) method involves modelling flood 

and drought hazards. Each parameter is given a score and weight 

to obtain locations of flood and drought hazards in West Java. 

Social media data mining is carried out by collecting social media 

and news data throughout west Java at a specific time using 

keywords related to food productivity problems. 

 

2.3.1 Flood Hazard Modeling: The flood hazard model in 

this study will analyze a monthly flood hazard model that will 

focus on rice fields in 2021. Modelling is done using the MCDA 

(Multi-Criteria Decision Analysis) method. The parameters used 

will be grouped by class and score, resulting from modifications 

from some studies listed in Table 2. The equation of river density 

can be seen in injunction 1, with DD as the river's density, L is 

the river's length, and A is the watershed area (Sakti et al., 2022). 

The parameters on the flood model data are divided into two, 

namely static parameters (DEM, Slope, River Distance, and 

River Density) and dynamic (precipitation). In addition, static 

and dynamic parameters have the same influence. Each static and 

dynamic parameter will be numbered first and then given a 

weight of one for static parameters and one for dynamic 

parameters. Furthermore, static and dynamic parameters will be 

integrated to form a flood hazard model. 

 

 

 
𝐷𝐷 =

Σ𝐿

𝐴
 

  (1) 

 

 

 

 

 

 

 

Figure 2. General methodology  

 

Parameter Class Score 

DEM <40 m 5 

40 – 80 m 4 

80 – 200 m 3 

200 – 500 m 2 

>500 m 1 

Slope <2 Degree 5 

2 – 4 Degree 4 

2 – 10 Degree 3 

10 – 20 Degree 2 

>20 Degree 1 

River Distance <200 m 5 

200 – 500 m 4 

500 – 1000 m 3 

1000 – 1500 m 2 

>1500 m 1 

Precipitation >291.67 mm/month 5 

250 – 291.67 mm/ month 4 

166.67 – 250 mm/ month 3 

125 –166.67 mm/ month 2 

<125 mm/ month 1 

River Density <0.62 km/km2 5 

0.62 – 1.44 4 

1.45 – 2.27  3 

2.28 – 3.10  2 

>3.1 1 

Table 2. Parameter flood hazards resulting from (Darmawan & 

Suprayogi, 2017; Morea & Samanta, 2020; Samanta et al., 

2016). 
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2.3.2 Drought Hazard Modeling: Similar to the flood hazard 

model, drought hazards on rice fields will be modelled in a series 

of monthly times in 2021 according to the parameters of the 

modifications of some of the studies listed in the table below. 

Static parameters consist of a slope, while dynamic parameters 

consist of soil moisture, precipitation, NDVI, and KBDI. The 

concept carried out is the same as flood hazards for weighting 

static and dynamic parameters on drought hazards. The 

parameters and scores can be seen in Table 3. 

 

Parameter Class Score 

Soil Moisture <100 mm 5 

100 – 200 mm 4 

200 – 300 mm 3 

300 – 400 mm 2 

>400 mm 1 

Slope < 22 degrees 5 

23 – 44 degrees 4 

45 – 66 degrees 3 

68 – 88 degrees 2 

>88 degrees 1 

KBDI >400 5 

300 – 400  4 

200 – 300  3 

100 – 200  2 

<100 1 

Precipitation  <87.5 mm/month 5 

87.5–104.167 mm/month 4 

104.167–122.917 

mm/month 

3 

122.917–143.333 

mm/month 

2 

>143.33 mm/years 1 

NDVI <0.1 5 

0.1 – 0.2   4 

0.2 – 0.3  3 

0.3 – 0.4  2 

>0.4 1 

 

Table 3. Modified drought disaster parameters and approaches 

from (Hoque et al., 2020; Sivakumar et al., 2020; Takeuchi et 

al., 2015). 

 

2.3.3 Drone Emprit Geo-Data Mining: The study used a 

data mining system from Drone Emprit API that excavates, 

stores, and analyzes data from Twitter and news portals. Almost 

real-time data related to food security can be accessed through 

the Drone Emprit API service. Drone Emprit is one of the 

platforms that can be used to gain insight and knowledge about 

events and issues that occur through retrieving data from the 

internet. Data is sourced from online and social media such as 

Twitter, Facebook, Instagram, and Twitter. Users can get 

preliminary findings and analyses for a specific topic in less than 

10 minutes. After that, the system will continue to collect social 

media and news data in real-time. The keywords used in reaching 

food productivity data are divided into three groups: food 

availability, food access, and food use. Figure 3 shows the 

keywords used and the social media mining workflow methods. 

 

 

 
 

Figure 3. Social media data mining method  
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3. RESULT AND DISCUSSION 

3.1 Flood Hazard Model in Rice Fields 

The monthly flood hazard model results can be seen in Figure 4. 

The most vulnerable flood hazard models are January, February, 

March, November, and December in 2021. This is due to the high 

rainfall in the month of 2021. Precipitation in this modelling 

becomes influential because it is a different dynamic data 

parameter every month. In addition, the results of the 2021 annual 

flood model can be seen in Figure 5. Based on the results, in the 

northern area of West Java, the class ratio is very high flood 

danger in rice fields is more dominant when compared to the 

southern part of West Java. 

 

 

Figure 4. Flood hazard model in the rice fields every month in 

2021 

 

Figure 5. Flood hazard model in the rice fields in 2021 

 

3.2 Drought Hazard Model in Rice Fields 

The model of drought hazards in rice fields with a monthly time 

series in 2021 can be seen in Figure 6. In the monthly drought 

model, the lowest drought values occur in January, February, 

March, November, and December 2021. This conforms with the 

2021 flood hazard model that has a negative correlation. As 

explained in Section 3.1, the highest flood hazard models occur 

in January, February, March, November, and December. This 

very low drought can be caused by dynamic parameters, namely 

high precipitation, low KBDI, soil moisture, and high NDVI. In 

addition, the results of the 2021 annual drought model are 

following Figure 7. A reasonably high drought is found in the 

northeastern part of West Java through the results. 

 

 
Figure 6. Drought hazard model in the rice fields every month 

in 2021 

 

Figure 7. Drought hazard model in the rice fields in 2021 

 

3.3 Probability of Flood and Drought Hazards in Rice Fields 

After obtaining the danger of flooding and the danger of drought 

in rice fields in West Java, it will then be determined the rice field 

area that has the potential to get more dangerous than other rice 

fields. The meaning of more danger is rice fields where during 

the rainy season experiences flooding and the dry season will 

experience drought. This type of rice field will require more extra 

handling if it occurs because it will cause crop failure or failure 

to plant in rice fields. Using the annual flood hazard model 

(Figure 4) and the yearly drought hazard model (Figure 6), the 

probability of flood and drought hazards can be seen in Figure 8. 

Rice fields in West Java are generally included in the low drought 

hazard class with high flood danger. This means that the potential 

for flooding in rice fields will be greater than the potential for 

drought. It can be seen from the results of Figure 8 that there is 

no type of rice field that has a high drought hazard / very high 

with a high / very high flood danger, so in this case, it can still be 

controlled on rice fields to anticipate the danger of flooding in 

the region. 
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Figure 8. Probability model of hazards in the rice fields in 2021 

 

The danger of floods and droughts in rice fields in every city and 

regency in West Java can be calculated in Figure 9. This 

percentage can be used to determine the number of rice fields in 

a city/regency to plan policies to overcome it. It can be seen in 

Figure 9 that the rice fields in each city and district are dominated 

by high flood hazards, which reach an average of 74.88% per 

district/ city. While drought is dominated by low drought danger 

where the average of each district/city is 76.45%. 

 

 
Figure 9. Percentage of floods (A) and drought (B) of each 

city/regency 

 

3.4 Hazard Model Analysis using Drone Emprit Geo-

datamining  

 

The social data mining process obtained about 15,000 data from 

January 1 to November 1, 2021, and 37.9% of them were 

identified by location based on city or district level in West Java 

Province. Based on Figure 10, the highest distribution of issues 

in geodata mining the highest food availability data lies in the 

city of Bandung with a real problem of 151 cases, Sukabumi City 

94 Bogor City 68 Subang Regency 60 cases, and West Bandung 

47 cases. The highest percentage of patients is in urban areas 

because on urban land, agricultural land tends to be few, and 

agricultural disasters that affect agricultural production cannot 

support the needs in the area. 

 

The percentage of flood and drought hazards (Figure 8) will be 

compared with the hazard results from geodata-mining (figure 

10), where it is obtained that the city of Bandung, which has the 

highest food availability case information, has a high percentage 

of rice fields experiencing a high flood danger of 90%. The threat 

of medium drought reaches 89.19%. In this case, it shows social 

data mining and geodata mining information that is in line with 

the information on flood hazards and drought hazards that have 

been created. 

 
 

 
Figure 10. Issue Distribution of food availability dan 5 

Cities/Regencies with the highest percentage of food 

availability case in West Java 

 

 

3.5 Limitation and Future Study 

This study has several limitations, including modelling flood 

hazards and droughts do not use weighting so that the weight 

value on each parameter is considered the same. This modelling 

is also not involved with other supporting data that sufficiently 

affect the modelling of flood and drought hazards, for example, 

soil type data. So that for the modelling of agricultural disasters, 

more complex models can be used by using weighting so that the 

results of the model obtained are more representative of the actual 

codification. Model analysis can also use time-series charts to 

daily levels on dynamic parameters so that the investigation is 

more detailed and can approach the exact condition. Further 

study development can also be done using WEB-GIS monitoring 

that can be shared with the community, integrating near-real-time 

agricultural disaster models and agricultural disaster geodata 

mining. This WEB-GIS is expected to be used by the public, 

especially farmers, to increase agricultural productivity. 

 

4. CONCLUSION 

Modelling the dangers of floods and droughts on agricultural land 

showed results that matched the opposite relationship. In an area 

with a high flood danger, the area tends to have low drought 

hazards and vice versa. Integrating agricultural hazard models 

with social data mining and geodata mining from Drone Emprit 

API is also directly proportional to continuous results. In other 

words, this agricultural hazard model is enough to represent the 

dangers of agriculture in actual conditions. 
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