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ABSTRACT: 

Roadside trees cause almost 90% of the power outages in the forested Northeastern US. Management of roadside vegetation risk on 
electrical infrastructure demands timely and accurate information on forest conditions. Tasking conventional ground-based scouting 
methods along thousands of kilometers of powerlines in a repeated fashion are labor-/cost-/time-intense. Geospatial and earth 
observation (EO) technologies serve as cost-effective tools in monitoring, inspecting, and managing utility corridors. EO technologies, 
from drones, aircraft, to satellites can efficiently acquire information over large areas at regular intervals while probing forest physical 
structure and health conditions. LiDAR is a useful data stream for modeling terrain conditions and estimation of multiple forest 
inventory variables that explain the physical structure of the forest. Various EO imagery provides information on bio-physical 
characteristics of trees that affect forest health at finer granularity. The goal of this study is to combine multiple environmental variables 
to develop a spatially-explicit vegetation risk model using machine learning algorithms. Some of the key inputs used in our analysis 
include LiDAR-derived tree-related variables (e.g., tree height, proximity pixels, canopy cover), LiDAR-derived terrain data (slope, 
aspect, topographic index), soil characteristics, vegetation management data (tree trimming methods), infrastructure data (wire type), 
and power outages reported from 2005 to 2017 in Connecticut. Findings of this research will be vital in informing vegetation 
management decision-making processes, which eventually reduce power outages and the cost of utility corridor maintenance. 

1. INTRODUCTION

Electricity is an essential basic need of modern life (EIA, 2021). 
Power interruptions cause many compromises in transport, 
healthcare, communication, national and economical security 
(NIAC, 2018). Power failures are caused by many factors, such 
as weather, vegetation patterns, and utility practices (Lindstrom 
and Hoff, 2020). Most of the tree failures that cause power 
outages are weather related (Campbell, 2012) and cause non-
defective trees to fall on power lines (Finch and Allen, 2001). 
Kenward and Raja (2014) reported that more than 80% of 
outages are caused during weather events. The Congressional 
Research Service (CRS) Report for Congress (Campbell, 2012) 
states that high winds with precipitation from seasonal storms 
cause massive disruptions to the electric grid. Hines and others 
(2009) analyzed the events causing outages from 1984 to 2006 
using data available from North American Electric Reliability 
council (NERC) and showed that almost 44% of the events are 
weather related. In late August 2011, Hurricane Irene caused 
power loss for more than 6.5 million customers across 14 states 
in the US. According to electric utilities in the Northeastern US, 
roadside trees cause up to 90% of outages during storms 
(Eversource, 2019). Tropical storms, such as Isaias, Sandy and 
Irene resulted in massive damage in this region which eventually 
led to prolonged outages and more than one million customers 
were affected. Winter storm Alfred and hurricane Irene in 2011 
which affected 1.2 million customers, caused extensive damage 
in the northeastern U.S and the complete restoration of power 
outages took 9 to 12 days (McGee et al., 2012). In 2012 over 
225,000 power outages were caused following hurricane Sandy 
in Connecticut. Hurricane Isaias caused power outages for more 
than 2 million customers across states in the Northeast in August 
2020. In the same month, Hurricane Laura caused power outages 
for nearly 400,000 customers (Climate central, 2020). When 

focusing on Connecticut only, Isaias caused massive destruction 
to the power grid in Connecticut. Nearly 675,000 customers lost 
power and over 21,000 damage locations were reported 
throughout the state. 

Electric utilities make substantial financial investments annually 
on roadside vegetation management programs to ensure reliable 
electrical services and to improve the resiliency of the power grid 
in extreme weather events. According to PURA (2013), 
Vegetation management is the removal of trees, shrubs, and 
other vegetation that pose a risk to the utility infrastructure and 
the retention of trees and shrubs that are compatible with utility 
infrastructure. In Connecticut, vegetation management is 
restricted within the utility protection zone (UPZ), which is 
within 2.5 lateral meters of the power lines from ground to sky 
(PURA, 2013). The monetary cost associated with tree trimming 
is considered as the largest cost factor of the total money spent 
on power distribution system maintenance (Radmer et al., 2002 
and Lovlace et al., 1996). Utility companies manage tens of 
thousands of kilometers of power lines, and their biggest 
challenge is to determine when and where vegetation may 
become a risk to power lines. Accurate identification of 
vegetation risk areas and ideal use of vegetation management 
interventions alongside other grid hardening programs are 
crucial for maximizing grid resilience and reliability. Data-
driven vegetation management decision making demands 
spatially explicit and temporally conversant information on 
roadside forest conditions. Conventional vegetation 
scouting/inspection methods along utility corridors are labor-
/time-intense and cost prohibitive 

 Geospatial and earth observation (EO) technologies serve as 
cost-effective tools in monitoring, inspecting, and managing 
utility corridors. EO technologies, from drones, aircraft, to 
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satellites can efficiently acquire information over large areas at 
regular intervals while probing forest physical structure and 
health conditions. The Light Detection and Ranging (LiDAR) is 
known as one of the emerging remote sensing technologies 
which can be used in obtaining terrain models, estimation of 
multiple resource inventory variables through active sensing of 
three-dimensional (3D) forest vegetation (Reutebuch, 2005). 
Using LiDAR, numerous tree variables have been derived such 
as height and size of individual trees, canopy closure, volume, 
and biomass of forest stands (Andersen et al., 2005, Hinsley et 
al., 2006, Means et al., 2000, Naesset, 2002, Persson et al., 2002, 
Popescu and Zhao, 2007). Moreover, tree height in deciduous 
forests during leaf-off conditions (Parent and Volin, 2015), 
canopy rugosity (Parker and Russ, 2004), mapping stem 
locations and tree crowns (Holopainen et al., 2013), and stem 
diameter (Kankare et al., 2015; Tanhuanpaa et al., 2014) have 
been derived using this technology. On top of that, LiDAR can 
store and review or utilize forest data over time. This will allow 
LiDAR to monitor changes in tree height and crown radius over 
a five-year period (Duncanson and Dubayah, 2018).  
 
Understanding what environmental factors contribute to tree 
failures is critical for developing spatially explicit vegetation risk 

models. Confounding factor analysis can primarily be performed 
at the circuit level, which is at coarser granularity, as well as at 
the device exposure zone (DEZ) level (the outage locations 
correspond to isolating devices each of which protect a section 
of power line called a device exposure zone). Most of the studies 
have been conducted at the circuit level (Taylor et al., 2022, Zhu 
et al., 2007). A DEZ level modeling approach will account, in 
addition to forests related factors, multitudes of other 
environmental factors, soil and terrain (soil, slope and aspect), 
utility infrastructure related variables (overhead length, overhead 
to underground powerline length), and vegetation management 
practices (e.g., tree trimming and hazard tree removal). From the 
perspectives of utility industry and as well as the regulatory 
bodies, the envisioned outcome would be to identify and localize 
where the “HOT” spots are for tree failures during storms. A 
finer granularity DEZ-level vegetation risk model is vital in 
informing vegetation management decision making processes. 
This will eventually reduce power outages and the cost of utility 
corridor maintenance. The goal of this study is to combine 
multiple environmental variables to develop a spatially-explicit 
vegetation risk model using machine learning algorithms. Also, 
we are interested in finding the major environmental variables 
that contribute to tree failures along the power lines.  

 
Figure 1. Map showing the distribution power line network (Eversource Energy) for the state of Connecticut. (A) Zoomed-
in view of a circuit, (B) Zoomed-in view of a device exposure zone 

 
2. METHODS 

 
2.1 Study Area 
 
We conducted our analysis in the state of Connecticut. 
Eversource Energy, the main utility company in the state, 
manages nearly 27,000 km of distribution lines (Figure 1). 
Eversource delivers electricity to almost every town in 
Connecticut, serving~1.2 million customers (Eversource, 2021). 
The topography is generally hilly with elevation ranging from 
sea level in the south to nearly 750 m in the northwest. All the 
variables and data are derived/reported at the DEZ level. The 
location of an outage is reported at the associated DEZ isolating 
device regardless of where the actual cause (tree failure) of the 
outage occurred within the DEZ. The distribution powerline data 
set contains approximately 49,000 DEZs within 900 circuits. The 
length of DEZs range from 100s to 1000s of meters. 
 
2.2 Data 
 
2.2.1 LiDAR-derived tree heights: We used publicly-available 
LiDAR data that was acquired in early spring 2016 during leaf-

off condition, (point density 2.2 pts/m2) to derive canopy height 
model (CHM) and successive vegetation parameters along the 
power lines (Parent and Volin, 2015).  
 
Previous literature has shown that minimum of 4–8 pts/m2 spatial 
resolution is required to map individual tree crowns (Evans et al., 
2009 and Laes et al., 2008). Therefore, we used the concept of 
“Proximity tree pixels (pPix)” (Figure 2) explained by “Wanik et 
al., 2017” to create the LiDAR derived tree parameters described 
in Table 1. pPix refers to the 1 m pixels in a canopy height model 
(CHM) that are tall enough and close enough to contact a power 
line in the event of a whole or partial tree failure. Proximity 
pixels are identified from the CHM as pixels with a height larger 
than the distance from the pixel at ground-level of the tree to the 
point at the location of the nearest power line (Wanik et al., 
2017). 
 
2.2.2 Power outages, Utility infrastructure, and vegetation 
data: We obtained power outage data for the period of 2005-
2017 from Eversource Energy. The outage database allowed us 
to identify the approximate locations of tree-related outages 
occurred during windstorms. Database includes comprehensive 
information for each outage (trouble spots) recorded in its 
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corresponding isolating device, such as date of occurrence, 
restored date and time, device exposure zone ID, circuit id, 
number of customers affected, affected pole id, cause of damage, 
actions taken to repair and geographic locations. 
 

 

Figure. 2. Proximity pixel modelling using LIDAR-based 
canopy height model (Proximity pixel if tree height > d) 

 

 
For the modeling, we only included outages, which were caused 
by trees either as broken stem or windthrow (i.e., Entire tree 
uproots). Outages were only included if they were tree-related 
and associated with a primary isolating device, and occurred 
during weather conditions: blizzard, hurricane, ice storm, rain, 
snow, thunderstorm, tornado, and high winds. The outage data 
includes nearly 53,000 tree-related incidents for the time period 
of interest. All utility infrastructure geospatial layers were 
acquired from Eversource Energy. The DEZs are represented as 
polyline geometry, which includes attributes of; conductor 
segment length, associated isolating device information, major 

wire type of the conductor (e.g.; aerial cable, large bare wire, 
large-covered wire, large spacer cable, etc.) and length of 
underground powerline. We also obtained geospatial layers 
corresponding to Enhance Tree Trimming (ETT) from 
Eversource Energy. ETT refers to the removal of above and 
below that are 8 feet (2.4m) to the side of the power lines and 
removal of dead, dying, or diseased trees (Eversource, 2019). 
The data layer consists of several information such as date of 
trimming year, work type, and object id. 
 
2.2.3 Secondary products: We used previously described 
LiDAR and NLCD (2016) data to develop different potential 
indicators (as shown in Table 1), such as the percent of proximity 
pixels (pPix) on steep slopes and percent of pPix with percent 
canopy cover and topographic indexes. Also, the percentage of 
pPix on different soil types (such as wetland soils, rocky soils, 
and shallow soils) were calculated using the USDA Natural 
Resources Conservation Service (NRCS) soil data. 

 
2.3 Correlation Analysis 
 
We used Spearman’s rank test to determine the relationship 
between each explanatory variable and response variable 
(Equation 1). The Spearman’s rank correlation coefficient is 
generally denoted as ρs for a population parameter and as rs for a 
sample statistic. This method is more appropriate for a dataset 
with skewed or ordinal data and is robust when extreme values 
are present. (Mukaka, 2012) 
 

Table 1. List of explanatory and response variables included in the machine learning model development 
 

Type Abbreviation Description Source Variable Type 

V
eg

et
at

io
n 

medianH pPix of median height  LiDAR Continuous 
pTreeCov Canopy Cover percentage NLCD Continuous 
h50_t Percentage of pPix with heights higher 

than 15m 
LiDAR Continuous 

exp15_t Percentage of pPix that are 4.5m ft taller 
than surrounding 8nn 

LiDAR Continuous 

Clsr_tot Percent canopy area around DEZ with 
tree height higher than 15m 

LiDAR Continuous 

So
il 

an
d 

Te
rr

ai
n 

wlnd_tot Percent of pPix on wetland soils  LiDAR Continuous 
rcky_tot Percent of pPix on extremely rocky soils  CT Deep Continuous 
shlw_tot Percent of pPix on shallow soils (< 40cm 

to bedrock) 
CT Deep Continuous 

stp_tot Percent of pPix on steep slopes (>50pct) 
and with aspect toward DEZ point 

LiDAR Continuous 

avgGrndAz Average ground azimuth NLCD Continuous 
gSlp_mean Percent of pPix on ground slope (<50pct) 

and with aspect toward DEZ point 
NLCD Continuous 

TPI150_mn TPI (z-medainZ) for window approx. 
150m in radius, to determine landform 

NLCD Continuous 

TPI450_mn TPI (z-meanZ) for window approx. 
450m in radius, to determine landform 

NLCD Continuous 

In
fr

as
tru

ct
ur

e coverWire Overhead lines are covered or not Eversource Binary 
UG_ratio Ratio between overhead and 

underground power lines 
Eversource Continuous 

length_km Primary OH Length 
 

Eversource Continuous 

Class Presence of outages (Yes/No) Eversource Binary 
Vegetation 
Management 

pctETT Percentage of ETT treated in the DEZ Eversource Continuous 
SUM_ETTLen Total Enhanced tree trimming length in 

the DEZ 
Eversource Continuous 
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𝑟𝑟𝑠𝑠 = 1 −
6∑ 𝑑𝑑𝑖𝑖2𝑛𝑛

𝑖𝑖=2
𝑛𝑛(𝑛𝑛2 − 1)  

 

(1) 

 
 
2.4 Machine Learning (Random Forest (RF)) Algorithm 
 
The RF classification algorithm is an extension of the 
classification and regression tree (CART) developed by Breiman 
and others (1984). This algorithm recursively partitions the 
training data set into groups of records with similar values for the 
target variable. The tree is grown by conducting for each decision 
node, an exhaustive search of all variables and all possible 
splitting values, selecting the optimal split (LaRose, 2015 and 
Kennedy, 1995). 
 
RF produces multiple CART-like tree classifiers using random 
subsets of the training data records and explanatory variables to 
fit multiple decision trees and this improves the classification 
performance of a single tree classifier by combining bootstrap 
aggregating method and randomization during the construction 
of a decision tree. The predictions from all the decision trees are 
referred to as the “forest”, and the average of the individual tree 
predictions in the forest are used as the final prediction of the 
model (Breiman, 2001). A decision tree with M leaves divides 
the feature space into M regions Rm, 1 ≤ m ≤ M. For each tree, 
the prediction function 𝑓𝑓(𝑥𝑥) can be defined as (Equation 2). 

 

𝑓𝑓(𝑥𝑥) = � 𝐶𝐶𝑚𝑚𝜋𝜋(𝑥𝑥,𝑅𝑅𝑚𝑚)
𝑀𝑀

𝑚𝑚=1

 

 

(2) 

Where M = the number of regions in the feature space 
 Rm = a region appropriate to m 
 cm = a constant suitable to m (Equation 3) 

 

𝜋𝜋(𝑥𝑥,𝑅𝑅𝑚𝑚) = �1,
0,
𝑖𝑖𝑓𝑓 𝑥𝑥 ∈ 𝑅𝑅𝑚𝑚
𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒 (3) 

 
RF is a nonparametric integrated data mining algorithm based on 
trees. Unlike a single regression tree with high variance and low 
bias, RF overcomes the problem of high variance by using model 
average. In addition, when the number of input variables is large, 
RF has better precision than other classical machine learning 
algorithms (Hui, 2019). The RF model is used for our modelling 
effort because previous studies have shown its efficiency and 
satisfactory performance in outage prediction models and has 
been widely used in outage prediction models (Nateghi et al., 
2013, Wanik et al., 2017, Li et al., 2021a) 
 
2.5 Performance estimation 
 
We used repeated stratified 10-fold cross-validation to estimate 
the performance of the classification model. The repeated 
stratified k-fold cross-validation procedure is known as a 
standard method for estimating the performance of machine 
learning algorithm and provides the improved version of the 
estimated performance of a machine learning model. The 
performance was measured using area under receiver operating 
characteristic curve (AUC-ROC) (Bradley AP., 1997 & Fawcett 
T., 2006). We also used the confusion matrix of classification 
model and the accuracy score to summarize and visualize the 
results. The formula for calculating the accuracy is shown in 
(Equation 4) 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 (4) 

Where, true-positives (TP) are the number of outcomes where 
the model correctly predicts the positive class, true-negatives 
(TN) are the outcomes where the model correctly predicts the 
negative class), false-positives (FP) are the outcomes where the 
model incorrectly predicts the positive class, and false negatives 
(FN) are the outcomes where the model incorrectly predicts the 
negative classes.  
 
2.6 Evaluation of variable importance 
  
Shapley Addictive exPlanations (SHAP) proposed by Lundberg 
and Lee (2017) was used to evaluate the importance of each 
predictor variable. The SHAP method is based on the game 
theoretic approach (Shapley, 2016; Lundberg et al., 2018) and 
allocates payouts (i.e., importance) among all pairs of features, 
not only limited to the individual features. This helps to explain 
the modelling of the local interaction effects (Li et al., 2020b). 
Partial dependence plots (PDP) (Goldstein et al., 2015) were 
generated to visualize the average relationship between the 
response variable and highest contributed important variables. 
 
 

3. RESULTS 
 
3.1 Correlation Analysis 
 
Spearman’s correlation among 18 continuous explanatory 
variables is shown in Figure 3. Tree pPix variables such as 
Percentage of pPix with heights higher than 15m (h50_t), 
Percentage of pPix that are 4.5 ft taller than surrounding 
(exp15_t), and Percent canopy area around DEZ with tree height 
higher than 9m (Clsr_tot) reported highest correlation between 
these three variables. Moreover, slightly higher correlation could 
be observed between percent of pPix on extremely rocky soils 
(rcky_tot) and total percent of rocky soils/wetland soils/shallow 
soils (badSoils). In contrast, other explanatory variables reported 
less correlation values (Figure 3). 
 
3.2 Performance estimation 
 
A confusion matrix for random forest classifier can be used to 
summarize and visualize the prediction values (Figure 4). It 
shows the true predicted and false predicted labels for each 
outage class. Based on test results, the overall accuracy of our 
RF classifier is 72%. As seen in Figure 4, class 0 is predicted to 
be better than class 1. Moreover, FP and FN values have shown 
slightly higher values even though they are less than TP and TN 
values. The mean area under receiver operating characteristic 
curve (AUC-ROC) is shown in Figure 5. AUC-ROC score is 
found to be higher according to the RS classifier which is 0.78. 

 
Figure 4. Confusion matrix for RF 

classifier 
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Figure 3. Correlation heatmap among explanatory variables 

 

 
Figure 5. Mean area under receiver operating 

characteristic curve (AUC-ROC) 
 
Most of the soil and terrain variables (e.g., Topographic index 
(z-medainZ) for window approx. 150/450m in radius, to 
determine landform, Average ground azimuth, Percent of pPix 
on shallow soils, and Percent of pPix on steep slopes (>50pct) 
and with aspect toward DEZ point) showed very little 
contribution to the overall model performance. The first eight 
explanatory variables have shown approximately 90% 
contribution to the model. Figure 7. Shows the partial 
dependence plots, which elucidate how the predictions partially 
depend on the values of the input variables of interest. The 
explanatory variable of interest was plotted on the X axis and y 
axis shows the change in response variable. Primary OH Length, 

median height of pPix, Canopy Cover percentage, and total 
Enhanced tree trimming length in the DEZ contributed to 
increased predicted outages. The percentage of pPix with heights 
higher than 50 ft (15m) had a nonlinear pattern. Percent of pPix 
on extremely rocky soils, and percent of pPix on wetland soils 
showed slight impact on increasing predicted outages. 
 

 
Figure 6. Variable importance with composition ratio and 

cumulative ratio 
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Figure 7. The partial dependence plots for highest importance variables 

 
 

4. DISCUSSION 
 

The purpose of this study was to develop a geospatial model that 
can localize the vegetation risk areas along the power lines and 
to identify confounding environmental variables contributing to 
tree failures. We used Random Forest (RF) classification 
algorithm for our analysis. Because RF has been widely used in 
outage prediction models (Nateghi, 2014 and Wanik et al., 2017) 
and previous studies have shown the applicability of Random 
Forest in outage prediction models (Li et al., 2021a). Parr and 
others (2019) have shown that presence of multicollinearity in 
the data provides the least meaningful importance values. 
Therefore, we attempted to find the correlated explanatory 
variables in the beginning of the analysis and kept one input 
variable from the highly correlated cluster. Bradley (1997) and 
Fawcett (2006) have shown the use of area under the receiver 
operating characteristic curve (AUC-ROC) to evaluate the model 
performance in machine learning. AUC-ROC can measure the 
ability of a classifier to distinguish between classes. According 
to the results of RF model, we can observe that FN and FP 
numbers show somewhat higher values even though their values 
do not exceed the TP and TN values. This can affect the accuracy 
of the overall model prediction. AUC-ROC curve showed 
plausible values. When AUC-ROC is between 0.5 and 1, there is 
a high chance that random forest classifier can distinguish the 
positive classes labels from negative class labels. According to 
the results of variable importance analysis, we can find that 90% 
of the model has been explained by 8 variables. Our results are 
in alignment with the previous studies, such as Wanik et al., 
(2017) who found utility infrastructure (total overhead length 
and sum of assets) and proximity pixel variables as highest 
importance variables. This implies the importance of including 
both tree related and utility infrastructure data to the outage 
prediction modeling process. A similar study conducted by Li et 
al., 2021a) found that geographical/terrain factors, such as 

altitude, slope, slope direction, and longitude greatly contributed 
to the accuracy of the prediction model. However, most soil and 
terrain variables showed the least significance to the overall 
model prediction in our study. A possible reason could be, we 
included power outages occurred due to both tree and 
limb/branches failures in our analysis. In the effect of tree limbs 
and branches failures, we can assume that soil and terrain 
variables have the least impact on determining outages. Another 
potential reason could be the spatial granularity of the soil data. 
Soil data layers are generally reported at much coarser resolution 
which could overlook the local variabilities. Our results 
elucidated the importance of vegetation management and grid 
hardening programs in outage prediction and provided 
motivation to keep investing in such measures to increase the 
grid reliability and resilience. Tree decay is one of the natural 
phenomena occurring in trees and 76% of the trunk failures 
involve a decay (Kane, 2008) and leads to loss in moment 
capacity of tree branches and stems (Ciftci et al., 2014). There is 
a higher probability of these unhealthy trees falling onto 
powerlines during the events of storm and normal weather 
conditions. Therefore, it is vital to include the tree's health 
condition as an input variable to the vegetation risk modelling 
process. 
 
 

5. CONCLUSION 
 

In this study, we investigated the prediction of power outages on 
distribution lines using multiple environmental variables in 
Connecticut.  Our analysis was conducted at the device exposure 
zone level. Utility infrastructure data (Primary overhead length, 
overhead lines are covered or not), tree variables (Percentage of 
pPix with heights higher than 15m, canopy cover percentage, 
median height of proximity pixels) and vegetation management 
variables (total enhanced tree trimming length in each DEZ) 
were found to be highly important predictor variables. 
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Importantly, LiDAR derived variables were shown to be more 
important than vegetation management and soil/terrain variables. 
 
 

ACKNOWLEDGEMENTS 
 

The authors would like to thank the Eversource Energy center at 
University of Connecticut for all the data and funding. 
 
 

REFERENCES 
 

Andersen, H.E., Mcgaughey, R.I., Reutebuch, S.E., 2005. 
Estimating canopy fuel parameters using airborne LIDAR data. 
Rem. Sens. Environ, 94, pp. 441-449 
 
Bradley, A.P., 1997. The use of the area under the roc curve in 
the evaluation of machine learning algorithms. Pattern Recogn, 
30(7), pp. 1145–1159 
 
Breiman, L., 2001. Random Forests. Machine Learning, 45, pp. 
5-32. 
 
Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J., 2017. 
Classification and regression trees. Routledge.  
 
Campbell, R.J., 2012. Weather-related power outages and 
electric system resilience. Congressional Research Service 
Available at. http://docs.jalite-group.com/data/ 
docs/pdf/R42696.pdf, (7 Apr. 2022) 
 
Ciftci, C., Arwade, S.R., Kane, B., Brena, S.F., 2014. Analysis 
of the probability of failure for open-grown trees during 
windstorms. Probab Eng Mech, 37, pp. 41–50. 
 
Climate central, 2020. Power off, Extreme weather and power 
outages, Climate Central 
https://medialibrary.climatecentral.org/resources/power-outages 
(04 Apr. 2022)  
 
Duncanson, L., Dubayah, R., 2018. Monitoring individual tree-
based change with airborne lidar. Ecology and Evolution. 18, pp. 
5079-5089. 
 
EIA., 2021. Electricity Consumption in the United States was 
about 3.8 trillion kilowatthours (kWh) in 2020. Electricity 
explained, Use of electricity, U.S. Energy Information 
Administration, Washington, DC, USA. 
https://www.eia.gov/energyexplained/electricity/use-of-
electricity.php (04 Apr. 2022)  
 
Evans, J.S., Hudak, A.T., Faux, R., Smith, A.M.S, 2009. Discrete 
return lidar in natural resources: recommendations for project 
planning, data processing, and deliverables. Remote Sens. 1(4), 
pp. 776–794. 
 
Eversource, 2019. Understanding Vegetation Management, 
Evercource, CT https://www.eversource.com/content/ct-c (04 
Apr. 2022) 
 
Fawcett. T., 2006. An introduction to roc analysis. Pattern 
Recogn Lett, 27(8), pp. 861–874 
 
Finch, K.E., Allen, C., 2001. Understanding Tree-Caused 
Outages. EEI Natural Resource Conference. Apr. 2001. Palm 
Springs, CA. https://www.eci-consulting.com/wp-

content/uploads/2017/10/Understanding-Tree-Caused-
Outages.pdf (04 Apr. 2022) 
  
Goldstein, A., Kapelner, A., Bleich, J., Pitkin, E., 2015. Peeking 
inside the black box: visualizing statistical learning with plots of 
individual conditional expectation. Journal of Computational 
and Graphical Statistics, 24(1), pp. 44–65. 
 
Hines, P., Jay, A., Talukdar, S., 2009. Large blackouts in North 
America: Historical trends and policy implications. Energy 
Policy, 37, pp. 5249-5259. 
 
Hinsley, S.A., Hill, R.A., Bellamy, P.E., Baltzer, H., 2006. The 
application of LiDAR in woodland bird ecology: climate, canopy 
structure and habitat quality. Photogramm. Eng. Rem. Sens. 72, 
pp. 1399-1406. 
 
Holopainen, M., Kankare, V., Vastaranta, M., Liang, X., Lin, Y., 
Vaaja, M., Yu, X., Hyyppä, J., Hyyppä, H., Kaartinen, H., 2013. 
Tree mapping using airborne, terrestrial and mobile laser 
scanning-A case study in a heterogeneous urban forest. Urban 
Forestry & Urban Greening. 12(4), pp. 546-553 
 
Hui, J., (2019) Machine Learning-Algorithms. https://jonathan-
hui.medium.com/machine-learning-summary-algorithm-
d75c64963800 (5 Apr.2022). 
 
Kane, B., 2008. Tree Failure following a windstorm in Brewster, 
Massachusetts, USA. Urban Forestry and Urban Greening, 7, 
pp. 15-23. 
 
Kankare, V., Liang, X., Vastaranta, M., Holopainen, Yu, M., 
Hyyppä, J., 2015. Diameter distribution estimation with laser 
scanning based multisource single tree inventory. ISPRS J. 
Photogramm. Remote Sens., 108, pp. 161-171. 
 
Kennedy, R., 1995. Solving Data Mining Problems Through 
Pattern Recognition. Pearson, Upper River Saddle, New Jersey, 
 
Kenward, A., Raja, U., 2014. Blackout: Extreme weather, 
climate change and power outages. 
https://www.eenews.net/assets/2014/04/14/document_ew_01.p
df (7 Apr. 2022) 
 
Laes, D., Reutebuch, S., McGaughey, B., Maus, P., Mellin, T., 
Wilcox, C., Anhold, J., Finco, M., Brewer, K., 2008. Practical 
Lidar Acquisition Considerations for Forestry Applications, 
RSAC-0111-BRIEF1. Salt Lake City, UT: U.S. Department of 
Agriculture, Forest Service, Remote Sensing Applications 
Center. Pp. 32. 
 
Larose, D.T., 2015. Data mining and predictive analytics. John 
Wiley & Sons. 
 
Li, M., Hou, H., Yu, J., Geng, H., Zhu, L., Huang, Yong., Li, X., 
2021a. Prediction of Power Outage Quantity of Distribution 
Network Users under Typhoon Disaster Based on Random 
Forest and Important Variables. Mathematical Problems in 
Engineering, 2021, pp. 1-14. 
 
Li, R., Shinde, A., Liu, A., Glaser, S., Lyou, Y., Yuh, B., Wong, 
J., Amini, A., 2020b. Machine learning-based interpretation and 
visualization of nonlinear interactions in prostate cancer 
survival. JCO Clin. Cancer Inform. 4, pp. 637–646. 
 
Lindstrom, A., Hoff, S., 2020. U.S. customers experienced an 
average of nearly six hours of power interruptions in 2018, 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022 | © Author(s) 2022. CC BY 4.0 License.

 
223



Today in Energy, U.S. Energy Information Administration, 
Washington, DC, USA 
https://www.eia.gov/todayinenergy/detail.php?id=43915 (04 
Apr. 2022)  
 
Lovlace, W.R., 1996. Vegetation management of distribution 
line right-of-way: Are you getting top value for your money?, in 
Proc. 39th Annu. Rural Electric Power Conf., pp. B5-1–B5-3. 
 
Lundberg, S. M., Lee, S.I., 2017. A unified approach to 
interpreting model predictions. Adv. Neural Inf. Process. Syst. 
20, pp. 4765–4774.  
 
Lundberg, S.M., Nair, B., Vavilala, M.S., Horibe, M., Eisses, 
M.J., Adams, T., Liston, D.E., Low, D.K., Newman, S.F., Kim, 
J., Lee, S.I., 2018. Explainable machine-learning predictions for 
the prevention of hypoxaemia during surgery. Nat Biomed Eng, 
2(10), pp. 749-760. 
 
Mcgee, J., 2012. Report of the Two Storm Panel, Presented 
To:  Governor Dannel P. Malloy, 
http://www.governor.ct.gov/malloy/lib/malloy/two_storm_pane
l_final_report.pdf (10 Apr. 2022). 
 
Means, J., Acker, S., Fitt, B., Renslow, M., Emerson, L., 
Hendrix, C., 2000. Predicting forest stand characteristics with 
airborne scanning LIDAR. Photogramm. Eng. Rem. Sens. 66, pp. 
1367-1371. 
 
Mukaka M.M., 2012. Statistics corner: A guide to appropriate 
use of correlation coefficient in medical research. Malawi Med 
J., 24(3). Pp. 69-71. 
 
Naesset, E., 2002. Predicting forest stand characteristics with 
airborne laser using a practical two-stage procedure and field 
data. Rem. Sens. Envir. 80, pp. 88-99.  
 
Nateghi, R., Guikema, S., Quiring, S.M., 2014. Power outage 
estimation for tropical cyclones: Improved accuracy with 
simpler models. Risk Anal. 34(6). Pp. 1069–10788. 
 
NIAC, 2018. The President’s National Infrastructure Advisory 
Council, Surviving a Catastrophic Power Outage, How to 
Strengthen the Capabilities of the Nation. USA 
https://www.cisa.gov/sites/default/files/publications/NIAC%20
Catastrophic%20Power%20Outage%20Study_FINAL.pdf (04 
Apr. 2022)  
 
Parent, J.R., Volin, J.C., 2015. Assessing species-level biases in 
tree heights estimated from terrain-optimized leaf-off airborne 
laser scanner (ALS) data. International Journal of Remote 
Sensing, 36(10), pp. 2697-2712 
 
Parker, G.G., Russ, M.E., 2004. The canopy surface and stand 
development: Assessing forest canopy structure and complexity 
with near-surface altimetry. Forest Ecology and Management. 
189, pp. 307-315. 
 
Parr, T., Turgutlu, K., Csiszar, C., Howard, J., 2018. Beware 
Default Random Forest Importances. https://explained.ai/rf-
importance/index.html (06 Apr. 2022).  
 
Persson, A., Holmgren, J., Soderman, U., 2002. Detecting and 
measuring individual trees using an airborne laser scanner. 
Photogramm. Eng. Rem. Sens. 68(9): pp. 925-932 
 

Popescu, S., Zhao, K., 2007. A voxel-based LIDAR method for 
estimating crown base height for deciduous and pine trees. Rem. 
Sens. Environ. 112(3): pp. 767-781. 
 
PURA, 2013. PURA Regulations (Public Utility Regulatory 
Authority) (Title 16 – Public Service Companies). Connecticut 
Department of Energy and Environmental Protection, 
https://law.justia.com/codes/connecticut/2013/title16/chapter-
283/section-16-245 (04 Apr. 2022)  
 
Radmer, D.T., Kuntz, P.A., Christie, R.D., Venkata, S.S., 
Fletcher, R.H., 2002. Predicting vegetation-related failure rates 
for overhead distribution feeders. IEEE Trans. Power Deliv, 17 
(4), pp. 1170–1175. 
 
Reutebuch, S.E., Andersen, H., McGaughey, R. J., 2005. Light 
detection and ranging (LIDAR): an emerging tool for multiple 
resource inventory. Journal of Forestry, pp. 286-292  
 
Shapley, L. S., 2016. A value for n-person games. Contributions 
to the Theory of Games (AM-28), 2, L. S. Shapley, Ed., Princeton 
University Press, pp. 307–318 
 
Tanhuanpää, T., Vastaranta, M., Kankare, V., Holopainen, M., 
Hyyppä, J., Hyyppä, H., Alho, P., Raisio, J., 2014. Mapping of 
urban roadside trees – a case study in the tree register update 
process in Helsinki City. Urban For. Urban Green, 13, pp. 562–
570. 
 
Taylor, W.O., Watson, P.L., Cerrai, D., Anagnostou, E.N., 2022. 
Dynamic modeling of the effects of vegetation management on 
weather-related power outages. Electric Power Systems 
Research, 207, 107840, 
https://doi.org/10.1016/j.epsr.2022.107840.  
 
Wanik, D.W., Parent, J.R., Anagnostou, E.N., Hartman, B.M., 
2017. Using vegetation management and LiDAR-derived tree 
height data to improve outage predictions for electric utilities. 
Electric Power Systems Research, 146, pp. 236-245. 
 
Zhu, D., Cheng, D., Broadwater, R. P., Scirbona, C., 2007. Storm 
modeling for prediction of power distribution system outages. 
Electric Power Systems Research, 77(8), pp. 973–979. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-217-2022 | © Author(s) 2022. CC BY 4.0 License.

 
224




