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ABSTRACT:

A 3D scene graph is a compact and explicit representation in scene analysis. In today’s 3D scene graph prediction methods, the
feature encoding method of nodes and edges is relatively simple, which essentially hinders the network from fully learning 3D point
cloud features. In this paper, we propose a 3D scene graph task framework that fully expresses node and edge features, trying to
meet the requirements of fully utilizing point cloud features to achieve high-precision prediction. Experimental results show that
with the help of the new representation method, the prediction performance of 3D scene graphs has been significantly improved.

1. INTRODUCTION

Scene understanding is the most essential task in computer vis-
ion. It imitates the human visual system to perceive clues in
complex scenes to understand the structure and relationships
of the scene(Fei-Fei et al., 2004). In recent years, with the
rapid progress of digitization of the three-dimensional world,
3D scene understanding has attracted more and more research
interests. Traditional 3D scene understanding focuses on the
semantic and geometric properties of scene objects, including
3D target detection and recognition, instance segmentation, se-
mantic segmentation, and shape prediction and classification.
However, the semantics of contextual connections between as-
sociated objects and relationships between objects have not
been much explored. Scene graph(Johnson et al., 2015) is
an abstract representation that stores scene semantics, where
graph nodes are scene entities and their connections are mean-
ingful relationships between them. In the three-dimensional
field, scene graphs are gradually becoming popular(Armeni
et al., 2019)(Kim et al., 2019). As a representation method
for advanced scene understanding, the three-dimensional scene
graph abstracts objects and relationships into nodes and edges,
and can effectively represent information such as structure, se-
mantics, and contextual connections in the scene. Therefore,
3D scene graphs can be widely used in tasks such as explora-
tion, interaction, generation and operation of 3D scenes, such as
autonomous driving, robot navigation and path planning(Kim
et al., 2019), AR/VR(Tahara et al., 2020), scene generation and
modification(Dhamo et al., 2021), etc.

Although the research on 2D scene graphs has made great pro-
gress, the research on 3D scene graphs has become popular in
recent years. Armeni et al.(Armeni et al., 2019) expressed the
relationship between scenes according to the levels of buildings,
rooms, objects, and cameras. Rosinol et al.(Rosinol et al., 2021)
consider the real-time representation of agents and incorporates
dynamics into hierarchical scene graphs. Based on the 3RScan
dataset, Wald et al. extended it to a newly established bench-
mark for the point cloud-based indoor environment 3D scene
graph dataset 3DSSG(Wald et al., 2020). Graph neural net-
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works are widely used in reasoning of 2D scene graphs(Yang
et al., 2018). In 3D data, Wald et al.(Wald et al., 2020), Wu
et al.(Wu et al., 2021) use graph neural networks to predict
three-dimensional semantic scene graphs from class-agnostic
instance segmentation scenes. On the basis of point cloud data,
Zhang et al.(Zhang et al., 2021a) designed the EdgeGCN mod-
ule to bridge nodes and edges to perform inference efficiently.
Zhang et al.(Zhang et al., 2021b) used prior knowledge to im-
prove the accuracy of relationship prediction. Wang et al.(Wang
et al., 2023) used images and language texts to conduct multi-
modal auxiliary training to further improve the scene graph pre-
diction performance. Besides, some advanced techniques(Bae
et al., 2022) for 3D scene graph which combined with SLAM
or robotics. Wu et al.(Wu et al., 2021) proposed a method to in-
crementally generate 3D scene graph from RGB-D images. For
this, they designed an attention-based graph processing mech-
anism that combines incrementally incoming 3D scene graph
and recognizing relations not detected in previous steps. Sim-
ilarly, Hughes et al.(Hughes et al., 2022) presented a real-time
3D scene graph generation method using top-down loop clos-
ure detection with a hierarchical descriptor that captures statist-
ics across scene graph layers for optimizing the entire 3D scene
graph.

Among the many 3D scene graph generation methods men-
tioned above, the forms of data sources are different. In ar-
meni’s research(Armeni et al., 2019), in order to generate hier-
archical results, the data sources are 3D mesh and RGB panor-
amic images, etc. In Kimera(Rosinol et al., 2021), in order to
complete the construction of the scene graph during the slam
process, rosinol et al. used RGB-D and IMU data as input data
to the agent. Similarly, in the work of Hughes et al.(Hughes
et al., 2022), the data source was also RGB-D and IMU data
obtained by the agent in real time. In addition, the work of
other researchers is mainly based on point cloud, and the com-
mon research paradigm is feature extraction of objects and rela-
tionships respectively. At the object representation level, Point-
Net(Qi et al., 2017) and DGCNN(Wang et al., 2019) are the
main backbones. In terms of relationship representation, feature
extraction is based on connecting object pairs in a relation(Wald
et al., 2019)(Liu et al., 2022). The process is similar to object
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Figure 1. Overview of our proposed framework.

representation. And there are also those that directly use the at-
tribute differences between objects as feature initialization(Wu
et al., 2021)(Wang et al., 2023).

Although progress has been made in message passing between
nodes of scene graphs and multi-modal auxiliary training, there
is still little in-depth research on the encoding of objects and
relationships in relationships triplets. Therefore, this paper
mainly focuses on the encoder module of objects and relation-
ships, and the impact of new encoding methods on scene graph
prediction results was explored.

In the three-dimensional scene graph prediction method, the
feature encoding method of nodes and edges is relatively
simple. Usually, a single point cloud learning method is used
in the network, which cannot fully represent the object point
cloud features, which essentially hinders the network from fully
learning the 3D point cloud features. In this paper, we propose a
3D scene graph prediction framework that fully expresses node
and edge features, trying to meet the requirements of using
point cloud features to achieve high-precision prediction. The
main contributions of this article are as follows: 1) Using the
advanced non-learnable point cloud feature extraction module
Point-NN(Zhang et al., 2023) and combine it with the tradi-
tional learnable network PointNet(Qi et al., 2017) as the feature
extraction module. Point-NN(Zhang et al., 2023) can effect-
ively extract the small positional geometric features of objects
and complement PointNet(Qi et al., 2017) to fully characterize
objects. 2) Propose a Node-Info Enhancement module, which
aims to express the difference and overall characteristics of the
two nodes of the relationship in the triplet, and improve the ac-
curacy and learnability of relationship encoding. Experimental
results show that with the help of the new proposed method, the
prediction performance of 3D scene graphs is improved.

2. METHODOLOGY

2.1 Overview

The main goal of this work is to generate a scene graph from an
indoor scene point cloud. Given a point cloud P, class-agnostic
objects with N instance segmentations and semantic labels M
for each object. Our goal is to predict the semantic labels of
each object and the relationships between them, that is, the 3D
semantic scene graph G = {O, R}. The oi in the object set O
are named object instances specified by the semantic label M.
Rij in the relation set R describes the predicate in the relation
triplet <subject, predicate, object >, oi represents the subject
node, and oj represents the object node.

As depicted in Figure 1, the input of the framework proposed in
this paper is a scanned class-agnostic scene point cloud. Node
encoders and edge encoders are used for feature encoding re-
spectively. The fully connected graph of scene nodes and the
processed features is trained by the GCN network, and then two
classifiers complete the label prediction of nodes and edges to
realize the construction of the scene graph.

2.2 Node Feature Encoder

The node encoder of previous three-dimensional scene graph
work often uses learnable backbone networks to extract inde-
pendent object and relationship-specific features, such as Point-
net(Qi et al., 2017), DGCNN(Wang et al., 2019), but such fea-
ture extraction is relatively insufficient. Therefore, we employ
a learnable network Pointnet(Qi et al., 2017) fL(·) and a non-
learnable network Point-NN(Zhang et al., 2023) fN (·) to per-
form feature extraction respectively as the initialization of ob-
ject features. The PointNet(Qi et al., 2017) network is simple
and efficient, and can be used well as an encoder tool for point
cloud representation to capture the global characteristics of the
entire point cloud. In order to better represent the local fea-
tures of point clouds and maintain the simplicity of the over-
all network, we use a non-learnable network Point-NN(Zhang
et al., 2023) without training. Point-NN(Zhang et al., 2023)
provides a clue for non-parametric methods to understand 3D
point clouds. Point-NN(Zhang et al., 2023) can capture com-
plementary geometric knowledge to enhance existing methods.
In addition, we concatenate the spatial invariant properties(Wu
et al., 2021), and the node features oi are calculated as follows:

oi = cat[fL(Pi), fN (Pi), σi, ln(bi), ln(vi), ln(li)], (1)

where Pi denotes point cloud of object instance i, σi de-
notes standard deviation of the position of points, the size
b = (bx, by, bz), the volumn v = bxbybz , and the maximum
side length l = max(bx, by, bz) of the bounding box.

2.3 Edge Feature Encoder

We first follow the same practice as SGFN(Wu et al., 2021)
to encode the edge feature rij , which basically calculates the
attribute difference between two objects in a relation triplet, and
then edge features are encoded by projecting the concatenated
differences of these attributes between two instances, via multi-
layer perceptron (MLP) layers. The attributes of the object are
similar to those in the Node feature Encoder:

eij = MLP (cat[P̄i − P̄j , σi − σj , bi − bj , ln(
li
lj
), ln(

vi
vj

)]),

(2)
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Object Predicate Relationship
Method R@1 R@1 R@1
SGFN 50.94 78.46 25.71

SGFN with Node-info Enhancement 51.34 79.10 26.58
SGFN with Point-NN 51.52 79.15 26.63

Ours 51.12 79.55 25.75

Table 1. Evaluation of the scene graph prediction performance on 3DSSG with 160 objects and 26 predicate classes.

where eij denotes initial edge features, P̄i denotes centroid of
object instance i.

Node-Info Enhancement. Although the above expression cal-
culates the difference between object attributes, it is still relat-
ively simple to distinguish relationships. Therefore, we propose
the node info enhancement module, which aims to express the
difference between the two nodes and the overall characteristics
of the relationship in the triplet, and improve the relationship
encoding accuracy and learnability. In previous edge feature
encoding, there are usually two methods. One is to extract fea-
tures from the point clouds of the two objects in the relationship
pair at the same time, and obtain the features of an object pair as
the initialization vector of the edge(Wald et al., 2020)(Liu et al.,
2022); the other is to calculate the attribute difference of the two
objects in the object pair, and obtain the initialization vector(Wu
et al., 2021)(Wang et al., 2023). In this article, in order to obtain
richer object pair features and keep the network simple, after us-
ing the above relationship calculation method, we are inspired
by the first method and consider using node features directly
without repeated object pair feature extraction. Therefore, The
node difference features and node features between objects are
integrated into the relationship features. The specific method to
calculate edge feature rij is shown in the following expression:

rij = cat[eij , oi − oj , cat[oi, oj ]] (3)

2.4 GNN

In this paper, we employ the same GNN structure as in
SGFN(Wu et al., 2021) which propagate the features using a
GNN with 2 message passing layers to enhance the features
by enclosing the neighborhood information after the initial fea-
ture embedding on nodes and edges. Compared with the fixed
weight of node feature update in GCN(Kipf and Welling, 2016),
SGFN(Wu et al., 2021) which utilizes a Feature-wise Attention
(FAT) module to pass messages between nodes and edges, and
to learn the weight of nodes during update stage. Finally, the
node category and edge category will be predicted by two MLP
classifiers. We use the same loss functions as in SGPN(Wald et
al., 2020).

3. EXPERIMENT

3.1 Setups and Implementation Details

Datasets. We use the 3DSSG dataset to conduct experiments.
3DSSG is a large scale 3D dataset that extends 3RScan(Wald
et al., 2019) with semantic scene graph annotations, containing
relationships, attributes and class hierarchies. In particular, it
provides 1482 scene graphs containing 48k object nodes and
544k edges. A ground-truth semantic scene graph is defined
by a set of tuples between nodes and edges, where nodes rep-
resent specific 3D object instances in a 3D scan. Nodes are
defined by their semantics, a hierarchy of classes, and a set of
properties that describe the visual and physical appearance of

an object instance and its affordances. Edges are semantic re-
lationships (predicates) between nodes(Fanfan et al., 2022). In
experiments, we use the same method for data preparation and
training/validation split as in 3DSSG, which includes 160 ob-
ject categories and 26 relationship categories.

Metrics and Tasks. We follow the same evaluation scheme
in SGPN(Wald et al., 2020) to separately report relationship,
object, and predicate prediction accuracy with a top-n(Lu et al.,
2016) evaluation metric.

Implementation Details. All experiments are carried out on
PyTorch platform equipped with one NVIDIA A100 GPU card.
The network parameter setting are similar to SGFN(Wu et al.,
2021) framework. We train the network for 200 epochs, and the
base learning rate is set as 0.001. Nobj = 160 and Nrel = 26 in
our experiments. GNN modules are repeated for T = 2 times

3.2 Results of Scene Graph Prediction

Quantitative Results. As shown in Table 1, we compare our
method with the current state-of-the-art approach proposed by
Wu et al(Wu et al., 2021). The SGFN(Wu et al., 2021) result
in the table is based on our reproduction model and is used as
our baseline here. Judging from the experimental results, our
method is better than the SGFN(Wu et al., 2021) method in
classifying objects, predicates and relationships. It is particu-
larly important to note that in this table we use the Recall@top
n evaluation metric, but we only use the data of Recall@1 for
comparison. This is because we believe that this can intuitively
and most strictly reflect the level of the model’s reasoning abil-
ity.

Qualitative Results. As shown in Fig 1, we selected three dif-
ferent scenes (living room, study room, cafe) to verify the reli-
ability of the proposed method in predicting entities and contex-
tual connections in different environments. In complex scenes,
our prediction accuracy of entity semantics has improved. For
relationships, our proposed method makes more accurate pre-
dictions of different relationship structures in stereo(hanging
on, supported by, standing on) and plane scenes(left, right).

Ablation Study. We conducted ablation studies on the two
proposed innovations. As shown in Table 1, SGFN(Wu et
al., 2021) with Node-info Enhancement refers to the exper-
imental results obtained by adding the Node-info Enhance-
ment module to use the two objects in the relationship triplet
to enhance the relationship encoding based on SGFN(Wu et
al., 2021). The final prediction capabilities are better than the
SGFN(Wu et al., 2021) method. In SGFN(Wu et al., 2021)
with PointNN(Zhang et al., 2023), we added a non-learnable
network module PointNN(Zhang et al., 2023) to SGFN(Wu et
al., 2021) to enhance the ability to describe object features from
more subtle aspects of the object. The final experimental res-
ults also show the ability to predict 3D scene graphs is better
than SGFN(Wu et al., 2021) method. However, what is in-
teresting is that the training of Node-info Enhancement and
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PointNN(Zhang et al., 2023) may bring bias to the represent-
ation of predicates, resulting in a slight decrease in predicate 
prediction when using the ours method, but this degradation 
is not severe, which validate the effectiveness of our proposed 
method.

4. CONCLUSIONS

In this study, we proposed a 3D scene graph prediction method. 
Based on traditional learnable object point cloud feature extrac-
tion, we integrate a non-learnable network for feature enhance-
ment. In the representation of relationships, we express object 
pair characteristics and object difference characteristics by cal-
culating the characteristics of the two objects in the relationship 
pair. Experiments show that our proposed method improves the 
accuracy of reasoning. In the future, we will try to achieve bet-
ter scene understanding through 3D scene graphs.
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Figure 2. Visualization results. We only show the results for a local area of the scene. We use black boxes to indicate the entities and
arrows to indicate the relations. Black indicates correct result and red indicates an incorrect prediction result.
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