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ABSTRACT 

As part of Earth’s nutrient cycle, a layer of air travels every summer from Africa across the Atlantic Ocean. In June 2020, the thickest and 
densest dust plume traveled over 5000 miles along with the Saharan Air Layer (SAL) from Africa towards the USA and the Caribbean. 
Due to its gravity and impact, it was nicknamed “Godzilla”. While the cause of this event remains unclear, the advantage of using remote 
sensing applications to monitor aerosol concentrations and movement provides future opportunities to leverage machine learning 
technologies to build predictive models with the goal of early forecasting and public health interventions. The Sentinel-5P satellite 
instrument measures the air quality, ozone, and Ultraviolet (UV) radiation, and can be used for climate monitoring, and forecasting. 
Available on this platform is the UV Aerosol Index (AI) product, a qualitative index that indicates the presence of elevated layers of aerosols 
in the atmosphere. In this paper, we used Google Earth Engine to monitor the transatlantic movement of this historic dust plume across the 
Sahara Desert and estimate the aerosol concentrations throughout June 2020. The flexibility of the platform enabled us to generate time 
series maps to visualize the movement of the Godzilla dust storm from the Sahara Desert across the ocean. The results obtained are relevant 
for effective planning and interventions to ameliorate the health threats associated with the movement of the dust plume. The outcome is 
useful for defining the relationship between aerosol concentrations, human health, and aquatic life.   

1.0 INTRODUCTION 

Aerosols are very minute particles or liquid droplets suspended in 
the atmosphere and can cause major health concerns if inhaled. 
They may include particles of dust, volcanic ash plumes, 
microorganisms, airborne allergens, and other toxic pollutants 
produced by anthropogenic activities (Boucher, 2015; Nieder et al., 
2018; Tobías et al., 2020). Desert dust which is an example of an 
aerosol is a mixture of particulate matter (PM) emitted from the 
surface of arid and semi-arid regions (Querol et al., 2019). Large 
deserts such as the Sahara in North Africa and the Gobi and 
Taklamakan deserts in Asia are the primary sources of annual 
mobilized dust in the atmosphere (Prospero, 1999; Sun et al., 
2001). According to Rushingabigwi et al., (2020), the Sahara 
Desert is the biggest source of global dust and the major transporter 
of aerosol, especially during summer (Prospero, 1999). As part of 
the Earth’s natural phenomenon, dust particles from the Sahara 
Desert travel every summer across the Atlantic Ocean to the 
Southeastern USA and the Caribbean (Griffin et al., 2001; Kellogg 
et al., 2004). On average, trade winds carry around 180 million tons 
of dust from North Africa across the tropical North Atlantic Ocean 
each year and this dust settles in various locations across the 
Americas and the Caribbean Basin (Yu et al., 2015a). This dust 
storm involves high-velocity winds capable of carrying tiny dry 
particles from the desert to the Atlantic Ocean (Goudie et al., 2006). 
According to Ginoux, (2012), 75% of atmospheric particles are 
made up of desert dust and this can impose a gigantic impact both 
positive and negative across space and time. 

The transatlantic movement of dust has the potential of increasing 
the population of phytoplankton. These living organisms are an 
essential component of the food chain in the ocean (Zaigham et al., 

2021). In addition to that, the desert dust can supply the gigantic 
Amazon Forest with nutrients including iron and phosphorus 
(Rizzolo et al., 2017; Swap et al., 1992). However, Africa’s dust 
storm is known as an exposure pathway for various fungal diseases 
including coccidioidomycosis (Querol et al., 2019). The World 
Health Organization also confirms that Africa’s aerosol load 
exceeds the clean air standard of 10μg/m3 of PM2.5 (Bauer et al., 
2019). Dust can also reduce the quality of the air we breathe and 
pose great health challenges. The Godzilla dust cloud resulted in a 
record-breaking PM10 concentration of 453 μgm−3 in Puerto Rico 
and higher PM2.5 levels in the southern United States, which 
exceeded the EPA's air quality regulations (Yu et al., 2021). This 
PM2.5 can trigger respiratory tract diseases such as pneumonia as 
well as other diseases that can affect the nervous system and 
cardiovascular system (Rushingabigwi et al., 2020, Christopher 
and Jones, 2010). Various studies (Dockery et al., 2003; 
McCreanor et al., 2007; Al Frayh et al., 2001) also confirm that air 
pollution is associated with respiratory or cardiovascular morbidity 
and mortality, and that desert dust may increase the incidences and 
severity of asthma. Another cause of the possible health impacts of 
dust is the biological and microbiological load of dust. According 
to Watanabe, 2011, Japanese cedar and cypress pollen found in 
Asian dust storms, which is another form of a dust storm in spring 
has been associated with the worsening of respiratory and skin 
symptoms in adult asthma patients. Also, these pollens or spores 
from plants can be transported and introduced through the 
atmospheric pathway into a new environment as an invasive 
species. This will compete with native species in the new area for 
resources and eventually disturb the peaceful ecosystem (Isard et 
al., 2005). 
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In June 2020, Earth experienced the thickest and densest dust 
plume that traveled over five thousand (5000) miles along with the 
Saharan Air Layer (SAL) from Africa towards the USA and the 
Caribbean. The dust plume had a greater wind velocity compared 
to the previous 20-year experience (Borunda, 2020).  Because of 
its gravity and impact, it was nicknamed “Godzilla” (Yu et al., 
2015a). Information from the National Oceanic and Atmospheric 
Administration (NOAA) asserted that the Godzilla plume was 
about 60 % to 70 % larger than the average plume travel in the past 
(Zhongming et al., 2020). Currently, the background cause of this 
event remains unclear, with possible hypotheses of, whether it is a 
meteorological anomaly or effects of extra earth warming 
degenerating into extreme convectional currents. However, the 
warmth, dryness, and strong winds associated with the dust plume 
have been shown to suppress the formation and intensification of 
tropical cyclones (Sun et al., 2009; Luo et al., 2021). This study 
uses Google Earth Engine to monitor the movement of this historic 
dust plume across the Sahara Desert and estimate the Absorbing 
Aerosol Index (AAI) throughout June 2020. The flexibility of the 
platform will enable us to generate a time series animation to 
visualize the movement of the Godzilla dust across the desert from 
June 1st to 30th 2020. The results obtained would be relevant for 
effective planning and interventions to ameliorate the health threats 
associated with the movement of the dust plume.  

2.0 METHODS 

2.1 Study Area 

Situated on the African continent, the Saharan desert is the world’s 
largest desert which covers an area of about 9,200,000 square 
kilometers and extends from 12°N to 34°N. The desert is bordered 
by the Atlantic Ocean to the West, the Atlas Mountain, the 
Mediterranean Sea to the North, the Red Sea on the east, and the 
Sahel zone on the South (Tucker et al., 1999). According to Laity 
(2009), the Sahara Desert is made up of barren, rocky plateaus and 
salt flats, dunes, mountains, dry valleys, and sand. Approximately 
25% of the Sahara’s surface is covered with sand sheets and dunes 
(Gritzner, 2019). The Sahara has been a major source of fine 
particles, blown offshore to the other side of the Atlantic Ocean 
(Prospero, 1996). 

Fig. 1. Study Area Map. Source: National Geographic Style Map, 
ESRI base maps 

2.2 Data Description 

In this research, we explored Sentinel-5P, launched by the 
European Space Agency on 13th October 2017. This satellite 
captures data on air pollutants including aerosol, ozone, methane, 
nitrogen oxide, and sulfur dioxide (Safarianzengir et al., 2020). It 
is relevant for monitoring air pollution, climate monitoring, and 
forecasting as well as UV and ozone radiation. Specifically, we 
used the offline Absorbing Aerosol Index (AAI), also known as the 
Ultraviolet (UV) Aerosol Index available on the Google Earth 
Engine platform. Google Earth Engine (GEE) is a cloud-based 
platform that stores a variety of satellite images useful for trend 
analysis, detecting changes in the landscape, and estimating 
differences in the earth’s surface (Gorelick et al., 2017). AAI is an 
index that qualitatively shows elevated aerosol layers in the 
atmosphere with notable absorption (De Graaf et al., 2005). The 
product was calculated based on a pair of measurements at the 354 
nm and 388 nm wavelengths (Kooreman et al., 2020). The AAI 
band measures particulate matter such as desert dust, biomass 
burning, and volcanic ash plumes and has a spatial resolution of 
1113.2 meters and daily global coverage. 

2.3 Image Collection Preparation and Analysis 

The area of interest was imported into GEE as a shapefile and the 
Offline UV Aerosol Index was added as an image collection. A date 
filter was applied, and the spatial extent was set to the study area. 
Composites were created every three days in June 2020 using the 
mean reducer. This reduced the number of observations in June and 
improved the pixel quality. In all, ten (10) composites for the 
Sahara Desert were generated. An appropriate color palette was 
assigned to visualize the absorbing aerosol index and the images 
were used to create time series maps showing the Godzilla 
movement.  

3.0 RESULTS AND DISCUSSION 
This study revealed noticeable changes during the Godzilla dust 
storm. The brown to cream colors on the map confirms the Sahara 
Desert’s location in Africa. A positive absorbing aerosol index 
indicates the presence of aerosols which includes dust and values 
close to zero (0) represent non-absorbing aerosols (Althaf et al., 
2022). High positive values indicate the presence of high levels of 
desert dust (Jethva et al., 2005). From the legend, the purple color 
indicates the absence of aerosol in the atmosphere whilst the cyan 
to cream color shows the presence of aerosol in high 
concentrations.  

Fig. 2 shows the mean composite of the aerosol index acquired 
from Google Earth Engine for June 2020. The 1st mean composite 
for June 2020 gives an idea of the extent of the dust storm with 
more dust particles present in countries such as Mali, Niger, and 
Chad.  
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Fig. 2. Aerosol movement from 1st – 3rd June of 2020 

Between the 4th and 6th of June 2020, the dust plume expanded 
horizontally and covered a wider range.  

Fig. 3. Aerosol movement from 4th – 6th June of 2020 

By the 7th to 9th of June, the dust extended to Western Sahara, Mali, 
Niger, Mauritania, Southern Algeria, and Chad mostly with an AAI 
of 2. 

Fig. 4. Aerosol movement from 4th – 6th June of 2020 

Furthermore, the dust plume extended to eastern countries such as 
Sudan and Northwards toward Libya as shown in Fig. 5. 

Fig. 5. Aerosol movement from the 10th – 12th of June 2020 

The western part of Africa with countries such as Western Sahara, 
Mauritania, and Mali were not left out on the impact of the Godzilla 
dust plume. As seen in Fig 6, the west shows a higher absorbing 
aerosol index of 2. Confirming a study made by Warren (2020), the 
first traces of the dust reached the Caribbean by 20th June. 
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Fig. 6. Aerosol movement from the 16th – 18th of June 2020 

However, from the 10th composite (Fig 7), there was a significant 
decrease in the size of the dust plume as it moved into the Atlantic 
Ocean This serves as a rich source of phosphorus and iron to 
phytoplankton, and other plant species in the ocean (Zaigham et al., 
2021). 

4.0 CONCLUSIONS 

Various works of literature confirm that although the trans-Atlantic 
movement of dust supports plant and aquatic life, it also poses 
serious health issues to humans. The extreme dust movements 
reduce visibility and so affects the rate at which people travel from 
one point to another thereby affecting various economies. This 
study has proven that aerosols in the form of desert dust can be 
monitored using Earth observation techniques. In the future, 
leveraging machine learning and AI could be a useful tool for 
building predictive models for early forecasting to support rapid 
response preparedness. Further studies could also be carried out to 
identify the relationship between the health impact of the desert 
dust across countries in the Sahara and how desert dust suppresses 
the formation and intensification of tropical cyclones. This could 
benefit Southern states in the US and Caribbean that frequently 
experience these events.  
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Fig. 7. Aerosol movement from the 28th – 30th of June 2020 
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