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ABSTRACT:

Deep learning (DL) algorithms are widely used in object detection such as roads, vehicles, buildings, etc., in aerial images. However,
the object detection task is still considered challenging for detecting complex structures, oil pads are one such example: due to its
shape, orientation, and background reflection. A recent study used Faster Region-based Convolutional Neural Network (FR-CNN)
to detect a single oil pad from the center of the image of size 256 x 256. However, for real-time applications, it is necessary to detect
multiple oil pads from aerial images irrespective of their orientation. In this study, FR-CNN was trained to detect multiple oil pads.
We cropped images from high spatial resolution images to train the model containing multiple oil pads. The network was trained
for 100 epochs using 164 training images and tested with 50 images under 3 different categories. with images containing: single oil
pad, multiple oil pad and no oil pad. The model performance was evaluated using standard metrics: precision, recall, F1-score. The
final model trained for multiple oil pad detection achieved a weighted average for 50 images precision of 0.67, recall of 0.80, and
f1 score of 0.73. The 0.80 recall score indicates that 80% of the oil pads were able to identify from the given test set. The presence
of instances in test images like cleared areas, rock structures, and sand patterns having high visual similarity with the target resulted

in a low precision score.

1. INTRODUCTION

In the recent past, deep learning (DL) algorithms are the most
popular technique used in computer vision for object detection
tasks. However, object detection tasks such as complex man-
made structures are still considered to be one of the most chal-
lenging tasks for DL algorithms. Many man-made objects ap-
pear small in aerial images and often blend with surrounding
features, which makes their discrimination challenging. Ob-
jects when viewed from a top-down perspective can be orient-
ated facing any angle (Mo and Yan, 2020). Thousands of im-
ages are necessary to train most DL networks which could be
a challenge for some applications. With the aforementioned
challenges and uses in real-life applications, object detection
for aerial images is a popular field of research.

There are several DL-based object detection algorithms (Osco
et al., 2021), (Jiao et al., 2019) like YOLO9000 (Redmon and
Farhadi, 2017) , SSD (Liu et al., 2015), and Faster R-CNN
(Ren et al., 2015) that can be used for identifying objects in
aerial images. Object detection applications in aerial images in-
clude vehicle detection (Ajay et al., 2017) (Mo and Yan, 2020)
(Mohan et al., 2018), weed identification (Bah et al., 2018),
estimation of the extent of floods from crowd sourced images
(Geetha et al., 2017), etc. (Bah et al., 2018) used an unsuper-
vised learning approach with CNN to detect weeds from drone
images. The challenges mentioned were the target annotation
and the similarity between the weed as target and the crops as
background making it difficult for deep learning algorithms to
distinguish them. (Mo and Yan, 2020) addressed the issues of
vehicles being small in size and having class imbalance issues
caused by different numbers of objects in the vehicle classes.
The issues were addressed by creating a new dataset, adding
more vehicles and stitching them to the images to artificially

augment data. With some modifications to the pooling opera-
tion and with a joint training loss function modified done for
the Faster R-CNN, the results were improved by 8% compared
to the original Faster R-CNN network.(Ho et al., 2019) used
Faster R-CNN (Girshick et al., 2016) to detect watermelons for
estimating the yields. In that study the canvas(background) and
the watermelon were very similar, but Faster R-CNN was still
able to distinguish the target from the background. So Faster R-
CNN is effective in finding targets when background reflection
and the reflection from the target is similar.

(Sunil et al., 2021) investigated the potential of Faster R-CNN
for detecting a single oil pad from an input image. The model
is trained with input images of size 256x256 containing a single
oil pad located at the center of the image. The model predicted
an output image with a bounding box if an oil pad is present
in the image. As initial work, this study showed that the Faster
RCNN model is capable of detecting oil pads from aerial im-
ages. However, this study did not investigate the performance
of the model while multiple oil pads with varying orientations
and the presence of other visually similar features like rock,
sand cleared areas. Further the model proposed by (Sunil et
al., 2021) is limited to an input image size of 256x256 which
cannot cover a large area with in a single image.

There can be several oil pads spread across a region, as oil ex-
traction is important for Wyoming’s economy. Hence it is im-
portant for the authorities to keep track of them. For real-world
applications, it would be necessary for a model to detect mul-
tiple oil pads from aerial images irrespective of their location
(oil pad located anywhere in the image). Figure 1 is an image
of an oil pad taken from Google Earth. The objective of this
study is to identify multiple oil pads irrespective of their ori-
entation, presence of visually similar background features, and
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Figure 1. Example of oil pad from google earth.

varying position of the oil pad within the frame of the aerial
images. In an aerial image the model must identify and return
the locations of all oil pads present in the image marked by a
bounding box. In this study, we trained a Faster R-CNN net-
work with 1024x1024 input images which can detect multiple
oil pads in any orientation from the provided input image.

2. MATERIALS AND METHODS
2.1 Multiple oil pad dataset

The images are downloaded from the Wyoming GIS Center,
University of Wyoming, USA. The images in the dataset were
captured by manned aircraft flown over Wyoming, USA. The
captured images are of high spatial resolution (Im x 1m), con-
taining 4 bands (Red, Green, Blue and infrared) and they have
the longitude and latitude coordinates embedded in each pixel
(Geo-tagged images). The images used in this study were ac-
quired in 2017. These images contain multiple oil pads, man-
made structures (storage tanks, approach roads and vehicles)
and natural vegetation and soil cover.

2.2 Dataset preparation

The aerial images contain multiple oil pads, interconnecting
roads and other structures such as abandoned oil pads, rock
structures and shrubs. The required images were cropped from
the large aerial images to images of size 1024x1024 with the
help of GNU Image Manipulation Program GIMP software
(The GIMP Development Team, 2019). Only the color bands
(red, blue and green) is used in this study. The cropped images
were split into the training set and the validation set. The train-
ing set contains 41 images containing 79 oil pads in total. The
validation set contains 50 images with 47 oil pads in total.

2.3 Image Annotation

Assigning metadata to the image with the location of the target
is called data annotation. Adding the metadata is important as it

enables the model to learn about the desired features. The most
commonly used annotations are bounding boxes, key points,
lines and segmentation. Drawing bounding boxes on the aerial
images is difficult as the targets is might be small and might
not be clear or since the target might be located at the edge of
the image. Structures will appear clearer in Google Earth than
our dataset, as the pixel resolution of the images is better on
Google Earth. The annotation is guided with help of Google
Earth images, with the latitude and longitude from training im-
ages were used to verify the annotated region in training im-
ages. We looked up the coordinates on Google Earth, to con-
firm if the cleared area is an oil pad or not. The coordinates
were extracted from the pixels of the image with ERDAS soft-
ware (Saxena, 2015). On confirming the locations of the oil
pad, we proceeded to annotate the oil pads in the input images.
For this study, we used a rectangular bounding box, fitting the
cleared area around the oil pad including the portion of the ap-
proach road. The annotation was done with the help of a tool
called the VGG image annotator (VIA) (Dutta and Zisserman,
2019) tool. The annotation was completed as shown in Figure
2. The region inside the bounding box is considered as the re-
gion of interest (ROI). The training set was annotated and then
passed to the model as input. The model learns from the ROI
and can recognize the patterns when presented with an unla-
belled test image. The annotation is also similarly done for the
validation set to calculate the IoU score to evaluate the model
performance.

Figure 2. Input image with multiple oil pads used for training
the model.

3. METHODOLOGY
3.1 Data Augmentation

There were 41 images containing 79 oil pads for training. In
order to improve the performance of the model, data augmenta-
tion techniques were used. Random rotation augmentation, one
of the geometric augmentation techniques, was used where the
pixels of the input images were rotated to degrees: 90, 180 and
270. For each degree rotation, pixels in the images were rotated,
hence the corresponding bounding boxes have to be adjusted.
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By implementing the data augmentation techniques the number
of images was increased to 164 and the number of oil pads in
the training set was increased to 316.

3.2 Faster R-CNN for multiple oil pad detection

This network comes from the family of R-CNN-based (Gir-
shick, 2015) (Girshick et al., 2013) object detection algorithms.
Faster R-CNN is less time-consuming than prior versions, the
Fast RCNN(Girshick, 2015). Faster R-CNN requires less time
for processing data, and it is also more accurate than its previous
versions. The presence of a region proposal network (RPN) in
Faster R-CNN distinguishes it from earlier versions (Girshick,
2015). RPN is a proposal network used to predict where the
target is present in the image. The convolutional neural net-
work (CNN) receives the input image. The output is a feature
map that corresponds to the input of the CNN. The feature map
is passed on to the RPN layer which generates the appropri-
ate anchors that helps the network to find where the oil pad is
located in the image. The region with the oil pad is marked
as foreground class and the remaining regions is considered as
the background class by the network during training. The RPN
layer is capable of finding the locations of the targets present
anywhere in the image. Then using image classification and
bounding box regression, the feature maps are categorized and
the required features in the bounding boxes are learned by the
model during training.

The Faster RCNN network in this study uses ResNet-50 (He
et al., 2015) for the RPN layer. Anchor boxes of varying sizes
were used as the size of the oil pad can vary. The training set
to the model contains images with multiple oil pad and their
corresponding annotations in a JSON file. Both the images and
the JSON is given as input for training the model. The initial
model was trained with the ResNet-50 pre-trained weights for
300 epochs with each epoch running for 1000 iterations. The
best performing epoch was used as the initial weights for the
transfer learning model, which was trained for 100 epochs with
each epoch running for 1000 iterations. From the transfer learn-
ing model, the best preforming epoch was chosen based on the
minimum loss averaged over randomized validation images.

3.3 Segregation of images into different categories

The validation set consists of 50 images which were split up
into 3 categories based on the number of oil pads present in the
images. The categories were: no oil pad, single oil pad and
multiple oil pad. By segregating the validation set into differ-
ent categories, analysis can be done on the performance of the
model subjected to different conditions. The validation set was
not seen by the model during training. For the no oil pad set,
under perfect conditions, the trained model must not return any
bounding boxes. For the single oil pad set, the oil pad can be
located anywhere in the images. This is to verify if the trained
model is capable of detecting the oil pad in any location. For
the multiple oil pad set, there can be multiple oil pads in a single
frame of the image with other structures. This is to see if the
model is effectively able to detect multiple oil pads from other
visually similar features.

After training the proposed model, the model performance was
calculated using standard metrics. The standard metrics are pre-
cision (1), recall (2), F1 score (3) and average IoU (4). The
metrics were calculated for each of the categories of the valid-
ation set. In the present work, there is only 1 target class: oil
pad. The true positive (TP) indicates the number of oil pads that

were correctly detected by the trained model. The false positive
(FP) indicates the number of objects that were falsely identi-
fied by the trained model as an oil pad. The false-negative (FN)
indicates the number of oil pads that were not detected by the
network. The true negative (TN) is not being calculated as there
is only 1 target.
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4. RESULTS AND DISCUSSION

4.1 Faster R-CNN Training

The initial model was trained for 300 epochs with pre-trained
ResNet-50 weights that was downloaded before training. The
211th epoch had the least loss, was picked and performance
was evaluated. The 211th epoch was used as initial weights for
the transfer learning model and trained for 100 epochs with the
remaining model parameters being kept the same. Epoch 1 of
the transfer learning model returned with the least loss. The
Epoch 1 model was evaluated on the validation images. For the
validation the output of model with confidence level above 80%
is taken

4.2 Validation Category

The categories contained 20, 20 and 10 numbers of images for
no oil pad, single oil pad and multiple oil pad sets correspond-
ingly. The model was evaluated for each category-wise and the
result are tabulated.

Figure 3 and Figure 4 shows the model predictions for a few
images of the validation set. The colored rectangular bounding
boxes are the model’s prediction of an oil pad. With the inclu-
sion of data augmentation and transfer learning, the model res-
ults have been improved and the misclassifications have been
reduced compared to the initial model without transfer learn-
ing. The initial model tends to misclassify the roads and other
patches on the ground as oil pads. The present model tends to
identify some of the cleared areas as oil pads (Figure 4). Some
cleared area also tends to have the shape similar to that of the
oil pad.

Figure 5 and Figure 6 shows the set of images from no oil
pad set with only abandoned oil pads and the roads connecting
them. On the other hand, the model was able to distinguish well
between a working oil pad and an abandoned one. Model mis-
classified abandoned oil pads as active ones when green patches
of vegetation in them (Figure 6). The results obtained were bet-
ter in comparison to the initial model.

The model was able to detect 85% of the oil pad in single oil
pad set and 76% of the oil pad from the multiple oil pad set.
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Figure 3. Model prediction on validation image from single oil
pad set with 1 oil pad and rock structures.

oilpad: 89

oilpad: 87

Figure 4. Model prediction on validation image from multiple
oil pad set with 2 oil pads and naturally found cleared area.

Actual Class
Predicted Class | Positive | Negative
Positive 0 (TP) 9 (FP)
Negative 0 (FN) nil

Table 1. Confusion matrix for no oil pad set, to see if the model
returns any false detections.

In Table 1, Table 2 and Table 3, the true negative (TN) class
cannot be calculated as there is only oil pad as a target class
in the ground truth. In Table 1, the model misclassified other
structures as an oil pad. Even though there was no oil pad in

Figure 5. Model prediction on validation image from no oil pad
set with abandoned oil pad and roads.

oilpad: 86

oilpad: 96

Figure 6. Model prediction on validation image from no oil pad
set with abandoned oil pads with green patches and roads.

Actual Class
Predicted Class | Positive | Negative
Positive 17 (TP) 9 (FP)
Negative 3 (FN) nil

Table 2. Confusion matrix for single oil pad set, to see if the
model is capable to detecting oil pad located anywhere in the
image.

those images, there were a few structures similar to the oil pad
that mislead the model. The same is observed for the results
in Table 2 and Table 3. The model tends to misclassify some
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Actual Class
Predicted Class | Positive | Negative
Positive 20 (TP) 9 (FP)
Negative 6 (FN) nil

Table 3. Confusion matrix for multiple oil pad set,to see if the
model is able to detect multiple oil pads effectively in a single

frame.
Test Precision | Recall | F1 Score | Avg IoU
Category
Single 0.65 0.85 0.74 0.69
oil pad
Multiple | 0.68 0.76 0.72 0.65
oil pad

Table 4. Precision, recall, F1 score and average IoU for single
and multiple oil pad set.

Categories No of false detection
Cleared Area 12

Rock Structures

Sand Patterns and shrubs
Abandoned oil pad

Road Intersection

N W[ WLk

Table 5. Precision, recall, F1 score and average IoU for single
and multiple oil pad set.

structures that have visually similar features as an oil pad. The
standard metrics for single and multiple oil pads obtained by
the proposed method are tabulated in table 4. For both cases,
the recall score is high, as very few of the oil pads were not
identified by the model.

For a better understanding, all the false positives from the val-
idation set are grouped in Table 5. Cleared area contributed to
the most false positives, as the cleared area appears very similar
to an oil pad. Some of these false positives contribute to the low
precision scores for the single and multiple oil pad set.

5. CONCLUSION AND FUTURE WORK

Faster R-CNN model is capable of detecting multiple oil pads
from aerial images with different shape, size and orientation. It
is able to distinguish between a working oil pad and an aban-
doned one. The model also does not misclassify between road
and oil pads by applying the transfer learning approach and data
augmentation. With 65% and 68% precision scores, it indicates
the potential of getting better results, upon reducing the number
of false positives. With 85% and 76% recall scores, it indicates
the model is able to identify oil pads from different scenarios.
There were plenty of cleared area that look very similar to that
of an oil pad which majorly mislead the model and contributed
to the low precision scores.

The limitations mentioned above can be addressed in future
work. The future work may include multi-class segmentation,
moving away from the bounding box approach. Using the dif-
ferent categories that were identified by grouping the false pos-
itives together. By using these categories as target classes for

training, we expect the model to learn the differences between
each class during the training process. In turn reducing the
number of false positives in the process.
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