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ABSTRACT: 
Improving the performance of feature matching plays a key role in computers vision and photogrammetry applications, such as fast 
image recognition, Structure from Motion (SFM), aerial triangulation, Visual Simultaneous Localization and Mapping (VSLAM), 
etc., where the RANSAC algorithm is frequently used for outlier detection; note that RANSAC is the most widely used robust 
approach in photogrammetry and computer vision for outlier detection. It is known that the outlier ratio used in RANSAC primarily 
determines the number of trial runs needed, which eventually, determines the computation time. Over time, different methods have 
been proposed to reject the false-positive correspondences and improve RANSAC, such as GR_RANSAC, SuperGlue, and LP-
RANSAC. The specific objective of this study is to propose a filtering algorithm based on Graph Neural Networks (GNN), as a 
pre-processing step before RANSAC, which can result in improvements for rejecting the outliers. The research is based on the idea 
that descriptors of corresponding points, as well as their spatial relationship, should be similar in image sequences. In graph 
representation, built by the adjacency matrix of data (nodes features), there should be similarity for corresponding points that are 
close to each other in the image domain. From the many GNNs techniques, Graph Attention Networks (GATs) were selected for 
this study as they assign different importance to each neighbour’s contribution as anisotropic operations, so the features of 
neighbour nodes are not considered in the same way, unlike other GNNs techniques. In our approach, we build a graph in each 
image, because the similarity of the two-dimensional spatial relationships between points in the image domain of consecutive 
images should be similar. Then during processing, points with any significantly different neighbours are considered as outliers. 
Next, the points can be updated in the GNN layer. GNN-RANSAC is tested experimentally on real image pairs. Clearly, the 
proposed pre-filtering increases the inlier ratio and results in faster convergence compared to ordinary RANSAC, making it 
attractive for real-time applications. Furthermore, there is no need to learn the features. 
 
 

1. INTRODUCTION 

Feature matching is considered as a primary step in all 
computer vision and photogrammetry applications, such as 
fast image recognition, 3D reconstruction, image 
georeferencing, motion/object tracking, and navigation since 
all the subsequent processing steps depend on the 
correctness of the correspondences. There are several studies 
that have attempted to detect and match the point pairs 
flawlessly, such as Scale-Invariant Feature Transform 
(SIFT) (Lowe., 2004), Speeded-Up Robust Features (SURF) 
(Bay et al., 2008), ORiented FAST and rotated BRIEF 
(ORB) (Rublee et al., 2011). The feature descriptors can be 
seen as the signature of the point, based on, we want to 
compare the points across different images and find those 
whose signature is similar and thus are likely correct 
matches. Brute force matching, nearest-neighbour ratio, and 
local sensitivity hashing (Li et al., 2015) are widely used as 
matching methods, yet there is still uncertainty in feature 
matching. Therefore, outlier rejection is an essential step in 
any application; in other words, refining the 
correspondences by removing the false positive matches is 
of great interest. RANSAC algorithm (Brown et al., 2005) 
used for outlier detection is the most widely used robust 
approach in photogrammetry and computer vision for outlier 
detection, which is typically used to estimate the 
Fundamental, Essential, and Homography matrices. 
Removing the outliers early on leads to enhancing all the 
subsequent steps in photogrammetry and computer vision, 
such as triangulation, bundle adjustment and correctly 
estimating the Fundamental, Essential, and Homography 
matrices (Yang and Li, 2013). The traditional way to reject 

the false positive matches relies on RANSAC (Brown et al., 
2005; Turcot et al.,2009; Zhang et al., 2011). When there is 
a higher number of the sample points that don’t fit the model, 
the RANSAC method may perform poorly and number of 
iterations could dramatically increase. An image pair with a 
high outlier’s ratio, processed by using RANSAC can lead 
to a bad hypothesis and poor results even after many 
iterations (Bhattacharya et al., 2012). Before RANSAC was 
introduced, various methods have been developed and 
proposed in the statistics field, such as L-estimator, M-
estimator, and least median of squares (LMedS) (Fotouhi et 
al., 2019). RANSAC simply iterates two steps and is not as 
complex as an M-estimator which uses sophisticated 
optimization or needs huge memory, such as the Hough 
transform. LMedS needs a numerical optimization algorithm 
to solve such a nonlinear minimization problem. Different 
methods have been proposed to modify the original 
RANSAC and can be categorized into three main types of 
research objectives: being accurate, being fast, and being 
robust as shown in Figure 1 (Choi et al., 2009). In addition, 
there are some techniques that used different kinds of 
optimization techniques, such as particle swarm 
optimization (PSO) into RANSAC (PSOSAC) (Wu et al., 
2018), which is less sensitive to the correct rate than 
RANSAC or Genetic Algorithm Sample Consensus 
(GASAC) (Rodehorst and Hellwich, 2006; Shojaedini et al., 
2019).  
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Figure 1. RANSAC family 

 
Over time, different methods have been proposed to reject 
the false-positive correspondences and improve the 
RANSAC, such as GR_RANSAC (Elashry et al., 2021) 
which depends on the geometric relation between the 
features but requires adjustable thresholds based on the 
images’ relative orientation, SuperGlue (Sarlin et al., 2020) 
which learns feature matching based on Graph Neural 
Networks but needs to learn each feature based on all the 
features in the same image and the other image, and thus, it 
consumes more time, and LP-RANSAC (Wang et al., 2020) 
which uses RANSAC with locality preserving constraint. 
The specific objective of this study is to propose a filtering 
algorithm based on the Graph Networks, as a pre-processing 
step before RANSAC, which can result in improvements for 
rejecting the outliers and needs no variable threshold or to 
learn features, etc. The research here is based on the idea that 
descriptors of corresponding points, as well as their spatial 
relationship, should be similar in image sequences. After 
feature matching between two images, the points are 
scattered randomly in each image. Using Delaunay 
triangulation (Simon et al., 2005), a triangular mesh of the 
points in each image can be obtained from which we extract 
the graph information, such as the direct neighbours of each 
node and then build the adjacency matrix. Under the 
assumption that the similarity of the two-dimensional spatial 
relationships between points in the image domain of 
consecutive images should be similar, the neighbours of 
each point should be generally the same with the 
corresponding point in the other image. Otherwise, this point 
pair is a likely outlier. Similarly, the keypoints can be 
updated by their direct neighbours and compared with their 
corresponding ones using GNN, and if there is a significant 
difference, they will be outliers.   
 

2. GRAPH NEURAL NETWORK 

Over the past years, there has been a dramatic increase in 
interest in Graph Neural Networks (GNN) and rapid 
acceptance of GNN in many fields, such as Social Networks 
(Facebook, etc.), recommending/advising systems, medicine 
(classifying diseases) and pharmacy (learning molecular 
fingerprints, etc.) (Hamilton et al., 2018). The structure of 
the Graph (G) is defined by the nodes or vertices and 
connections between these nodes which are called edges, 

formally expressed as G = (N, E), which can be represented 
in an adjacency matrix (A), see Figure 2.  

 
Figure 2. Building the adjacency matrix 

 
The nodes or edges can have further properties which are 
called node features or edge features. In our case, the nodes 
are keypoints and their features are the descriptors. There are 
different types of operations/tasks, shown in Figure (3), that 
can be performed on graphs. First, node-level predictions or 
node classification simply means that if there is a graph with 
unlabeled nodes and we want to predict attributes about 
these nodes and classify them, then GNN will use the 
information from the other nodes in the graph to infer these 
unlabeled nodes. Another possibility is called link prediction 
or edge level prediction which predicts the connection 
between two nodes in the graph. Finally, we can use the 
whole graph as input and classify it or predict an attribute of 
interest.  

  
Figure 3: Different GNN operations 

 
There are modern deep learning toolboxes designed for 
simple sequences and grids as shown in Figure 4. 
 

  
 

Figure 4: Network structure vs image structure 
 
While graphs are generic, yet not everything can be 
represented as a sequence or a grid. For example, the 
networks or graphs have an arbitrary size and complex 
topological structure (i.e., no spatial locality like grids) and 
no fixed node ordering or reference point. The fundamental 
idea of the GNN is to train neural networks to be suitable for 
representation of graph data; this is called representation 
learning. Using all information about the graph, including 
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the node features and the connections stored in the adjacency 
matrix, the GNN outputs new representations which are also 
called embedding nodes as shown in Figure 5. These 
embedding nodes contain information from the other nodes 
in the graph. Then, the embedding can be used to perform 
predictions. Similar nodes meaning nodes with similar 
features will lead to similar node embedding, same way 
similar graph will lead to similar graph embedding by using 
GNN. Message passing layers are the core building blocks 
of the graph neural networks, they are responsible for 
combining the node and edge information into the node 
embedding.   
 

 

 
 

Figure 5:  GNN structure 
 
The basic idea of GNNs is to learn the embedding nodes by 
iteratively combining the node information in a local 
neighbourhood; in other words, the nodes learn something 
about the direct neighbours then the neighbours’ neighbour 
and so on.  
 
The message passing layers consist of update and 
aggregation functions:  

ℎ௨
ሺାଵሻ ൌ 𝑈𝑃𝐷𝐴𝑇𝐸ሺሻ ൬ℎ௨

ሺሻ,𝐴𝐺𝐺𝑅𝐸𝐺𝐴𝑇𝐸ሺሻ ቀቄℎ௩
ሺሻ,∀𝑣

∈ 𝑁ሺ𝑢ሻቅቁ൰ 

Aggregation uses the information of the direct neighbours of 
a node u and aggregate them in a specific way and then 
update the current state in step k and combine them with the 
aggregated neighbour states. In previous studies, several 
researchers have developed different methods of 
aggregation and update functions in the message layers. 
Different types of GNN layers perform diverse aggregation. 
The simplest formulations of the GNN layer, such as Graph 
Convolutional Networks (GCNs) (Kipf and Welling, 2017) 
or GraphSage (Hamilton et al., 2017.) execute an isotropic 
aggregation, where each neighbour contributes equally to 
updating the representation of the central node. Graph 
Attention Networks (GATs) (Veličković et al., 2018) was 
selected for this study which assigns different importance to 
each neighbour’s contribution as anisotropic operations, so 
the features of neighbour nodes are not considered in the 
same way, unlike other GNNs techniques. 
 

3.  GRAPH ATTENTION NETWORKS (GAT). 

The GAT depends on the attention-based architecture which 
assigns different importance to each edge through the 
attention coefficients as shown in Equations 1-4.  
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where σ is an activation function, which introduces non-
linearity in the transformation, and W is the weight matrix of 
learnable parameters adopted for feature transformation. The 
processing steps are: 
 
 Equation (1) is a linear transformation of the lower 

layer embedding h_i.  
 Equation (2) determines a pair-wise attention score 

between two neighbours, where || denotes 
concatenation. 

 Equation (3) applies a SoftMax to normalize the 
attention scores on each node’s incoming edges.  

 Equation (4) is GCN aggregation, the embedding 
from neighbours are aggregated together, scaled by the 
attention scores.  

 
4. RANSAC ALGORITHM 

The RANSAC algorithm used for outlier detection (Yang 
and Li, 2013) is known that the outlier ratio primarily 
determines the number of trial runs needed, which 
eventually, determines the computation time. RANSAC 
simply iterates two steps: pick minimum random samples 
that fit the model and verify it to the data. The points that are 
less than the threshold will be classified as inlier points and 
otherwise they will be counted as outliers. These steps are 
repeated till a specified iteration number is reached. 
Knowing statistical parameters, the minimum iteration 
number can be estimated by the following equation: 
 

M ൌ
logሺ1 െ pሻ

log ሺ1 െ ሺ1 െ eሻୱሻ 
 

  
p…. indicates the probability that all the points in the sample    

are inliers, 
s….  number of the random sample points, 
e.....  the outlier ratio, 
M… the number of iterations. 
 
Clearly, the number of iterations heavily depends on the 
outliers’ ratio in the dataset and the number of the sample 
points. Note that the second parameter is less controllable, 
as it primarily depends on the image texture content. With a 
lot of false positive matches (large outlier ratio) in the 
matched list, many iterations may be required before 
RANSAC can find the correct hypothesis. 
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5. THE PROPOSED ALGORITHM 

Our former work (Elashry et al., 2021) used the geometric 
relation between points based on their spatial relationship 
that should be similar in image sequences in the image 
domain. For example, the distances and the angles between 
the points should be similar in the image sequences where 
the difference between images is not big (high overlap). A 
point with a high ratio test score is a reference point in each 
image which measures the distance and angles between this 
reference point and all the points, and then, comparing these 
values, if there is a significant difference between the point 
pairs, they will be outliers. Note that this method forced us 
to set up a threshold depending on the relative closeness of 
orientation between the images. In this study, we propose 
two algorithms based on the spatial relationship that should 
be similar in image sequences in the image domain. So, the 
direct neighbours of each point should be the same as its 
correspondence in the other image. Otherwise, these two-
point pairs will be outliers, as shown in Figure 6 in addition 
to the point descriptors. 

 
                  (a) Point distribution in two images 

 

 
(b) Feature Matching 

 
Figure 6: The distribution of the points in two consecutive 

images and their feature matching 
 
After feature matching between the two images, Delaunay 
triangulation is used to create a triangular mesh of the points 
in each image, and then, we extract the graph information, 
i.e., the direct neighbours of each node to build the adjacency 
matrix as shown in Figure 7.  
 

 
Figure 7: Building a graph based on the adjacency matrix 

 
Algorithm I:  
After building the graphs in the image sequences. The direct 
neighbours of each point should be the same as the direct 
neighbours with their corresponding point in the 2nd image. 
So, if there are any significant changes in the direct 
neighbours the two-point pairs will be considered as outliers 
and rejected from the dataset; the algorithm shown in Figure 
8. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Figure 8:  Algorithm I graph network RANSAC 
(GN_RANSAC) 
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Algorithm II:  
We propose an algorithm (GNN-RANSAC) as shown in 
Figure 9 to reject any false positive correspondences that 
might be found after performing Algorithm I. Note that this 
algorithm can be used separately, as it only depends on 
updating the point or the node feature with the direct 
neighbours’ features using the GAT Networks that gives the 
node neighbours different importance based on the Euclidian 
distance between them. The GNN outputs are nodes 
embedding which contain information from its neighbours. 
Finally, the embedding can be used to perform predictions, 
such as similar nodes (Keypoints) meaning nodes with 
similar features will lead to similar node embedding. So, the 
correspondences should have the same embedding nodes 
and become inliers otherwise they are outliers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: The 2nd proposed algorithm graph neural 
network RANSAC (GNN_RANSAC) 

 
 

6. RESULTS 

The purpose of our proposed algorithms is to reject the false-
positive matches to reduce the outlier ratio and make 
RANSAC execute faster; the method exploits the geometric 
relation between the features and how the features get 
updated from their neighbours. For testing, we used two 
datasets, the Oxford landmark dataset which has images with 
different orientations and then the SPIN lab dataset which 
contains image sequences; both datasets were used to 
evaluate the performance of our algorithms. The algorithms 
were applied to several image pairs to remove the outliers, 
as shown in Figure 9. If the point in the 1st image has more 
than two neighbours different from the neighbours of its 
corresponding one, these pairs will be outliers. 

 
                                  (a) Matched pairs 

 
(b) Inliers pairs 

 
(c) Outlier’s pairs 

 
(d) Indoor Matched pairs 

 
(e) Inliers Pairs 

 
(f) Outliers Pairs 

Figure 10: Executing the algorithms on the image pairs 
Oxford dataset (a-c) and SPIN lab dataset (d-f) 
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Applying the algorithms to several image pairs in a sequence 
or with different orientations allows to judge the 
performance of rejecting the false-positive matches from the 
image pairs. Removing the outlier pairs leads to reducing the 
outlier ratio and increasing the probability that the samples 
are inliers which makes RANSAC execute faster, as shown 
in Figure 10. 

  
a. Graph Network Algorithm applied to reject the 

outliers 

 
b. Graph Neural Network Algorithm applied to reject 

the outliers 

 
c. Computation time of the two algorithms 

 
Figure 10: Applying the algorithms to image pairs of 

different orientation  
 

As can be seen from Figure 10, the two algorithms are 
applied to different image pairs. Looking at Figures 10a-b, it 
is apparent that when we used the Graph Neural Network 
algorithm standalone, it reduces the number of outliers and 
thus the dataset must help the RANSAC execute faster; 
especially, in image sequences. The GN algorithm 
experimental results indicate that it works well not only for 
image sequences but also on image pairs with different 
orientation. Figure 10c compares the computation time 
which is a relatively small difference between the two 
algorithms. 
 

7. CONCLUSION  

In conclusion, the study contributes to our understanding of 
the importance of rejecting false matches from the matched 
point pairs set based on exploiting the two-dimensional 
relationships between keypoints in the image domain.  We 
tested two different techniques, GN and GNN and both give 
us good results that make the RANSAC algorithm on 
different datasets work faster than before. The GNN 
algorithm removes more mismatching pairs in image 
sequences than Algorithm I as shown in Figure 10, and thus 
makes the remaining pairs are more likely to be considered 
as inliers. When the dataset with significant orientation 
differences such as the Oxford dataset, Algorithm I is more 
reliable than Algorithm II, due to the larger distance between 
the nodes, so the importance of the neighbours will be 
different in both images. After removing the outliers, the 
outlier ratio will decrease, and consequently, the number of 
iterations decreases dramatically which will be reflected in 
the computational time. The computer vision and 
photogrammetry applications can benefit from the proposed 
algorithms due to the importance of the execution time that 
is critical to many computer vision applications. 
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