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ABSTRACT

Building change detection from remote sensing images is vital for many applications such as urban planning and dynamic monitoring,
smart city construction, and geographical information census. In recent years, with the improvement of artificial intelligence and
computer vision techniques, deep learning algorithms, especially convolutional neural networks (CNN), provide automatic detection
and extraction methods. Unlike traditional approaches relying on shallow manual features, CNN can generate the deep semantic
features by fusing spatial and spectral information, which is conducive to identifying building change regions. However, most deep
CNN models directly fuse different level features and recover spatial details, which probably introduce redundant background
information and noise from shallow layers. Considering the building’s multiscale, convolution operation with fixed receptive fields
cannot obtain a strong global feature response to changed regions. To address the above problems, we develop a CNN framework for
automatic building region change detection using dual-temporal high-resolution remote sensing images. To refine the shallow
features, self-attention knowledge distillation strategies are introduced to FCN. Furthermore, we propose the multiscale feature
change-aware module to integrate the globally changed information in different decoders. Finally, the model aggregates the
multi-scale regional change information and outputs the prediction map. The results of comparative visual analysis and quantitative
evaluation in two public datasets demonstrate that the proposed network model can improve the accuracy and efficiency of the
automatic building change detection (85.69 IoU, 97.56 OA on the WHU dataset, and 83.72 IoU, 97.64 OA on the LEVIR-CD
dataset).

1. INTRODUCTION

Buildings as an artificial feature closely related to human beings
have gradually become an active geographical entity with the
continuous advancement of industrialization and the
acceleration of urbanization. Building and urban landcover
change are the comparatively obvious characteristics in the
process of urbanization. Therefore, the urbanization information
collection of building change has been an urgent need for
government management, economic construction, and
sociological research. It is significant for the acquisition of
buildings change information using the accurate, rapid, and
automatic method. Additionally, spatial information of
buildings provides abundant prior knowledge in some fields
such as urban planning, disaster emergency deployment,
military detection, basic geographic information update, and
other applications (Yuan et al., 2021).

With the gradual expansion of application requirements,
humans put forward higher requirements for the timeliness and
automatic level for the building information extraction methods.
However, traditionally, manual census and sampling inspection
from specific institutions have problems, such as
time-consuming, laborious, and low efficiency, which are not
suitable for the current urbanization information collection
(Yuan et al., 2021). Although manual field survey is still the
dominant operation approach in actual production, this is not
competent for the needs of accurate and rapid extraction of

building information in large areas and complex scenes. It is
particularly urgent to complete new intelligent building
identification and change detection methods.

In a few decades, the advanced technologies and platforms have
made extensive application and deep progress, such as the
LiDAR system, high spatial resolution earth observation
satellite, UAV system, artificial intelligence (AI), which have
broken the shackles and provided abundant 2D or 3D interpret
information from the geographical objects (Paoletti et al.,2019).
In particular, compared with traditional medium and
low-resolution remote sensing images, high-resolution remote
sensing images can capture abundant scene detail information,
including color and texture. Also, the topology structure of
ground objects can be represented correctly. Therefore,
automatic buildings change detection using high-resolution
remote sensing images has become the frontier in current
research.

A large number of change detection methods have been
proposed using multi-temporal remote sensing images. In the
early days, representative change detection methods mainly
focused on the spectral difference or ratio and regression
analysis methods. To further explore the spectral information of
images, some methods based on image transformation have
been developed, such as spectral angle change analysis and
principal component analysis (PCA). These direct comparison
methods in pixel-wise have the advantages of simple principle
and high computational efficiency, which are often used in low
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and medium-resolution satellite remote sensing images.
However, since the semantic correlations within surrounding
pixels are not considered, they are sensitive to noise and are not
suitable for high-resolution images. In addition, complex scene
information and environment bring obstacles to detecting
changing built-up areas due to some factors such as shadow,
brightness change, and variable geometry-shape in
multi-temporal images.

With the development of machine learning, many algorithms
such as Support vector machine (SVM) (Suthaharan, 2016),
random forest (RF) (Belgiu & Drăgu, 2016), and artificial
neural networks (ANN) have greatly improved the accuracy of
remote sensing image classification, stimulating the emergence
of change detection methods based on classification processing,
and gradually constructed the prototype framework for the
remote sensing data change detection. Distinguishing with the
temporal sequence of classification processing, the change
detection methods based on machine learning can be divided
into two categories, including comparison methods before or
after classification. On the one hand, the comparison methods
before classification first concatenate the multi-temporal images
as inputs, and the classifiers learn and predict the changing
targets. On the other hand, the comparison methods after
classification identify the categories from the dual-temporal
images independently and then compares the classification
results to obtain the final change regions. In terms of the latter,
the multiple classification errors and the inevitable registration
errors can cumulatively propagate between multi-temporal
images. Moreover, independence between images in different
phases during classification weakens the robustness. Although
the former can avoid these problems, the application in practical
scenes is limited due to the manual design features and
classifiers with nonlinear feature mapping.

In recent years, deep learning algorithms as the progress of AI
techniques, such as convolutional neural network (CNN),
recurrent neural network (RNN), and generative adversarial
network (GAN), perform stronger adaptive feature extraction
ability than conventional methods (Paoletti et al., 2019). The
deep learning framework is suitable for the analysis and
representation of applying massive data samples, which have
been applied to remote sensing data processing. Therefore,
buildings detection based on deep learning has been widely
applied, especially CNN is used with remote sensing images for
classification and object detection. For instance, Rodrigo et al.
proposed three FCN structures to detect change regions for
multi-spectral images. Zhang et al. combined semantic
segmentation and object detection methods to identify changing
objects. Chen et al. introduced the attention mechanism and
modeled the spatiotemporal relationship to enhance the feature
correlation in the changed region at different spatial locations
and times.

Although the above methods can effectively improve results for
the building change detection, there are still some challenges
that need to be solved. Firstly, CNN can generate hierarchical
features, but where shallow layers contain redundant
information with fewer semantic features. If the shallow
features are fused directly, the model will introduce interference
information to reduce the optimization efficiency. Secondly,
Multi-scale context can enhance the ability to change perception
for the encoder of the model. Unfortunately, the existing models

focus on the correlation of pixels but ignore the feature
relationship between different regions with insufficient
multi-scale regional context. Third, buildings present scale
variation with different sizes and shape while convolutional
operation cannot capture multi-scale information with the fixed
size of kernels.

To solve the above issues, we develop a CNN framework
combing with the novel network structures for the automatic
building region change detection from high-resolution remote
sensing images. In particular, the dual-temporal remote sensing
images are transmitted into the network encoders and extract
features complying with the weight sharing principle. To
enhance multi-scale feature fusion, the Siamese feature pyramid
network is constructed (Yann et al., 2005). Meanwhile, we
introduce self-attention knowledge distillation training mode by
constructing a spatial attention map. This strategy can assist the
network to enhance the representation ability for the
dual-temporal building regions and refine the shallow features
through interactive learning within the model. Furthermore, we
propose the multiscale feature change-aware module to enhance
the processing ability of the global changed information in
network decoders. This module performs the difference
operation and feature transformation on the Siamese feature
pyramid from two temporal remote sensing images. Also, the
multi-scale spatial pooling operators are introduced to generate
the similarity map and further strengthen the feature response in
change regions.

2. THE PROPOSED NETWORK MODEL

2.1 The overall architecture of the model

The overall architecture of the model is shown in Figure 1. The
proposed network is mainly composed of three parts:
weight-shared backbone network, multi-scale change-aware
module (MCA), feature pyramid fusion network, and
self-attention semantic distillation (SASD) strategy.

In the dual temporal datasets, the remote sensing images as
inputs with high spatial resolution can be obtained and
transmitted to the proposed model. The weight-shared backbone
network is used to extract the parallel features in different scales
from the model encoders. These encoded feature maps construct
a Siamese feature pyramid network structure with various
spatial resolutions, which corresponds to image inputs in
different phases. Furthermore, the MCA module-guided feature
fusion unit captures the fine-grained difference features and aids
the network to focus on global feature correlation the pixel-wise
and enhance the features response between different scale
regions. Meanwhile, the spatial attention map from the Siamese
feature pyramid network can be generated. From shallow to
deep semantic information, a knowledge distillation strategy can
refine features and improve the efficiency of model training.
Therefore, the network model establish the semantic distillation
loss equation in the training stage by calculating the multi-scale
spatial attention map. Then, the different features in multiple
scales are fed into the change detection decoders and finally
predict the change maps.

2.2 Backbone network and feature encoders
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Figure 1. The proposed network framework.

The residual network is the special convolutional neural
network proposed by He et al. (2016). It won the champion of
ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2015. The residual network is easy to optimize and can
improve the accuracy by increasing a considerable depth. Its
internal residual block uses skip-connection, which alleviates
the problem of gradient disappearance caused by increasing
layers in the deep neural network. Therefore, for the
weight-shared backbone network, the modified ResNet50 as the
backbone network is used to extract the multi-level features,
which contains four residual convolution blocks
(resBlock1~resBlock4 as presented in Figure 1).

2.3 Multiscale change-aware module

The convolution operation has a fixed receptive field and a
convolution kernel with a certain size, which limits the ability to
obtain global context information. Although CNN can obtain
large receptive fields and comprehensive deep features as the
increase of network layers, it is struggling to capture the
response of similar features over a long distance. For the
building change areas, the global context information can
produce synergy benefit, where the irrelevant background
features should be suppressed and the target features can be
enhanced. In addition, due to the complexity of spectral changes
of ground objects, many ground objects have intra-class
variability and inter-class similarity, which brings some
interference and interpretation difficulties to change detection.
In particular, high-resolution remote sensing images are
sensitive to this heterogeneity. Probably, some misdetection
occurs when buildings are in a complex remote sensing
background. Therefore, we construct a multi-scale
change-aware module (MCA) to address these problems and
enhance feature representation ability.

For acquiring global context information, a non-local network,

proposed by Wang et al., is a classical structure that can be
regarded as a spatial self-attention mechanism. Non-local neural
network (Wang et al.,2018) is developed from the non-local
means method. Ordinary filter with convolution kernel of K×K
(K is the size of convolution kernel) that slides and calculates on
the whole image, processing local information. The non-local
means operation combines a relatively large search range and is
weighted. Similarly, the non-local in CNN operation can
increase the receptive field to the global scope, rather than being
limited to a local field. Non-local operations directly capture
long-distance dependencies by calculating the interaction
between any two locations, instead of being adjacent points. It is
equivalent to constructing a convolution kernel as large as the
size of the feature map to maintain more information. A
non-local network can be used as a component and combined
with other network structures. This process can be modeled as
follows:

i i j j
j

1y f ( x x )g( x )
C(x) 

  , (1)

where, x is the feature map and i represents the output location,
such as the index of space, time, or space-time. Its response
should enumerate J and then calculate it. The similarity between
i and j is calculated by f(xi,xj); The g(xj) calculates the
representation of the feature map at position j. Finally, yi can be
obtained after standardization of response factor C (x).

In the MCA module, the non-local operation is introduced to
generate global context and enhance feature response in the
change areas. Concretely, a pair of the encoder features with Fi
and Mi (where i is the level index of residual blocks) from the
Siamese feature pyramid network are converted into embedding
space by conv1×1. In equation(2), G(·) is the feature conversion
function using conv1×1 and the number C of feature channels is
decreased to C/r where r is the ratio. fi and mi are the new
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features from the result of G(·), respectively. Meanwhile, a
difference feature Xi can be obtained by subtraction operation
between fi and mi. Although non-local operation can capture
long-distance feature response by equation (1), the burden of
computation is large, which is not suitable for the shadow layer
features with high spatial resolution. Additionally, the

long-distance context in changed areas not only are related to
any spatial position but correlates with multi-scale regions.
Unfortunately, the non-local network only establishes
pixel-wise spatial correlations and ignores the multiple regions.
Therefore, the MCA module applies the spatial pooling pyramid
(SPP) structure with multiple scale pooling layers to aggregate

Figure 2. Multiscale change-aware module

context from the different regions (He et al., 2015). In addition,
SPP can reduce computational complexity with max-pooling or
average pooling operation. Based on SPP operation, multiple
features with Fi p and Mi p are concatenated into vectors with the
scale of S (S depends on pooling ratio), respectively.

fi=G(Fi), mi=G(Mi), (2)

Xi=| fi - mi |, (3)

Fi p= SPP(fi)，Mi p = SPP(mi), (4)

p p
i ii iY soft max( (X F )M )   , (5)

To obtain a similarity map between the difference feature and
transformation feature, Xi is reshaped into two dimensions and
multiplied by Fi p and Mi p, respectively, as shown in equation (5)
where, denotes matrix multiplication. Then, feature Yi can be
obtained by fusing two feature maps and normalized by the
Softmax function. In this perspective, the differential Xi
represents the feature response of the change regions and
establishes a global correlation with the dual-temporal feature
by the similarity matrix. Furthermore, Yi integrates the
contextual dependence from arbitrary spatial locations to
multi-scale global regions. In the model structure, the MCA
module is embedded into the residual connection to prevent
gradient degradation. Finally, the enhanced feature Zi can be
generated by equation (6).

i i i iZ Y X X   (6)

2.4 Knowledge distillation strategy based on self-attention

Features from encoders are converted into multiple-scale layers
by MCA, which constructs a spatial pyramid structure.
Generally, the shadow layers have more details than the deep
layers, in turn, the high-level features contain an abundant
semantic feature that is easy to be classified in the decoders. To
decode these features correctly, many methods apply a
hierarchical fusion paradigm to aggregate information flow via

up-bottom or bottom-up. This process can integrate semantic
information and recover fine-grained structures for
segmentation. However, if the network fuses these features
directly, the shadow layers probably bring some noise
information in the process of model training, which can cause
instability and reduce efficiency. To alleviate this issue, we use
a knowledge distillation strategy in the model training process.

Knowledge distillation is a common method of model
transformation and feature refinement (Gou et al., 2021). For
the former, it refers to the "knowledge distillation" of the
features learned by the complex and strong learning ability
network in the teacher-student network framework where useful
information from the teacher network is transmitted to the
student network with small parameters and weak learning
ability. Furthermore, we can get a robust and powerful network,
thus which is a conceptual model compression scheme. On the
other hand, for the latter, distillation can make the student
network learn "more soft knowledge" in the teacher network,
which contains information between categories that are not
available in the traditional one-hot label. Due to the nature of
softening labels, distillation can also be considered a
regularization strategy. The high-level semantic information
from teachers' networks can guide students in selecting features
effectively. In conclusion, knowledge distillation can learn not
only the feature representation ability of large models but also
the inter-category information.

Based on different distillation objects, the existing knowledge
distillation methods mainly include the Teacher-student
interaction network, Attention-based information transfer
network, and the Self-attention knowledge distillation network.
The first two networks require building a strong enough deep
neural network as the teacher's role with a cumbersome
parameter. Knowledge can be transferred from a teacher
network to a small student network with a small number of
parameters. However, unlike natural scene image data sets,
remote sensing data samples are limited, especially for some
special problems and building objects, it is not enough to
construct a teacher network and cater to specific problems.
Therefore, in the network structure, we introduce the knowledge
distillation paradigm based on self-attention to refine the
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shallow features.

Specifically, for lane detection, Hou et al. proposed
self-attention knowledge distillation (SAD) that learns context
relations in itself at different stages and effectively achieves
improvement without any additional supervision from a
cumbersome teacher network. Inspired by the SAD model, the
hierarchical attention maps are constructed from the feature
pyramid, as illustrated in Figure 1. In the equation (7), p

sum i(Z )
denotes the feature mapping function that transmits feature Zi
from equation (6) into 2D spatial attention maps along the
channel dimension, where Cm presents m-th channel and j is the
slice from Zi;  is set to 2 based on experiments; Ai is i-th layer
attention map.

mCj j
i sum i j 0 iA (Z ) Z


   (7)

The spatial resolution of adjacent attention maps keeps
consistent by bilinear interpolation for the computation of
distillation loss. Finally, the distillation loss equation can be
defined between adjacent attention maps( Ai, Ai+1) as follows:

n
dis

i i 1 2 i i 1
i 1

Loss ( A ,A ) L ( ( A ), (A ))  


 (8)

where L2 denotes L2-norm loss function and ( )  present
distillation objects; n is set to 4. In the current path of the
feature pyramid, the flow direction of knowledge distillation is
from the shallow layer to the deep layer as follows: resBlock2
mimic resBlock3, resBlock3 mimic resBlock4, resBlock4
mimic resBlock5.

3. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the effectiveness of the proposed method, the
open-source building change detection datasets including the
WHU dataset (Ji et al., 2018) and the LEVIR-CD dataset (Chen
et al., 2020) are selected for the experimental analysis. The two
data sets contain complex image scene coverage, which not only
has high spatial resolution and high-quality semantic annotation
but also covers buildings with complex styles, various types,
and diverse structures. They are applied in many methods,
providing accurate and objective ground truth for the
comparison between different methods. Some samples of the
experimental datasets and corresponding extent are shown in
figure 3.

(a) WHU dataset

(b) LEVIR-CD dataset
Figure 3. Experimental data preview of spatial distribution in

the dual-temporal images.

3.1 Data Description and experimental configuration

The WHU dataset contains the aerial images that covered
20.5km2 of buildings and the change areas that occurred in
April 2012 and 2016 years, including 12796 and 16077
buildings respectively. 30 GCPs are selected manually on the
ground surface. In the experiment, the sub-dataset is extracted
and the number of training, verification, and test data sets are
set as 6:3:1, respectively. The whole image is divided into 1040
patches with 512 × 512 pixels and downsampled to a spatial
resolution of 0.02m.

LEVIR-CD dataset contains 31,333 individual change buildings
in the google satellite dual-temporal images with a period of 5
to 14 years (from 2002 to 2018). In the experiment, the number
of training, verification, and test data sets are set as 6:3:1,
respectively. we extract 525 images containing changed regions
as the final sub-datasets, which are divided into 1050 patches
with 512 × 512 pixels and a spatial resolution of 0.05m.

The Keras framework based on TensorFlow is our experimental
platform, which uses the Adam optimization algorithm with an
initial 10-3 learning rate, 0.1decay, and 15 batch size. The
backbone model ResNet50 is initialized using the weights
trained by ImageNet and trained with 200 epochs. Binary
classification loss and distillation loss are used as model
training total loss.

3.2 Building detection results for the proposed network

To verify the effectiveness of the proposed module, two groups
of ablation experiments were completed. Meanwhile, the overall
accuracy (OA) and F1 score are applied as the accuracy
evaluation indicators. In the first group of experiments, the
MCA module is regarded as the ablation object and SAD
structures are removed. Similarly, in the second group of
experiments, the SAD module is regarded as the ablation object
and MCA structures are removed.

Table 1 displays experimental results in the two public datasets.
Overall, in the WHU datasets, the proposed method (with
RESNET+MCA+SAD) obtained overall detection accuracy of
97.56% with the F1 score of 95.83% and IoU of 85.69% and
outperformed RESNET with an overall accuracy of 96.54%,
IoU 82.57%, F1 score of 91.03%. Compared with the backbone
network, although OA does not have a significant increase, the
application of the MCA model can improve the accuracy of
IOU by 0.59 and F1 by 3.18. In the LEVIR-CD datasets, the
proposed method obtained overall detection accuracy of 97.64%
with the F1 score of 87.67% and IoU of 83.72% and
outperformed RESNET. Compared with the backbone network,
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the application of the SAD strategy can improve the accuracy of
IOU by 1.4 and F1 by 3.63. In conclusion, the combination of
MCA and SAD can significantly improve the accuracy of model
detection.

Method

Datasets

WHU LEVIR-CD
IoU
(%)

OA
(%)

F1
(%)

IoU
(%)

OA
(%)

F1
(%)

RESNET 82.57 96.54 91.03 82.32 97.55 83.97
RESNET
+MCA 83.16 96.52 94.21 82.44 97.50 84.16

RESNET
+SAD 84.47 97.41 95.74 83.57 97.57 85.22

RESNET
+MCA+SAD 85.69 97.56 95.83 83.72 97.64 87.67

Table 1. Comparison accuracy on the different datasets in the
ablation result of modules. The bold values denote the best
result.

Figure 4. Heatmap in different module applications.

The heat maps in the spatial domain display the response before
and after feature transformation via MCA or SAD, as shown in
figure 4. We calculate the average fused feature from residual
block2 to block4 in the channel dimension. Compared with
heatmaps in different stages, most of the background-related
information is suppressed after knowledge distillation. In
addition, the large-scale building change area has a more
significant holistic response than the previous local attention.

Furthermore, the proposed model is compared and analyzed
with recent methods. Daudt et al. (2018) proposed fully
convolutional Siamese networks (FCSN) for change Detection
adopting three network structures including fully convolutional
fusion, Siamese concatenation, and fully convolutional Siamese
difference. In the experiment, the last network structure is
applied for comparison. Chen et al. developed a
spatial-temporal attention neural network (STANet) for change
detection using remote sensing images. This module introduces
the attention mechanism and exploits spatial-temporal
correlation to enhance the ability of feature representation.

Table 2 shows the accuracy of the proposed methods and other
detectors for the evaluation results on the different datasets. It
can be observed that FCSN has the lowest IoU in LEVIR-CD,
which indicates large false changed areas are detected. Although
STANet is slighter low than ours in F1 and IoU, the proposed
methods achieve better performance in OA. Visually, FCSN has
a weak ability to detect small buildings as shown in figure 5.
STANet obtained a better result in multiscale buildings than

FCSN, but some false detection and missed detection occur in
some buildings. Overall, the proposed method outperformed
others in different scale regions, but the details of buildings
have false detection in parts of unchanged areas.

Method

Datasets

WHU LEVIR-CD
IoU
(%)

OA
(%)

F1
(%)

IoU
(%)

OA
(%)

F1
(%)

FCSN 85.47 96.85 95.76 72.32 93.55 83.97

STANet 85.29 96.21 94.21 82.44 94.50 87.30

Proposed
method 85.69 97.56 95.83 83.72 97.64 87.67

Table 2. Comparison Accuracy using different methods. The
bold values denote the best result.

(a) LEVIR-CD datasets

(b) WHU datasets
Figure 5. buildings change detection results compared to other
methods in different datasets

4. CONCLUSION

This paper develops a fully convolution neural network
framework for building change detection using high spatial
resolution dual-temporal remote sensing images. To enhance the
ability of feature extraction, two novel modules are proposed.
The multi-scale change aware module can aggregate the global
context from multiple spatial feature regions. The knowledge
distillation strategy refines shallow semantic information and
improves the detection ability of small buildings. The backbone
network adopts the Siamese feature pyramid combined with the
two models, which can improve the accuracy of the results. In
future research, we will further explore the feature relationship
of multi-temporal images, and extend the knowledge distillation
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method to the multi-scale decoders to enhance the perception of
changing regions.
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