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Abstract 

The impact of artisanal mining in sub-Saharan Africa and other developing countries are often huge as they leave trails of 

environmental and socio-economic effects on the people and the environment. 123 Multi-temporal SAR data acquired between 2019 

and 2023 was used. SARPROZ was used to co-register the images and other preprocessing steps like radiometric and geometric 

correction to transform the images from SAR coordinates to geographic coordinates after generating all the interferograms. A stack of 

the 122 coherence map was created. Unsupervised classification was implemented on the stack. Principal component analysis of 

dimensionality reductions method yielded a far better result than the other unsupervised cluster methods attempted, it showed a very 

high classification accuracy of the terrain. The principal component analysis worked by computing the covariance matrix of the stacked 

coherence map then performed eigen-decomposition on it to yield eigenvectors and eigenvalues, The eigenvectors corresponding to 

the largest eigenvalues represent the principal components. These principal components capture the directions of maximum variance, 

and the eigenvectors provides a reduced-dimensional representation of the image stack which is then used to reconstruct an 

approximation of the original image that captures the essential features of the original SAR data. Backscatter intensity of the SAR 

images processed for this study period for unsupervised change detection and land cover classification, delineated the different features 

and classes based on long term coherence values. 

1. INTRODUCTION

1.1 Background 

Artisanal mining, characterized by its informal and small-scale 

nature, play a key role in various third world economy. It is a 

means of survival and livelihoods for the teaming populations 

around the mining communities and their local economy333. 

However, the environmental consequences of artisanal mining, 

particularly in terms of land degradation, pose a critical and 

urgent challenge. For better insight and understanding, we must 

clearly make that distinction between artisanal mining and other 

types of mining like large and small-scale mining.  

Artisanal system of mining is a type of mining that is purely 

manual on a small piece of land without any form of 

mechanization, it involves the use of basic tools such as hand 

digger, chisel, shovel and head pans. This type of mining is often 

driven by poverty and the need to survive, the extremely poor 

people take to this practice to put food on their table. 

In contrast the large and small-scale mining is characterized by 

their mechanized and semi-mechanized nature, they are often 

carried out on a large scale covering ‘kilometer square area’.  

Figure 1. Artisanal mining operation. 

Because of the extreme migratory nature of artisanal mining 

operations where they are seen to rapidly move on from one mine 

site to a new one tracking and monitoring their operations can be 

very challenging, especially in areas that are inaccessible due to 

security challenges. Multi-temporal SAR data was coregistered 

to match every image pixel by pixel for further processing and 

coherence generation. Overall, three (3) major remote sensing 

techniques which includes coherence change detection, 

unsupervised learning classification, and time-series analysis 

were combined to detect, classify and visualize the changes 

occurring over time. 

In the review of previous literature, remote sensing has been 

applied in different ways in the study of various mining related 

activities.  

Ammirati, et al., (Ammirati et al., 2020)  in his study applied 

Differential Interferometric Synthetic Aperture Radar DInSAR 

technique to monitor surface deformations caused by subsurface 

artisanal gold mining. Alessi, et al., 2023 (Alessi et al., 2023) is 

one of the two studies that used SAR images in the study of 

impact of artisanal mining activities. However, in their study they 

only attempted to detect the river dredging machine used in the 

dredging of the river for alluvial gold deposit where they adopted 

a fairly straight-forward techniques of search for unidentified 

marine objects (SUMO).  

In the paper ‘Mine detection experiments using hyperspectral 

sensors’ authored by Winter, et al.(Winter et al., 2004) focuses 

on the application of hyperspectral imaging technology for the 

detection of surface and buried land mines. Wang, et al.(Wang et 

al., 2013) in their publication ‘Application of remote sensing for 

investigating mining geological hazards’ adopted a unique 

method where the vegetation was substituted first through the use 

of the normalized difference vegetation index on the GeoEye-1 

data. Wu, et al.(Wu et al., 2018) in ‘Remote sensing detection of 

vegetation and landform damages by coal mining on the Tibetan 

plateau’ proposed an automated method that detects the timing of 

the inception of mining development & then assesses the spatial 
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distribution of destroyed vegetation covers resulting from mining 

operations.  

Other related studies largely focused on the environmental 

impact of artisanal mining. Ako et al., 2014 (Ako et al., 2014)  on 

this study titled ‘Environmental Impact of Artisanal Gold Mining 

in Luku’ focus was on the gold mining activities and the various 

level of impact it has on the host community Luku, Niger State, 

Nigeria. Elvis Munyoka, 2020 (Elvis Munyoka, 2020), In the 

study ‘Mining and Environmental Rights in Zimbabwe. A Case 

of Zvishavane District’, highlights the effects of artisanal & 

small-scale mining operations on our environment. The study 

reveals that these activities have led to excessive land distortion, 

deforestation, water pollution, as well as air quality pollution, 

exposing mining communities to health problems like cholera 

outbreaks, bilharzia, triggers to asthma attacks, and cirrhosis. 

Donkor et al., 2009 (Donkor et al., 2009) in the paper ‘Artisanal 

Mining of Gold with Mercury in Ghana’, delves deeply into the 

overall impact of artisanal gold mining on the environment, 

drawing attention to its contribution of land degradation, 

unmitigated biodiversity loss, deforestation, and pollution of 

water bodies. Otamonga & Poté, 2020 (Otamonga and Poté, 

2020) explores the environmental and socio-economic problems 

that comes with abandoned mines and Artisanal & small-scale 

Mining (ASM) in the Democratic Republic of Congo (DRC). The 

review delves into the impacts on public health and the 

surrounding environment.  

 

1.2 Study area 

The study area is a square area, a little over 1000 square 

kilometers littered with so much artisanal gold mining sites. The 

terrain is mostly semi-arid, and largely influenced by the 

predominant two seasons that prevails in Nigeria. The harmattan 

which is the dry season starts from November to March and is 

usually accompanied with heavy dry dust. The Zamfara state 

temperature ranges between 350c to 400c degree and is divided 

into different Savannah; Sahel, Arid and Guinea (Nwabueze 

Chukwuji et al., 2019). 

 
Figure 2.Map showing the study area. 

 

2. MATERIALS AND METHOD 

2.1 Data collection 

In order to conduct a comprehensive analysis of land surface 

changes over time in order to detect and perform classification 

Sentinel-1A Synthetic Aperture Radar (SAR) data was chosen for 

its ability to penetrate clouds and provide high-resolution 

imagery. The Sentinel-1A data used in this study was obtained 

from the European Space Agency's (ESA) Copernicus Open 

Access Hub 

The Sentinel-1A SAR data used in this study offers a 12-day 

revisit interval and covers the entire study area. This temporal 

resolution is deemed appropriate for capturing frequent changes 

in land cover and land use associated with artisanal gold mining 

activities. access to Sentinel-1A SAR data was facilitated through 

the Copernicus Data Space Ecosystem 

https://dataspace.copernicus.eu, following standard procedures 

outlined by the European Space Agency. The acquired Sentinel-

1A SAR data is characterized by both VH and VV polarization, 

high spatial resolution. These characteristics were considered 

optimal for the objectives of this study, ensuring the detection of 

subtle changes in the landscape associated with artisanal gold 

mining. 

 

Table 1. Acquisition parameters 
Product Date Product description 

Sentinel 1A April 2019 Satellite: sentinel-1A 

  Instrument: SAR (C-band) 

  Mode: IW 

  Pass: Ascending 

  Polarization: VV, VH 

  Relative orbit: 30 

  Slice number: 9 

 May 2023 Product type: SLC 

 

2.2 Method 

This section systematically highlights the series of steps and 

workflow involved in this study. 

  

 
 

Figure 3.workflow: schematic display of the input-output 

process for the study 

 

2.2.1 Coregistration  

Coregistration refers to the process of aligning multiple SAR 

images spatially so that corresponding features in the scenes 

overlap accurately. By aligning SAR images through 

coregistration, we can eliminate any geometric distortions and 

ensure accurate analysis of the data. In the field of Interferometric 

Synthetic Aperture Radar, accurate coregistration of SAR image 

pairs is crucial for generating coherent interferograms and digital 

elevation models (Mao et al., 2009). it ensures accurate spatial 

alignment of images and improves the coherence and precision 

of the analysis, leading to more reliable and meaningful results in 

various applications (Wen et al., 2010). This process is 

expressed. 
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(1) 

 

2.2.2 Geometric calibration 

 

This process involves aligning the radar imagery with precise 

georeferencing data, such as a digital elevation model and ground 

control points. By accurately calibrating the SAR image to a 

common radar coordinate system, the resulting data can be 

effectively utilized for various applications, including measuring 

and mapping terrain, monitoring slope deformations, and 

generating digital elevation models. Geometric calibration 

ensures that the SAR images are aligned with accurate 

georeferencing data, allowing for precise measurements and 

mapping of terrain. 

 

2.2.3 Radiometric calibration  

 

Transforming the digital numbers (DN) or radiance values in the 

image to physical units, typically reflectance or radiance at the 

sensor level. The goal is to convert the raw digital values into 

meaningful, standardized values that can be used for quantitative 

analysis. It ensures that the pixel values in the image accurately 

represent the backscatter intensity of the radar signal. This is 

because the raw pixel values captured by the SAR instrument 

may be influenced by various factors such as sensor gain, antenna 

pattern, and other system-specific characteristics. 

 

2.2.4 Interferogram generation 

 

This step involves analysing the phase differences between 

multiple radar images to generate an interferogram. This 

interferogram provides information about ground surface 

deformation, such as changes in elevation or displacement. To 

generate an interferogram, two complex SAR images of the same 

area are acquired from slightly different look angles (Wang et al., 

2011).  

 

 

 

 

 

 

 

2.2.5 Coherence  

 

In SAR interferometry coherence is the temporal stability and 

correlation of the phase information between two or more SAR 

images acquired at different times. Coherence is a critical 

parameter because it directly affects the accuracy and reliability 

of the interferometric phase, which is used to derive deformation 

information, so it is the measure of the correlation between the 

complex values of two SAR images which ranges from 0 to 1, 

where 0 represents no correlation and 1 represents perfect 

correlation. Two waves with a phase difference that remains 

constant over time are said to be coherent (Washaya et al., 2018), 

therefore, Coherence is thus defined as the amplitude of the 

complex correlation coefficient between two SAR images. The 

coherence is estimated on a given window size, using the 

equation below. 
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where  

          γ = resulting coherence 

          N = the number of neighbouring pixels to be estimated 

          M = the complex master image 

           S = the complex slave image 

           * denotes the complex conjugate (Washaya et al., 2018). 

 

2.2.6 Principle component analysis  

 

Principal Component Analysis (PCA) is a versatile technique in 

satellite image processing and computer vision, providing a 

means to reduce the dimensionality of high-dimensional satellite 

data while preserving critical information. This dimensionality 

reduction is particularly beneficial for tasks such as feature 

extraction, noise reduction, and efficient representation of 

satellite imagery. The covariance matrix C is given by: 

 

    (3) 

 

The eigenvectors corresponding to the largest eigenvalues 

represent the principal components. These principal components 

capture the directions of maximum variance in the satellite image 

data. The transformed data Y can be obtained by projecting the 

original data onto the space defined by the principal components: 

 

          (4) 

 

The reduced-dimensional representation Y can be used to 

reconstruct an approximation of the original image. This is 

achieved by multiplying Y by the transpose of  𝑉𝑘  and adding 

back the mean  𝑋   

 

     (5) 

 

3. RESULTS 

3.1 Coherence change detection 

Coherence maps were generated from the interferograms with a 

small temporal baseline which in essence means that they were 

generated using SAR images acquired within close time interval. 

For this study, we used 12 days temporal baseline spanning 5 

years period, a time range between 2019 and 2023. In total, 122 

coherence maps were generated from the 123 SAR images 
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acquired and they had varying coherence which can be linked to 

the time of the year the images were acquired and the prevailing 

season at the time of acquisition. In Nigeria, there are two 

prevailing seasons, the rainy season which starts in April and 

ends in October. The dry season is between November and 

March. Generally, it can be noticed that the coherence maps 

generated from images acquired during the dry season had a 

brighter reflectance compared to the ones from the rainy season. 

   

 
 

Figure 4. Coherence maps generated from both rainy and dry 

season. Maps A (between Jan. & Mar) and D (between Nov & 

Dec) were both generated within the dry season window, while 

B & D were generated Apr and Oct within the rainy season 

window. 

 

Observable pattern when scrutinizing the distinctive 

characteristics of reflectance of the 122 coherence maps was the 

pattern repetition seen occurring every year within the study 

period where coherence maps emanating from images procured 

during the dry season manifest a discernibly heightened 

reflectance when compared against their counterparts derived 

from imagery acquired during the rainy season after methodically 

synthesized datasets collected between 2019& 2023 while 

adhering to a consistent temporal baseline of 12 days (figure 4). 

 

3.2 Image stack  

Stack consisting of 122 coherence maps was generated by 

arranging each coherence map as a separate band within the new 

stack. This stacking process was accomplished using the image 

analysis tool available in the ArcGIS software. Essentially, each 

coherence map was treated as a distinct layer, and by leveraging 

the capabilities of ArcGIS, they were systematically combined to 

form a cohesive stack, facilitating further analysis and 

visualization of the data. (see figure 5)  

 
Figure 5. Coherence stack of 122 maps. 

 

3.3 Principal Component Analysis  

Principal Component Analysis (PCA) was used to delineate 

distinct representative classes within the dataset. Four primary 

classes emerged from this analytical process, each contributing 

valuable insights into the features present within the study area 

(see figure 6). The first class pertains to brightly scattering 

settlements, discerned and highlighted in vibrant red hues on the 

resulting classification map. This category encapsulates areas 

characterized by intense backscattering signals, typically 

indicative of human settlements. The second class is attributed to 

mine sites, meticulously classified and distinguished by a flesh 

pink coloration on the map. This specific classification enables 

the identification and differentiation of areas associated with 

artisanal mining activities, providing valuable information for 

land degradation and environment. The third class is 

characterized by a sky bluish green appearance on the 

classification map, signifying vegetated areas. This class 

encompasses regions with healthy vegetation cover, and the 

distinct coloration aids in differentiating these areas from other 

land cover types. The fourth and final class is denoted by a deep 

blue coloration, which designates low-coherent water bodies.  

 

 
 

Figure 5. The four (4) representative classes for at least two 

different locations for each class. Where S= settlement, MS= 

mine site, W= water and V= vegetation 

 

3.4 Validation: The result of this study was validated against 

both small-scale mining lease and exploration licenses shapefiles 

(.shp data) from the Mining cadastre office of the Ministry of 

Mines and Steel Development Nigeria and over 90% of the 

classified mine sites fell under these lease polygons covering 

mineral titles of gold mining (see figure 7). 
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Figure 7. Validation map 

 

Further validation was done on the representative classes, all the 

selected classes and sites in this study were compared to the 

specific location on a zoomed in image of google earth using their 

geographic coordinates to further ascertain the accuracy of the 

unsupervised classification. As can be seen from the picture 

merge of various locations or points from the result and their 

corresponding location on google earth image, which is 

correlated with their geographic coordinates, the result showed a 

very high classification accuracy (see figure 8 & 9). 

 

 
 

Figure 8. Correlation of MS1, MS4 and S1 with high-resolution 

optical image. 

 

 
 

Figure 9. Correlation of W1 and V1 with high resolution optical 

image. 

 

4. DISCUSSION 

Between April 2019 and May 2023, a total of 122 coherence 

maps of the study area was generated from 123 multitemporal 

SAR images with short temporal baseline of 12 days. This 

allowed for selecting multiple-master InSAR images, pairing two 

at a time, usually denoted by short temporal as well as spatial 

baselines, this then preserved the coherence while also enabling 

the retrieval of important information on the phase history of the 

interferograms (Pepe, 2021) as opposed to creating a ‘star 

network’ pairing in which all the images are paired and 

coregistered to a single master which is usually more effective in 

built up areas and would require a dominant permanent scatterer, 

it was bound to be affected by decorrelation in this study area 

because it identifies pixels primarily based on their phase 

variation in time(Hooper, 2008). The coherence result showed a 

variation of backscatter intensity in which the maps generated 

between November and April every year backscatter brightly 

while those between May and October appears darker between of 

lower backscatter intensity. These two windows correlate with 

the two season that is prevalent in Nigeria. The rainy season 

window which falls between May and October plays a major role 

as the rains could be a major decorrelation factor thereby causing 

low back scatter hence the darker coherence maps. Decorrelation 

which is the reduction of InSAR coherence with change in 

surface scattering properties due to vegetation or precipitation 

(Agram and Simons, 2015). During the dry season, the study area 

is usually bare or sparsely vegetated. Therefore, high 

interferometric correlation is observed during this time period 

(Wegmiiller’ and Werner2, n.d.). 

The implementation of unsupervised learning algorithm to the 

stack of all (122) the coherence maps was done to classify and 

visualize the distinct landcover class in order to separate areas 

that are vegetated, artisanal mines sites, settlements and water 

bodies. Through the unsupervised learning technique, 

information from the stacked multitemporal coherence maps are 

used to obtain the distinguishable land cover classes (Aswatha et 

al., 2020) 

Principal component analysis of Dimensionality reductions 

method yielded a good result which showed a very high 

classification accuracy of the terrain. The principal component 

analysis works by computing the covariance matrix of the 

stacked SAR data then performed eigen-decomposition on it to 

yield eigenvectors and eigenvalues, The eigenvectors 

corresponding to the largest eigenvalues represent the principal 

components. The purpose is to retrieve the key information from 

the table, to represent it as a set of new orthogonal variables 

called principal components (Abdi and Williams, 2010) These 

principal components capture the directions of maximum 

variance and the eigenvectors provides a reduced-dimensional 

representation of the image stack which is then used to recreate a 

close reference of the original image that captures the essential 

features of the original SAR data while reducing noise and 

redundant information. Shows the similarity trend of the 

observations and of the variables as points in maps (Abdi and 

Williams, 2010). This unsupervised learning technique was able 

to accurately distinguish all the landcover classes in figure 30, all 

the settlements or nearby hamlets were all represented with deep 

red cluster, while the artisanal mine sites that are spread all 

around the area of study is shown with the flesh pink coloration, 

the vegetation and water bodies are represented with green and 

blue respectively. These flesh pink coloration patches all over the 

classification map are the detected mines sites, it is a visual 

representation of land degradation within the square area of study 

(see figure 30).  

 

5. CONCLUSION 

Two (2) different techniques were uniquely combined and 

implemented to remotely detect and classify landcover in the 

study area leveraging on the temporal changes caused by the 

rapidly changing artisanal mining operations. The two techniques 

adopted was InSAR coherence change detection and 

unsupervised learning technique. It helped gain an insightful 

knowledge on how to remotely detect and track these activities 

in sub-saharan Africa which is majorly semi-arid in nature. For 

unique landscape like the semi-arid northern Nigeria, the 

unsupervised classification method principal component analysis 

PCA has proven to be very effective with a very high accuracy. 
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