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ABSTRACT: 

The process of identifying change in remote sensing images has been a focal point of research for decades now. Many classical 

algorithms exist, and many new modern ones are still being developed. These algorithms can be divided into supervised and 

unsupervised. In this work an unsupervised method is presented. This method relies on the scene alignment algorithm SIFT flow. It 

is shown that building upon simple principles an accurate change map can be obtained from the SIFT descriptor flow of the two 

input images. Furthermore, it is shown that this method despite its simplicity exceeds other unsupervised methods and comes close to 

supervised ones, even exceeding them in some metrics. Lastly, the advantages of SIFT flow in comparison to the supervised methods 

are highlighted alongside its own downsides. 

1. INTRODUCTION

Change detection in optical satellite imagery has been studied 

extensively throughout the years. Its utility is paramount in many 

applications in the remote sensing filed. For example, change 

detection can be used to assess urban growth, urban planning, 

monitoring the effect of forest fires and other natural disasters, 

and many other applications. Methods used for change detection 

can be split into two categories: supervised methods and 

unsupervised methods. Supervised methods use labeled data in 

their training process, and later make predictions based on it. On 

the other hand, unsupervised methods make predictions directly, 

without the need for any training (Ban and Yousif, 2016).  

Due to lack of data up until recent times, most of the methods 

developed for change detection belong to the unsupervised 

category. In  (Celik, 2010)expectation maximization algorithm is 

carried out on wavelets extracted by dual-tree complex wavelet 

transform. These wavelets are extracted from the difference 

image, while in (Hao et al., 2014) expectation-maximization-

based level set method is used instead calming to yield better 

results. In (Celik, 2009a) the proposed method is based on 

segmenting the difference image to non-overlapping blocks, 

applying principal component analysis, and then using k-means 

to obtain reference vectors for each cluster. In the end features 

for each pixel are extracted, compared to the reference vectors 

and assigned to each of the two clusters. In (Li et al., 2015a) 

Gabor wavelets followed by two-levels clustering was 

implemented. (Bruzzonel and Femluldez, n.d.) modeled the 

likelihood function of the data using Parazan windows to make 

the final decision. In 1986 an error minimizing algorithm for 

defining a threshold over a difference image was suggested by 

(Latifovic and Pouliot, 2014), this algorithm was developed an 

improved and used vastly later. For example, (Melgani et al., 

2002) used the algorithm over a difference image of multispectral 

images, (Bazi et al., 2005) and  (Moser and Serpico, n.d.) 

expanded the algorithm to deal with the intensity and amplitude 

images of SAR which do not have a Gaussian nature. In (Bazi et 

al., 2006) the same algorithm was extended to a multi-threshold 

case, but it causes the algorithm to be more computationally 

expensive. The algorithm was further improved by modifying it 

to work on the log-ratio image for SAR images in(Ban and 

Yousif, 2012). 

In general, more recent supervised or semi supervised methods 

such as manage to produce better results than their unsupervised 

counterparts. For example, (Zhang et al., 2018) created a semi 

supervised method, that utilizes coarse to fine detection scheme 

to combine the benefits of supervised learning and mitigate the 

lack of data. However, In recent years new datasets have been 

introduce such as the one (Chen and Shi, 2020), which also 

suggested a new supervised model based on attention Pyramid 

spatial–temporal attention module (PAM). This dataset opened 

the flood gates for deep supervised models such as the two 

models presented by (Diakogiannis et al., 2021). Both models are 

based on attention mechanism, but the more advanced 

CEECNET showed the most promising results. Alas, supervised 

methods suffer from two downsides, first, supervised methods 

may produce better results when the test data is either from the 

same dataset as the training or similar to it, however, they tend to 

underperform whenever the test data does not resemble the 

training dataset. The second problem, which is a generalization 

of the first one, which is that the amount of data needed to train 

the more advanced supervised methods such as deep networks is 

large, and the amount of data that would be needed to train a 

supervised model to generalize for large, diverse areas is almost 

nonexistent.  

Unsupervised methods however do not need any labeled data. 

They depend on the information within the pair of images to 

make assessments and locate the area of change for example in 

(Celik, 2009b; Li et al., 2015b). Many unsupervised methods in 

change detection either use a difference image or ratio image as 

based approaches to produces their final result. These methods 

are quite successful in determining the difference between two 

sets of images. However, for these methods to work the pair of 

temporal images must go through a preprocessing step to ensure 

that their histograms match exactly. Furthermore, any radical 

change in lighting conditions or sensor inconstancy may affect 

the results massively. Moreover, unsupervised methods lack the 
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specialization that supervised methods have, they cannot be 

trained to pay attention on one type of change and ignore the 

other. 

In this work, an unsupervised method for change detection is 

presented. This method is based on the Scale Invariant Feature 

Transform (SIFT) (Lowe, 1999) and its flow between to images: 

SIFT flow (Liu et al., 2011). In the first section of this article will 

be a brief introduction to SIFT features and the SIFT flow 

algorithm. The second section will show the simple, yet effective 

approach used to transform SIFT flow into a change detection 

method. In the third section, visual results of SIFT flow are 

shown and discussed, also numerical results are examined to 

compare the performance of SIFT flow to other unsupervised and 

supervised methods. The final section offers a summary of this 

work and suggestions for future works based on it. 

 

2. SIFT FLOW 

SIFT flow is an alignment algorithm that was inspired by optical 

flow. However, instead of matching pixel intensity values, SIFT 

feature descriptors (or SIFT descriptors) are used.  For this 

reason, in the following subsection a short explanation of the 

SIFT features is conducted, followed by the matching scheme 

used by SIFT flow.  

 

2.1 Scale Invariant Feature Transform  

The SIFT algorithm consists of two parts: key point detection and 

feature extraction. The latter being the only relevant part for SIFT 

flow and this work. Typically, SIFT features are simple and easy 

to compute. Given a key point 𝑥 the neighbouring 𝑁 × 𝑁 pixels 

are selected, and their orientation is calculated using (Lowe, 

2004) : 

 

 𝜃(𝑥, 𝑦) = 𝑎𝑡𝑎𝑛−1 (
(𝐼(𝑥,𝑦+1)−𝐼(𝑥,𝑦−1))

𝐼(𝑥+1,𝑦)−𝐼(𝑥−1,𝑦)
 ), (1) 

 

Where 𝐼(𝑥, 𝑦) is the gradient around the pixel located at (𝑥, 𝑦), 

Then this block of pixel orientations is divided into cell arrays 

(typically 4 × 4)  and the histogram for each cell is calculated 

using 8 bins. Finally, the resulting vector is normalized and 

clipped where only values larger than 0.2 are kept. For a 16 × 16 

window divided into 4 × 4 cells with quantization of 8 bins, the 

resulting feature vector has the size of 4 × 4 ×  8 = 128 (Lowe, 

1999). 

 

2.2 SIFT Flow  

The SIFT Flow algorithm takes advantage of the scale invariant 

nature of the SIFT features. In SIFT flow SIFT descriptors are 

calculated for every pixel in the image. In other words, for every 

pixel location (𝑥, 𝑦) a 128 SIFT descriptor is generated. This 

gives rise to what is called a SIFT image, a SIFT representation 

of the original image that has the size of 𝑀 × 𝑁 × 128 where 

𝑀 × 𝑁 is the size of the original image. Since any SIFT 

descriptor in the first image may match with any SIFT descriptor 

in the second image (regardless of their locations) SIFT flow 

utilizes a top-down matching scheme over a gaussian pyramid as 

seen in Figure 1. This method reduces the number of possible 

matches and increases the quality of the matching (Liu et al., 

2011).  

 

 
Figure 1. Top-down matching scheme used in SIFT flow (Liu 

et al., 2011) 

 

The energy function seen in equation (1) used to determine the 

best matching SIFT descriptors is inspired by the energy function 

of optical flow. It has three terms to ensure smooth and consistent 

matching. The first term is the data term which indicates the 

distance between the descriptors. The second term is referred to 

as the small displacement term, which is there to ensure that the 

flow vectors remain as small as possible when no other 

information is available. The third term is the smoothness term, 

which is used to make sure that neighbouring points have a 

uniform flow.   

 

     𝐸(𝑤) =  ∑ 𝑚𝑖𝑛 (‖𝑠1(𝐩) − 𝑠2(𝐩 + 𝒘(𝐩))‖
1

,  𝑡)𝐩 +

∑ 𝜂(|𝑢(𝐩)| + |𝑣(𝐩)|)𝐩 + ∑ 𝑚𝑖𝑛(𝛼|𝑢(𝐩) −(𝐩,𝐪)∈ԑ

             𝑢(𝐪)|, 𝑑)       + 𝑚𝑖𝑛(𝛼|𝑣(𝐩) − 𝑣(𝐪)|, 𝑑),    (4) 

In this equation: 𝐩 = (𝑥, 𝑦) represents the grid coordinates of any 

given image, 𝒘(𝐩) = (𝑢(𝐩), 𝑣(𝐩)) represents the flow vector at 

𝐩 and 𝑢(𝐩) 𝑣(𝐩) represent its components in the 𝑥 and 𝑦 

directions respectively. 𝑠1 and 𝑠2 are the two SIFT images 

desired to be matched.  𝑡 and  𝑑 are thresholds for the L1 norm 

used in the first and last terms, they are used to increase 

robustness in matching outliers and prevent discontinuities in the 

flow field respectively. 𝜂 and 𝛼 are hyper parameters used to 

control the second and third terms of the cost function 

respectively. Figure 2 shows example of SIFT flow being used 

for image registration and scene alignment.  

 

Figure 2. Scene alignment application of SIFT flow.  

 

3. PROPOSED METHOD FOR CHANGE DETECTION 

USING SIFT FLOW 

SIFT flow algorithm’s goal is to find the best matching SIFT 

descriptors between two images. It can be and has been used in 

many applications such as image registration, face alignment, 

motion hallucination and much more. However, change detection 
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is very much different from scene alignment and image 

registration. This section presents simple yet effective method to 

utilize this algorithm for change detection. This novel approach 

is based on two basic principles and a thresholding process, both 

are explained in the following subsections.  

 

3.1 Basic principles of change detection using SIFT flow  

Change detection using SIFT flow is based on two simple yet 

strong assumptions: First, satellite images are already registered. 

This is a fact of life, optical satellite images used for change 

detection must represent the same geographical area. In other 

words, every pixel in each image represents the same point at 

different times. The second assumption is that SIFT flow for two 

identical images must be or is close to zero. This stems from the 

energy function of SIFT flow and the way it was built. If two 

pixels and their corresponding SIFT descriptors have not 

undergone enough significant change, they will match with each 

other.  

 

By combining these two assumptions together: since a pair of 

multitemporal registered satellite images represents the same 

area pixel by pixel, and SIFT flow is zero or small when the 

pixels did not go significant change, it can be said that the regions 

where the flow vectors are small or close to zero are unchanged 

while the areas with large SIFT flow are changed.   

 

3.2 SIFT Flow to Change Map   

SIFT flow produces flow vectors in the 𝑋 and 𝑌 directions of the 

image. In other words, for a pixel location 𝐩 there exists a flow 

vector in the 𝑋 direction 𝑢(𝐩) and a flow vector in the 𝑌 direction  

𝑣(𝐩). To generate the change map, the intensity of the flow field 

must be first determined. This is done by taking the norm if the 

flow vectors in both directions at each pixel location:  

 

            𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐩 =  ‖𝒘(𝐩)‖ =  √𝑢(𝐩)2 + 𝑣(𝐩)2, (2) 

 

The change map (CM) is calculated by thresholding the intensity 

of the flow vectors for all pixel locations. If 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝐩 is the 

flow intensity at pixel location 𝐩 and 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 is the intensity 

of the flow for all pixels in the image, then the change map CM 

is calculated as follows:  

 

   CM =   𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 > T,    (3) 

 

Where T is a threshold value determined empirically. In 

summary, the method proposed uses the two-dimensional flow 

vectors obtained from SIFT, calculates the intensity of these 

vectors, and applies a threshold on the resulting intensity image. 

This process leads the generation of change map if the pair of 

images has been registered. The flow chart of the proposed 

method can be seen in Figure 3. 

 
Figure 3. Flow chart for change detection using SIFT flow  

 

4. RESULTS AND DISCUSSION 

Firstly, in this section, the dataset used will be briefly described. 

Later, results of SIFT flow-based change detection are presented 

visually. Lastly, numerical results comparing SIFT flow change 

detection to other unsupervised and supervised methods are 

shown and discussed.  

 

4.1 Dataset  

The dataset used in this work is the LEVIR-CD dataset (Chen and 

Shi, 2020). It is made up of 637 very high resolution (VHR) 

image pairs. Each image has the spatial resolution of 0.5 meters. 

This dataset was compiled specifically to represent the change in 

residences through the region. Since SIFT flow is an 

unsupervised method, only the test images are used in the 

calculation of error and visualization of results. This facilitates 

comparability between SIFT flow and supervised methods that 

need the training data for training. Example images of the dataset 

can be seen in Figure 4. 
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Figure 4.  Samples from the LEVER-CD dataset. (a) Images at 

older point in time. (b) More recent images of the same 

location. (c) Ground truth depicting the changed area. 

 

4.2 Results and Discussion 

In this section both visual results for SIFT flow-based change 

detection, and numerical results are presented. These results are 

compared to 3 different methods: PCA-Kmeans change detection 

algorithm (Celik, 2009b), which a difference based unsupervised 

method, (PAM) (Chen and Shi, 2020), a deep supervised method 

that was presented alongside the dataset, and CEECNet 

(Diakogiannis et al., 2021), another deep supervised network that 

utilizes attention and residual network architecture.  

 

4.2.1 SIFT Images  

 

The prerequisite for SIFT flow is to generates SIFT images, these 

images are equal to the size of the image but have 128 dimensions 

instead of 3. However, SIFT images can be projected to 3-

dimensional space using principal component analysis (PCA). 

This way SIFT images can be visualised. Figure 5 shows a few 

examples of SIFT images generated for pairs of images from the 

dataset.  

 

 
Figure 5. Visualisation of SIFT images. (a) example images. (b) 

corresponding SIFT image visualization. 

4.2.2 SIFT Flow Visual Results:  Upon closer examination 

of Figure 6, It can be noticed that the resulting change map of 

SIFT flow is clustered around the change region. Specifically, in 

part (b) of Figure 6, the SIFT flow change map, although not 

precise, managed to encapsulate the region of change.  In part (a) 

however, the change map is sparser, yet it still corresponds to the 

location of change seen in the ground truth.  

 

 
Figure 6. SIFT results for two pairs of images from the dataset. 

(a) shows the first pairs results and (b) shows the second pair. 

(c) shows the third pair. For each pair the first two images are 

the multitemporal pair, the third image is ground truth, the 

fourth image is the flow vector field resulting from SIFT flow 

and the last image is the change map obtained by thresholding 

the flow field. 

 

To put the visual results of SIFT flow-based change detection, 

Figure 7, contains the visual results of two other models 

alongside it. The first row of images in this Figure 7, are the input 

image pair and their ground truth. The second row shows the 

results of PCA-Kmeans in (d), CEECNet in (f) and SIFT flow-

based change map in (e).  
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Figure 7. Results each odd row is the pair of input images and 

their ground truth. Each even row is the results of PCA-

Kmeans, CEECNet and SIFT flow respectively.  

 

Results seen in Figure 7, put SIFT flow performance in 

preceptive. Although the change map produces by it is not as 

detailed or precise as the change map produces by CEECNet, 

SIFT flow’s result is concentrated around the change area. 

Clearly it is not as good as the detailed result of CEECNet, 

however, it is important to remember that SIFT flow did not use 

any examples from the training or validation dataset. This make 

it very useful in cases where just general knowledge of the 

change area is needed, not minute details such as forest fire 

detection. Furthermore, since no pre-processing was conducted, 

the results of PCA-Kmeans has been affected massively, SIFT 

flow however was robust to the differences between the 

histogram of the two images and still managed to find the correct 

area of change.  

 

4.2.3 Numerical Results: The test dataset consists of 128 

images. The supervised models are trained using the 445 images 

and validated on 64 images. PCA-Kmeans and SIFT flow are 

directly applied to the test dataset. No pre-processing was 

conducted for any of the models. Common metrics such as 

precision, precision and F1-score are used as evaluation. The 

results can be seen in Table 1.  

 

     Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ,     (5) 

 

     Recall =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                  (6) 

  

     F1 =  
𝑇𝑃

𝑇𝑃+ 
1

2
(𝐹𝑃+𝐹𝑁)

  ,                 (7) 

 
Where TP is true positive, FP is false positive, FN is false 

negative. 

 
Method  Metric 

 precision recall F1 

PAM 83.7 91 87.3 

CEECNet 93.81 89.92 91.83 

PCA-Kmeans 57.36 92.58 68.46 

SIFT Flow 73.60 95.42 81.65 

Table 1. Numerical results. 

As seen in Table 1. SIFT flow-based change detection achieves 

F1-score of almost 82 percent, which mainly due to its high recall 

value. This is consistent with the visual results shown in Figure 

ß6 and Figure 7. The high recall value is due to the fact that SIFT 

flow identifies the regions of change accurately. However, the 

precision of the change maps generated by SIFT flow is not on 

par with supervised models. PAM and CEECNet are modern 

supervised models, therefore they perform well in allocating the 

change precisely. However, since they are supervised, they are 

prone to overfitting and falling victim to the problem of dataset 

bias. SIFT flow results rival that of PAM and are almost identical 

to its vanilla version which has an F1-score of %83.9 (Chen and 

Shi, 2020). However, it has not been trained on this dataset, and 

similar performance can be expected for different datasets and 

even in situation where no data exist, which is much more 

common in practice.  

 

5. CONCLUSION 

In this work a novel method for change detection in optical 

satellite images has been introduced. The method utilizes the 

SIFT flow algorithm which is typically used for image and scene 

alignment. By making two simple assumptions, SIFT flow’s 

result is used to produce an accurate change map. SIFT flow 

rivals deep supervised models when it comes to common 

accuracy metrics and even exceeds them in some. Furthermore, 

SIFT flow-based change detection has big advantages in 

comparison to other models such as not needing any training data 

and not requiring any pre-processing. This makes it very 

universal and applicable in all situations regardless of data 

scarcity. However, SIFT flow-based change detection has its 

downfalls such as lower precision and lack of semantic 

awareness. For these reasons, it is recommended that further 

research to be conducted to improve the precision of the change 

maps produced by this method. Furthermore, its universal nature 

can be used with other models to produce good results when 

training data does not exist or is not sufficient for training.  
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