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ABSTRACT: 
 
Deep Learning algorithms are increasingly used for mapping waterbodies in remotely sensed images. DeepLabV3+ is an image 
segmentation method that includes ASPP and encoder-decoder to retrieve pyramid spatial features at different scales and structural 
information respectively. Previous studies have shown that DeepLabV3+ can accurately map waterbodies in false colour infrared 
images. However, ability of DeepLabV3+ for extracting waterbodies in RGB images is unknown. This study tested DeepLabv3+ 
algorithm to extract waterbodies in the RGB bands. Sentinel 2A/B images (n = 2841) and their corresponding annotations were 
downloaded from Kaggle (host of public datasets) and subset images (n = 10405) of 100 x 100 pixels were cropped. From these 
subset images, 8941 were used for training and validation and 1464 were used for testing the trained model. Dice and 
Jaccard/Intersection over Union (IoU) were used for evaluating the output generated by the model. The network was trained for 50 
epochs with 32 iterations in each epoch. The model trained at the end of 30th epoch was selected as final based on minimum 
information loss (0.0743). The average Dice and Jaccard/IoU scores for the output images were 0.8412 and 0.7169 respectively. The 
high scores obtained in this study indicate that DeepLabV3+ can be used for identifying waterbodies in RGB or true-colour images. 
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1. INTRODUCTION 

Remotely sensed data are used for monitoring changes in water 
bodies and other earth surface features. Previous studies have 
reported the importance of the spectral information collected in 
the infrared regions for classifying pixels corresponding to 
water class in satellite and aerial images. Normalized Difference 
Water Index (NDWI) (McFeeters, 1996) and Modified NDWI 
(MNDWI) (Xu, 2006) are commonly used spectral indices for 
distinguishing pixels corresponding to water bodies. These 
indices measure the difference in the spectral information 
collected in green and near-IR (NDWI) or mid-IR (MNDWI) 
bands respectively. However, not all sensors collect spectral 
data in the infrared regions. Hence, it is not possible to compute 
NDWI and MNDWI values from the images they acquire. 

 
Distinguishing pixels corresponding to water bodies in RGB 
images is relatively difficult with statistical/pixel clustering 
techniques because of the spectral overlap between earth surface 
features. Variations in water quality (turbidity, presence of 
floating biological materials) can increase this overlap, making 
it difficult to classify water bodies from other surface features in 
RGB images. 
 
Newer methods that rely on pattern recognition has shown to 
overcome many of the limitations associated with traditional 
image classification methods for distinguishing earth surface 
features in remotely sensed images. Mainly, Deep Learning 
(DL) methods has shown improvements in various applications 
under airborne and space borne platforms. Mohan et al. (2018) 
used advanced DL methods on aerial images for vehicle 
detection using Alexnet and VGG-16, epiphyte segmentation 

(Shashank et al., 2020) and effect of annotation and loss 
function (Aswin et al., 2021). Sunil et al. (2021) used Faster R-
CNN network to identify oil pads in high resolution aerial 
images. Previous Studies have reported that DL methods were 
able to better distinguish surface features in remotely sensed 
images and achieve accuracy. DL methods assign class label to 
image pixels to understand higher-level semantics. Several DL 
methods have been used for identifying and classifying water 
body in remotely sensed images.  
 
Zhang et al. (2007) used layered feed-forward Neural Network 
classifier to classify pixels corresponding to water bodies in 
Landsat Thematic Mapper (TM) images. Isikdogan et al. (2017) 
proposed a Deepwater map technique to identify water pixels in 
Landsat images with different land cover classes and 
clouds/cloud shadows etc. Li et al. (2019) used FCN model to 
extract water bodies in VHR images collected by the GaoFen-2 
satellite. Dong et al. (2019) introduced SNS-CNN architecture 
which is the modified Unet to segment water bodies in optical 
remote sensing images downloaded from Google Earth™. 
Multi-scale feature extraction is a critical and important task in 
multi-spectral image segmentation. From the limitations of the 
above-mentioned methods which uses only normal convolution 
suffers from multi-scale feature extraction. Previous and recent 
studies demonstrate the importance and need for multi-scale 
feature extraction for classifying earth surface features in 
multispectral images. Atrous convolution-based models capture 
multi-scale information in cascade or parallel context by 
adopting multiple rates. DeepLabV3+ is one of those models in 
the DeepLab series which is a widely successful DL algorithm 
which fulfilled the need of multi-scale feature extraction. 
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1.1 Overview of DeepLab Neural Network 

DeepLab is a state-of-the-art segmentation model introduced by 
Google. DeepLabV1 is an advancement over the earlier 
standard models called Fully Convolutional Network (FCN) 
(Long et al., 2015) or several Deep Convolutional Neural 
Network (DCNN). One of the limitations of DCNN was the 
reduced spatial resolution in the output feature maps. To address 
this limitation, DeepLabV1 removed the down-sampling 
operator from the last few pooling layers of DCNN and replaced 
it with atrous convolution layer to increase the sampling rate. 
After acquiring the input images, DeepLabV1 passes them 
through DCNN followed by a couple of atrous convolution 
layers resulting in a coarse-grained feature map. Bilinear 
interpolation techniques are used for recovering the images in 
original spatial resolution. DeepLabV2 uses Atrous Spatial 
Pyramid Pooling (ASPP) and applies atrous convolution with 
different sampling rates to the feature map generated by DCNN. 
It enables to account for information captured at different scales 
and improves accuracy. DeepLabV3 uses an improved ASPP 
that includes batch normalization and image-level features. One 
of the main challenges in image segmentation is to capture 
sharper object boundaries. DeepLab3+ addresses this challenge 
by introducing a decoder in it which was not present in the 
earlier versions of DeepLab models. 
 
 

 
 

Figure 1. Overview of DeepLabv3+ Architecture – Consisting 
of Encoder-Decoder with Atrous Spatial Pyramid Pooling. (a) 

Xception is the Encoder for generating features. (b) Atrous 
spatial pyramid pooling in which atrous convolution is 

employed at multiple rates on the features generated by the 
encoder. Decoder is to upsample the relevant features generated 

by encoder. 
 

DeepLabV3+ consists of an encoder-decoder (Ronneberger, 
2015) architecture with ASPP (He et al., 2015) in between the 
encoder and decoder modules (Figure 1). Encoder captures 
texture information including edges followed by pooling 
operations to reduce the spatial dimension of feature maps. 
Decoder recovers the detailed information of the feature maps 
and the corresponding spatial dimension by up sampling the 
features. This encoder-decoder architecture proved to be useful 
for various applications. DeepLabV3+ architecture that 
combines the encoder-decoder and ASPP was introduced by 
Chen et al. (2018). 

 
Xception is used as the encoder network (Figure 1) in 
DeepLabV3+ network (Chen et al., 2018). Encoder network 
gradually reduces the size of the feature maps and captures 
high-level sematic information. In this network, output stride is 
defined as the ratio of input image resolution to the final output 
resolution. ASPP (Figure 1) encodes multi-scale information 

through several rates using the atrous convolution followed by 
pooling those multi-scale features. First atrous convolution is 
applied over the input feature map with rate r that corresponds 
to the stride with which the filter must move. The value of r 
assigned is directly related to the dimension of the input image. 
For smaller images (e.g., 100 x 100 pixels), low r values (2 and 
4) are assigned. Higher r values (6, 12, 24 etc.) will be assigned 
for larger images (256 x 256, 512 x 512). Finally, decoder 
(Figure 1) reads the features generated by the encoder after 
applying atrous convolution at multiple rates. Features are up 
sampled and concatenated with the low-level features generated 
in the encoder part. 
 
This study tested whether DeepLabV3+ can correctly identify 
pixels corresponding to water bodies using only the RGB (true 
color) bands acquired by the sensors onboard Sentinel 2A/B 
satellites. 
 
 

2. MATERIALS AND METHODS 

2.1 True colour satellite and mosaic images 

Escobar published the RGB bands of Sentinel-2 images of water 
bodies in Kaggle (Escobar, n.d) under “Satellite images of water 
bodies”. This is a publicly available dataset consisting of 2841 
images in different dimensions ranging between 69 x 5 and 
6683 x 5640 pixels. This dataset consisting of RGB and their 
corresponding mask images was downloaded as a single 
compressed file (247 MB). The masks were generated with 
Normalized Difference Water Index (NDWI) derived from 
bands 8 and 3 of the Sentinel-2 A/B satellite. Pixels 
corresponding to water are highlighted in white colour while the 
rest of the features are represented in black (background). Water 
bodies in these images represented clear and turbid water, and 
in different proportions. Majority of the images were in good 
quality (contrast) whereas 5% of the images were in poor 
quality (contrast or haze). 
 
2.2 DeepLabV3+ network 

The current version of DeepLabV3+ network was downloaded 
from GitHub (Tomar, 2021) as a single zip file. The zip file 
consisted of separate sub-folders for input images, model 
architecture, training the model, predicting output and 
evaluation measures as Phython-3.9 script files. These files 
were initially downloaded to a Windows 10 laptop (Intel core 
i5, 8th Generation, 1.60 GHz, 64 bits processor with 8 GB 
RAM). Script files were edited in Notepad++ and were 
uploaded to a LINUX kernel-based server with Ubuntu 10.04.6 
LTS which was remotely accessed through the Windows 10 
laptop. 
 
2.3 Training and Test images 

Sentinel-2 A/B images and their corresponding masks were 
cropped (pixel dimension of 100 x 100) resulting in 10405 
images. Approximately 15% of the subset images were set aside 
as test images (n = 1464). The rest of the subset images (n = 
8941) were split in 8:2 ratio for training and validating the 
DeepLabV3+ network.  

 
2.4 Training the DeepLabV3+ network 

DeepLabV3+ network was set to train for 50 epochs with 32 
iterations within each epoch. During the training process, 
weights and bias values are passed and adjusted using an 
optimizer. Weight is a learnable parameter that transforms input 
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image/data. Bias is a constant that helps the network that can fit 
best model for the given input images. The network has several 
filters/kernels that performs the convolution, and outputs a 
feature map from each of the convolution layers along with the 
weights. These weights are updated during the back-propagation 
process. The total number of learnable/trainable parameters 
from DeepLabV3+ network is 41044130. Based on the loss at 
the end of each epoch, the learnable parameters were adjusted. 
The training loss indicates if the model can fit the training data 
i.e., whether the model has enough information to process the 
required information from the input images. The validation loss 
indicates how well the model is able to predict the validation 
images.  
 
2.5 Model evaluation 

Test images (n = 1464) were used for evaluating the 
performance of the trained DeepLabV3+ model. Jaccard and 
Dice scores were computed using the True Positive (TP), False 
Positive (FP), and False Negative (FN) values.   

Jaccard index or Intersection over Union (IoU) measures the 
similarity between the model predicted output and NDWI 
generated mask images, and is computed using the following 
equation: 

      Jaccard score = (TP) / [(TP) + (FP) + (FN)]                       (1) 

Dice index or F1 score is twice the intersection of mask and 
predicted images over the sum of the pixels. It varies from 
Jaccard index which only counts the TP values once in the 
numerator and denominator.   

      Dice score = (2 x TP) / [(2 x TP) + (FP) + (FN)]               (2) 

Both scores are used as a similarity measure between the model 
predicted and mask images, and range between 0 (no similarity) 
and 1 (high similarity). In this study, the evaluation metrics for 
the water class were computed and reported. 

 
 

3. RESULTS AND DISCUSSION 

3.1 Training and Validation loss 

Training loss was high until the fifth epoch which indicated that 
the DeepLabV3+ network learned few information from the 
input (training) images (Figure 2). After the sixth epoch, the 
network’s learning improved but there were fluctuations until 
15th epoch. This could be due to learning difficulties 
encountered by the model during the early epochs. 
 
The validation loss steadily declined until the 15th epoch. This 
could be a result of model overfitting the images used for 
validation. After the 15th epoch, the trained model was able to 
generate output (predicted) mask that better matched with the 
corresponding ground truth mask. The validation loss remained 
a constant at the end of the 25th epoch and until the 35th epoch. 
Minor fluctuations were noticed past 35th epoch. This could be 
due to the repetition of the validation samples after the 35th 
epoch because of learning patterns beyond the target (water) 
class. Learning patterns beyond the information included in the 
mask could result in higher validation loss values. 
 
 

  
Figure 2. Plot depicting training (blue line) and validation 

(orange line) losses  
 
The first minimum validation loss was reported at 25th epoch 
and remained stagnant until the 35th epoch. The trained model at 
the end of the 30th epoch was selected to evaluate the test 
images. The validation loss at the end of the 30th epoch was 
0.0743. The time taken for training and validating the 
DeepLabV3+ was 13 hours. The weights saved in the 
checkpoints were used for evaluating the 1464 test images. 
 
3.2 Evaluation of model performance 

Trained DeepLabV3+ model was evaluated on 1464 test 
images. The statistical summary of the Jaccard and Dice scores 
are listed in Table 1. 
 
 

Statistical summary of 
evaluation metrics 

Jaccard Dice 

Average 0.7169 0.8412 

Minimum 0 0 

Maximum 1 1 

Standard deviation 0.115 0.093 

 
Table 1. Statistical summary of the evaluation metrics obtained 
by comparing the DeepLabV3+ model predicted images to the 

NDWI derived mask images (n = 1464). 
 
 
The average Jaccard and Dice scores for the test images were 
0.7169 and 0.8412 respectively. The Jaccard/IoU is above 
average while the Dice score indicates very good agreement 
between the predicted and actual mask images. These scores 
indicate the trained model was able to predict most of the target 
pixels. However, the range of these metric scores indicate that 
there was a wide range of variation in the model’s ability to 
correctly predict the target class in the test images. The 
minimum score (0) indicates that the model failed to predict all 
target pixels in some images. The maximum score (1) indicates 
a perfect match between the model predicted output and NDWI 
derived mask images. 
 
Figure 3 highlights the results from select (n = 7) RGB, 
corresponding mask, and model predicted output images. Their 
Jaccard and Dice scores are included in the caption. 
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        RGB image             NDWI mask            Predicted image 

 

 

 
 

Figure 3. Select input RGB (left), corresponding NDWI derived 
mask (middle), and the trained DeepLabV3+ model predicted 
(right) masks. The Jaccard scores for the 7 sample images (top 
to bottom) were 0.8436, 0.9141, 0.7526, 0.4169, 0.3658, 0 and 

0 respectively. The corresponding Dice scores were 0.8924, 
0.9732, 0.8025, 0.5472, 0.4198, 0 and 0 respectively. 

 
 
From the sample images presented in Figure 3, it is evident that 
the DepLabV3+ model was able to correctly predict water 
(target) class under certain conditions. Irrespective of the 
number of target pixels (occupancy) in an image, the model 
correctly identified most of the target pixels in rows 1-3. These 
images were of good quality, and the water bodies were also 
relatively clear in them. 
 
In some images, DeepLabV3+ model identified both clear and 
turbid water pixels, more than the target pixels in the mask 
images (Figure 3, rows 4 and 5). Previous studies have shown 
that NDWI is less effective to identify turbid water. Hence 
NDWI generated masks could have excluded some or all of 
pixels corresponding to turbid water. This mismatch between 

the predicted and mask images would have resulted in lower 
Jaccard and Dice scores. 
 
When the overall image quality was poor due to haze or 
contrast, the DeepLabV3+ model was unable to identify any of 
the target pixels (Jaccard score = Dice score = 0). Since the 
mask images were generated with the NIR band, the quality of 
RGB bands did not influence the identification of water bodies. 
Since DeepLabV3+ was not trained with the NIR band, it was 
unable to correctly identify the water bodies in the poor-quality 
images. 
 
 

4. CONCLUSION AND FUTURE WORK 

Based on the results obtained in this study, DeepLabV3+ can be 
used for identifying pixels corresponding to water bodies in the 
RGB bands of the Sentinel-2A/B images. The predicted images 
were comparable to their corresponding mask images when the 
image and water quality were higher. 
 
Future work must focus on analysing the conditions that 
resulted in poor prediction, and suitable modifications have to 
be made to the training or validation steps. These modifications 
will improve the model’s ability to predict water bodies in poor 
quality images. 
 
 

ACKNOWLEDGEMENTS 

Authors thank Prof. K. P. Soman, Head, Center for 
Computational Engineering and Networking (CEN) at Amrita 
Vishwa Vidyapeetham, Coimbatore, Tamil Nadu, and UW 
Wyoming GIS centre for their valuable support. 
 
 

REFERENCES 

Aswin, S., Sajithvariyar, V., Sivanpillai, R., Sowmya, V., 
Brown, G. K., Shashank, A., Soman, K., 2021. Effect of 
annotation and loss function on epiphyte identification using 
conditional generative adversarial network. 2021 International 
Conference on Advances in Electrical, Computing, 
Communication and Sustainable Technologies (ICAECT), IEEE, 
1–6. DOI: 10.1109/ICAECT49130.2021.9392478. 
 
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 
2018. Encoder-decoder with atrous separable convolution for 
semantic image segmentation. Proceedings of the European 
Conference on Computer Vision (ECCV), 801–818. DOI: 
10.1007/978-3-030-01234-2_49. 
 
Dong, S., Pang, L., Zhuang, Y., Liu, W., Yang, Z., Long, T., 
2019. Optical remote sensing water-land segmentation 
representation based on proposed sns-cnn network. IGARSS 
2019- 2019 IEEE International Geoscience and Remote Sensing 
Symposium, IEEE, 3895–3898. DOI: 
10.1109/IGARSS.2019.8898367. 
 
Escobar, F., (n.d). “Satellite Images of Water Bodies”, 
https://www.kaggle.com/datasets/franciscoescobar/satellite 
images-of-water-bodies, CC BY-NC-SA 4.0, (6 June 2022). 
 
He, K., Zhang, X., Ren, S., Sun, J., 2015. Spatial pyramid 
pooling in deep convolutional networks for visual recognition. 
IEEE Transactions on Pattern Analysis and Machine 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-97-2022 | © Author(s) 2022. CC BY 4.0 License.

 
100



 

Intelligence, 37(9), 1904–1916. DOI: 
10.1109/TPAMI.2015.2389824. 
 
Isikdogan, F., Bovik, A. C., Passalacqua, P., 2017. Surface 
water mapping by deep learning. IEEE Journal of Selected 
Topics in Applied Earth Observations and Remote Sensing, 
10(11), 4909– 4918. DOI: 10.1109/JSTARS.2017.2735443. 
 
Li, L., Yan, Z., Shen, Q., Cheng, G., Gao, L., Zhang, B., 2019. 
Water body extraction from very high spatial resolution remote 
sensing data based on fully convolutional networks. Remote 
Sensing, 11(10), 1162. DOI: 10.3390/rs11101162. 
 
Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional 
networks for semantic segmentation. Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, 
3431– 3440. DOI: 10.1109/CVPR.2015.7298965. 
 
McFeeters, S. K., 1996. The use of the Normalized Difference 
Water Index (NDWI) in the delineation of open water features. 
International Journal of Remote Sensing, 17(7), 1425–1432. 
 
Mohan, V. S., Sowmya, V., Soman, K., 2018. Deep neural net- 
works as feature extractors for classification of vehicles in aerial 
imagery. 2018 5th International Conference on Signal Pro- 
cessing and Integrated Networks (SPIN), IEEE, 105–110. DOI: 
10.1109/SPIN.2018.8474153. 
 
Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: 
Convolutional networks for biomedical image segmentation. 
International Conference on Medical Image Computing and 
Computer- Assisted Intervention, Springer, 234–241. DOI: 
10.1007/978-3-319-24574-4_28. 
 
Shashank, A., Sajithvariyar, V., Sowmya, V., Soman, K., 
Sivanpillai, R., Brown, G., 2020. Identifying epiphytes in 
drones’ photos with a conditional generative adversarial 
network (C-GAN). The International Archives of 
Photogrammetry, Remote Sensing and Spatial Information 
Sciences, 44, 99–104. DOI: 10.5194/isprs-archives-XLIV-M-2-
2020-99-2020. 
 
Sunil, A., Sajithvariyar, V. V., Sowmya, V., Sivanpillai, R., 
Soman, K. P., 2021. Identifying oil pads in high spatial 
resolution aerial images using faster r-cnn, The International 
Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences., XLIV-M-3-2021, 155–161, DOI: 
10.5194/isprs-archives-XLIV-M-3-2021-155-2021. 
 
Tomar, N., 2021. “Human-Image-Segmentation-with-
DeepLabV3Plus-in-TensorFlow”, https://github.com/nikhilroxt- 
omar/Human-Image-Segmentation-with-DeepLabV3Plus-in-
TensorFlow (6 June 2022). 
 
Xu, H., 2006. Modification of normalised difference water 
index (NDWI) to enhance open water features in remotely 
sensed imagery. International Journal of Remote Sensing, 
27(14), 3025–3033. DOI: 10.1080/01431160600589179. 
 
Zhang, Y., Gao, J., Wang, J., 2007. Detailed mapping of a salt 
farm from Landsat TM imagery using neural network and 
maximum likelihood classifiers: a comparison. International 
Journal of Remote Sensing, 28(10), 2077–2089. DOI: 
10.1080/01431160500406870. 
 
 
 

 
 
 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-M-2-2022 
ASPRS 2022 Annual Conference, 6–8 February & 21–25 March 2022, Denver, Colorado, USA & virtual

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-M-2-2022-97-2022 | © Author(s) 2022. CC BY 4.0 License.

 
101




