
AI-Driven Dim-Light Adaptive Camera (DimCam) for Lunar Robots 

Ran Duan, Bo Wu*, Long Chen, Hao Zhou, Qichen Fan 

Department of Land Surveying and Geo-informatics │ Research Centre for Deep Space Explorations, The Hong Kong Polytechnic 
University, Hung Hom, Hong Kong – bo.wu@polyu.edu.hk 

  

Keywords: DimCam, Deep Learning, Dim Light, Lunar Robots, Lunar South Pole 

Abstract: 

The past decade has been a boom in lunar exploration. China, India, Japan and other countries have successfully landed landers or rovers 
on the lunar surface (Wu et al., 2014, 2018, 2020; Prasad et al., 2023). Future missions to explore the Moon are focusing on the lunar south 
pole (Peña-Asensio et al., 2024). The solar altitude angle at the lunar south pole is extremely low, resulting in low solar irradiance and large 
areas often in dim light or shadows. The permanently shadowed regions (PSRs) at the lunar south pole are also likely containing substantial 
amounts of water ice (Li et al., 2018). Future lunar robots exploring the lunar south pole will need to operate in low light or shadowed 
regions, making camera sensors sensitive to the dim-light environments necessary for these robots. Common night vision sensors usually 
use near-infrared cameras. However, sensors based on passive infrared technology have image resolution limited by several factors, 
including the intensity of infrared radiation emitted by the object, the sensitivity of the camera, and the performance of the optical system. 
For instance, thermal imagers typically have a resolution of 388*284 pixels only. 

We have developed a dim-light adaptive camera (DimCam) that is ultra-sensitive to the varying illumination conditions driven by AI to 
achieve high-definition imaging of 1080P or above, for future lunar robots operating in shadows or dim-light regions. The DimCam 
integrates two starlight-level ultra-sensitive imaging sensors connected by a rigid base to provide stereo vision in low illumination 
environment. An AI edge computing unit is embedded inside the DimCam to adaptively denoise and enhance image quality. The AI module 
uses an end-to-end image denoising network to identify and remove noises in the images more accurately by utilizing depth information 
from the stereo sensors. Compared with traditional monocular denoising algorithms, the denoising network based on stereo vision can 
significantly improve denoising effects and efficiency by enhancing the signal-to-noise ratio of the data input in the front end. The 
superposition of overlapping scenes can be regarded as a delayed exposure. Concurrently, the residual analysis of the aligned images aids 
in noise identification. In addition, for pixels obscured by noise, more accurate pixel values can be restored through interpolation or 
replacement using depth information obtained from the stereo sensors. Subsequently, a pre-trained lightweight deep network modified from 
Zero-DCE (Guo et al., 2020) is used for image quality enhancement in terms of brightness and contrast, providing high-quality images even 
in low-light environments for subsequent applications, such as positioning and navigation of robots, 3D mapping of the surrounding 
environment, and autonomous driven. We have tested the DimCam in a simulated environment in the laboratory, and the results show that 
the DimCam has promising performances and great potential for various applications. 
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1. Introduction

The focus of future lunar missions is gravitating toward the lunar 
south pole, an area characterized by an extremely low solar altitude 
angle and predominantly dim-light conditions, factors that have 
contributed to its largely unexplored status (Peña-Asensio et al., 
2024). The lunar south pole is believed to contain substantial 
quantities of water ice, especially in its perpetually shadowed 
regions (PSRs). This water ice could serve as a vital life support 
resource. It could also be used to produce hydrogen and oxygen for 
rocket fuel. These distinctive environmental and geological 
attributes position the lunar south pole as an ideal candidate for the 
establishment of a future lunar base. However, to actualize this, the 
development of novel vision sensors that can operate in shadowy 
or dimly lit regions stands out as one of the demanded technologies. 

Improving the quality of images taken under the dimly lit 
conditions at the lunar south pole, while simultaneously preserving 
their natural colors, presents a significant challenge. This 
complexity stems from the need to recover information that was 
either lost or never captured in the first place, a characteristic of 
typical inverse problems. Traditional image enhancement methods, 
such as histogram equalization, gamma correction, and Retinex-
based techniques, have been extensively utilized (Chang et al., 
2018). However, these methods often fall short of delivering 
satisfactory results under challenging lighting conditions, such as 
those encountered at the lunar south pole. They tend to either over-
enhance or under-enhance the images, leading to problems like 
color distortion or loss of detail. Machine learning-based methods 
have also been investigated, with models being trained on specific 
datasets (Li et al., 2021). However, these models frequently 
struggle to perform optimally on images captured by different 
cameras due to variations in individual camera processing 
techniques. The task of compiling a comprehensive set of paired 
images for a multitude of devices is not only formidable but also 
expensive. Moreover, the dependence on a single accurate lighting 
condition for each pair limits the model’s ability to accurately learn 
how to adjust the brightening factor. This underscores the need for 
more robust and adaptable image enhancement techniques for 
images captured under the dimly lit conditions of the lunar south 
pole. A review of existing literature reveals that numerous studies 
have reported promising results using paired datasets comprising 
both well-lit and poorly-lit images (Koohestani et al., 2023). Deep 
learning has gained significant popularity in recent years, 
particularly for its robust feature representation and non-linear 
mapping capabilities. These attributes have found numerous 
applications in the field of image processing, leading to substantial 
advancements. The research by (Lore et al., 2017) was among the 
pioneers of leveraging deep learning for enhancing low-light 
images, resulting in the development of LLNet. They introduced a 
method based on deep autoencoders, which identifies signal 
features from low-light images and adaptively brightens them in 
high dynamic range scenarios without excessively amplifying or 
saturating the lighter sections. They demonstrated that a variant of 
the stacked sparse denoising autoencoder could learn from 
synthesized dark and noise-added training examples. This learning 
process enabled the adaptive enhancement of images from natural 
low-light environments and those degraded by hardware limitations. 
Their experiments on real low-light images validated the 
effectiveness of models trained with synthetic data. Shen et al. 
(2017) proposed a low-light image enhancement algorithm that 
combines convolutional neural networks (CNN) and Retinex theory. 
They demonstrated that the Multi-Scale Retinex (MSR) is 

equivalent to a feed-forward convolutional neural network with 
varying Gaussian convolution kernels. Inspired by MSR, they 
introduced the MSR-net to learn the end-to-end mapping between 
dark and bright images directly. Unlike traditional methods, the 
majority of parameters in this model are optimized through 
backpropagation, which is a significant advantage. Cai et al. (2018) 
introduced a method for training single-image contrast 
enhancement using CNNs. Their approach outperforms existing 
methods by revealing more image details. A notable work 
RetinexNet is one of the most successful models. Its fundamental 
principle involves using convolutional layers, non-linear mapping, 
and adaptive filters to decompose the original low-light image at 
multiple scales and enhance the image at the feature level. But it 
also requires preprocessing the image using prior knowledge to 
eliminate interference factors such as uneven illumination and noise. 
Currently, most of these algorithms are designed for everyday 
scenarios, with abundant data available for network training. 
However, data for planetary robots exploring dim light 
environments and algorithms specifically designed for such 
purposes are still few and far between. 

Dim-light environment imaging has always been a popular research 
topic due to its huge practical application demands, and there are 
many mature industrial implementation solutions. However, most 
of the current solutions are based on infrared imaging or thermal 
imaging. Infrared imaging often uses additional LEDs to enhance 
the illumination of the environment in the infrared band. On the 
other hand, thermal imaging does not require fill light, but its 
imaging resolution is very limited. With the rapid advancement of 
AI technology in recent years, using deep neural networks to 
directly restore color images from the visible light band from low-
light to a comfortable illumination range for human eyes has 
become an important research direction to solve the problem of 
enhancing perception in low-light environments. However, 
restoring high-definition images directly from low-light images 
captured by ordinary visible-light cameras faces physical 
limitations. This is because most camera sensors have a low 
sensitivity to dim light, and the noise inherent in the camera system 
itself results in a very low signal-to-noise ratio (SNR) of image 
information under low-light conditions. Directly enhancing the 
original image will also amplify these noises, leading to a loss of 
image details and degrade the performance of subsequent image 
processing algorithms, such as scene segmentation and object 
detection. 

This paper presents an AI-driven dim-light adaptative camera 
(DimCam) based on a stereo vision system. The DimCam uses the 
Sony IMX291 CMOS as the imaging chip to address the issues of 
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Figure 1. Dim-light adaptive camera (DimCam) that uses 
stereo vision and image enhancement network for lunar robots. 
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camera sensitivity and system noise. The IMX291 chip supports the 
capture of approximately 2 million pixels, with a clarity up to 
1080P, and it also supports WDR (Wide Dynamic Range) for 
enhanced image capture in varying lighting conditions, which is 
particularly important for applications especially in scenarios 
requiring strong night vision. The configuration of stereo vision 
provides data source-based guarantees for enhancing the signal-to-
noise ratio of images and repairing images degraded by noise. We 
use stereo vision to emulate the effect of a photo taken with a longer 
exposure. This is achieved by eliminating noise, boosting 
brightness, and maintaining the integrity of natural colors. For the 
algorithm part, we propose a DimCam deep network, which is an 
improved version of Zero-DCE (Guo et al., 2020) model and 
capable of process stereo vision. The improvements include the 
ability to understand depth information of the scene and the ability 
to eliminate the impact of noise through images from both the left 
and right views, thereby achieving better enhancement results. 

2. AI-Driven Dim-Light Adaptive Camera (DimCam)

We show the overview of the proposed system in Fig. 2. We use 
two starlight-level low-light camera modules as a stereo vision 
system. The images captured by them are first synchronized 
through software. Then, we use the camera parameters to perform 
rectification and homography transformation on the stereo views to 
extract the overlapping areas. Based on the overlapped region, we 
extract noise masks from the stereo image pairs. The pre-processed 
data are subsequently fed into the proposed deep neural network 
DimCam, which incorporates two parallel Zero-DCE models to 
accommodate stereo vision input, and then feed the output tensors 
to a transformer block with cross attention so that the network can 
learn the correlation of stereo vision images. We add a pre-trained 
DepthNet (Kumar et al., 2018) to the output end of our network, 
which can generate depth maps from enhanced stereo vision images. 
This adaptation enables the network to use depth information from 
stereo vision or laser measurements (Wu et al., 2015) for better 
denoising images.  

2.1 Camera System 

Our camera system adopts two SONY 2MP IMX291 color COMS 
sensors, achieves 60FPS in 1080P resolution, making it easy to 
synchronize in the software level. We use two CSI interfaces of the 
NVIDIA Jetson Orin NX edge AI computing unit as the receiver 
for the stereo camera system. When the program receives image 
data from the two cameras with a time difference smaller than the 

pre-defined threshold, it is considered as synchronized stereo image 
pairs.  

Light condition Lux 
Sunlight 107,639 
Twilight 10.76 
Full Moon 0.108 
Starlight 0.0011 
Overcast Night 0.0001 

Table 1. The illuminance levels (in Lux) under different outdoor 
light conditions 

The IMX291 COMS sensor has an 80dB wide dynamic range, can 
capture the minimum illumination as low as 0.001Lux. The 
illuminance levels (in Lux) under different outdoor light conditions 
are given in Table 1. For the camera in a normal working 
illuminance range, the minimum illumination value is between 0.1-
1Lux. Some night vision cameras can reach the minimum 
illumination value of about 0.01Lux. In order to adapt the dim light 
conditions, the camera should have a very low minimum 
illumination value.  

2.2 Noise Mask Extraction 

Since the input images in our scenario are often extremely low-light 
images, we first suppress the areas with high image noise through 
a noise mask before enhancing the brightness, in order to improve 
the signal-to-noise ratio. Denote the rectified stereo image pairs 
I𝑙𝑙and I𝑟𝑟, where we only consider the overlap region. Assume that 
the noise 𝑁𝑁 is directly superimposed on the original image: 

I𝑙𝑙 =  Î𝑙𝑙 + 𝑁𝑁𝑙𝑙, 

where Î𝑟𝑟 is the original scene of left view I𝑙𝑙 and Î𝑙𝑙 = 𝐻𝐻(Î𝑟𝑟) or Î𝑟𝑟 =
𝐻𝐻−1(Î𝑟𝑟) , H(∙) is the homography transformation. Then, we can 
obtain the noise masks for left and right views respectively by 
calculating the residuals of the aligned images: 

M𝑙𝑙 =  Bin(I𝑙𝑙 −  𝐻𝐻(I𝑟𝑟)) = Bin(𝑁𝑁𝑙𝑙 − 𝐻𝐻(𝑁𝑁𝑟𝑟)), 
M𝑟𝑟 =  Bin(I𝑟𝑟 −  𝐻𝐻−1(I𝑙𝑙)) = Bin(𝑁𝑁𝑟𝑟 − 𝐻𝐻−1(𝑁𝑁𝑙𝑙)), 

where Bin(∙) is the image binarization. Subsequently, we enhance 
the masked images through DimCam network. 

2.3 DimCam Network 

The Zero-DCE (Zero-Reference Deep Curve Estimation) algorithm 
is an efficient low-light enhancement method that utilizes a 
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Figure 2. Workflow of the DimCam system. 
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lightweight deep convolutional neural network, DCE-Net, to 
predict a pixel-wise high-order curve for dynamic range adjustment 
of input images. It requires no paired or unpaired data for training, 
preventing overfitting, and can handle various illumination 
conditions, making it widely applicable in real-world scenarios. To 
modify the Zero-DCE network for stereo vision, we design two 
parallel input branches for images from each camera perspective. 
During the enhancement process, it is crucial to ensure that the 
stereo consistency between the two images is not disrupted. To 
achieve this, we integrate Vision Transformer (ViT) layers in series 
within each branch and introduce a cross-attention mechanism. 
Additionally, we incorporate a stereo consistency loss term into the 
loss function to encourage the network to maintain correspondence 
between the left and right images during enhancement. The stereo 
consistency loss is given by: 

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠 = 1
𝐾𝐾
∑ ∑ (|I𝑙𝑙(𝑖𝑖) − I𝑙𝑙(𝑗𝑗)| − |𝐻𝐻(I𝑟𝑟)(𝑖𝑖) − 𝐻𝐻(I𝑟𝑟)(𝑗𝑗)|)𝑗𝑗∈Ω(𝑖𝑖)
𝐾𝐾
𝑖𝑖=1 , 

where 𝐾𝐾 is the number of pixels, 𝑖𝑖 is the index of pixels. Ω(𝑖𝑖) is the 
4-neighborhood of the 𝑖𝑖 -th pixel. I𝑙𝑙  and I𝑟𝑟  are the input stereo
images, H(∙) is the homography transformation.
At this point, the two images have been enhanced while ensuring
illuminance consistency in stereo vision. To further improve image
quality, we input the enhanced stereo images into DepthNet for
depth map estimation. We utilize the depth map by adding terms in

the loss function to enhance the perception of the continuity of the 
scene in three-dimensional space. The fundamental principle 
behind the design of these loss terms is to make consecutive pixels 
as smooth as possible in three-dimensional space. The depth 
consistency loss is given as follows: 

𝐿𝐿𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠ℎ = 1
𝐾𝐾
∑ ∑ (|Y(𝑖𝑖) − Y(𝑗𝑗)| − |D(𝑖𝑖) − D(𝑗𝑗)|)𝑗𝑗∈Ω(𝑖𝑖)
𝐾𝐾
𝑖𝑖=1 , 

where Y and D are the enhanced image and depth map, respectively. 
We choose Y from one of the enhanced stereo images as a fixed 
reference frame which the depth map is registered. 

2.4 Network Training 

We utilize the proposed low-light stereo camera system to capture 
images of various scenes under different lighting conditions for 
training and testing purposes. Both Zero-DCE and DepthNet 
employed pre-trained models, while the network that be trained and 
tuned is the transformer block with cross-attention. The main 
objective of the training is to improve the Zero DCE model, which 
can only enhance single images, with additional stereo and depth 
perception and correlation capabilities. 

Figure 3. Test on simulated dim-light images from real images of the lunar surface. 
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3. Experimental Evaluation

Due to the lack of low-light scene images collected by lunar rovers, 
we conducted tests on simulated dim light images of real moon 
surface images. These test images were generated using a 
degradation model. This degradation model includes a sharp 
decrease in simulated brightness and contrast, as well as the 
addition of random noise with similar intensity to the degraded light 
amplitude. The original images were captured by the Chang’E-4 
rover. We extracted overlapping high-definition lunar surface 
images taken from different angles to simulate stereo vision. We 
used these simulated degraded images as the input to test the 
performance of the proposed DimCam network and used the state-
of-the-art model Zero-DCE as a control test. The sampled 
experimental results are shown in Fig. 3. The results indicate that 
our proposed model significantly improves the quality of image 
enhancement by integrating stereoscopic vision information. 
Particularly in extremely low-light conditions, our model has 
shown significant improvement compared to the state-of-the-art 
single-image-based model Zero-DCE. 

To further validate the proposed model, we deployed the entire 
system on a rover platform and conducted tests in a simulated 
environment in the laboratory as Fig. 5 shows. Although the 
simulated scenario we use for testing the algorithm is the surface of 
Mars, it does not significantly impact the evaluation of the system's 
adaptive performance in dim light. Moreover, it provides a simpler 
method to assess the algorithm's ability to restore the colors of real 
objects. In addition to the proposed system, we also installed an 
industrial color night vision camera at a fixed position to monitor 
the entire test site. We simulated a dim light environment by turning 
off all light sources in the laboratory environment, leaving only 
some tiny LED lights from equipment and weak EXIT sign lights. 
Under extremely low-light conditions, images captured by regular 
cameras barely display any information recognizable to the human 
eye. However, our DimCam system can effectively output images 
with clear scene information discernible to the human eye. 

Furthermore, we conducted an image segmentation test on the 
enhanced images, and the results demonstrate that the enhanced 
images can be effectively recognized by other image processing 
models. This illustrates its great potential in improving the 
intelligent scene perception capability of autonomous robots for 
planetary exploration missions under extremely low-light 
conditions. 

It's worth mentioning that even a sensitive CMOS like IMX291 
does not fundamentally solve the dim light problem in the real 
application of lunar exploration. The lux level in PSRs at the lunar 
south pole would essentially be zero, as there is no direct sunlight 
and very little reflected light. In the actual exploration process, 
active light sources used for illumination are indispensable. These 
active light sources can help visualize scenes at close range. 
However, for distant sensing and visualization, as well as 
considering the energy-saving of the light source, the proposed 
work could be a necessary tool. 

4. Conclusions and Discussion

The low light conditions in the lunar south pole regions pose a 
challenge for lunar robot automation. To address this, a dim light 
adaptive camera (DimCam) system has been proposed. The 
DimCam uses two low light sensitive imaging sensors (SONY 
IMX291 CMOS) for stereo perception and a DimCam deep 
network for stereo image denoising and quality enhancement. The 
images captured are synchronized and processed to extract 
overlapping areas and depth information. This data is then fed into 
an improved version of the Zero-DCE neural network, which has 
been adapted to better correlate depth information and noise masks 
with the denoised images via a Transformer block and a DepthNet. 
This innovative approach allows for high-quality imaging in low-
light conditions, such as those found at the lunar south pole, 
enhancing the capabilities of lunar robots in these challenging 
environments. The experimental results have shown promising 

Lights Out

Fixed view 
night vision 
camera for 
monitoring

Figure 4. Real-time on-board testing of DimCam in a laboratory simulation environment. 
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outcomes, indicating the DimCam’s potential for various 
applications in lunar exploration. 
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