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Abstract

For years, researchers have been developing an automated method that can replace humans by drawing the outlines of individual
buildings in a vector format, which plays an important role in GIS creation, environmental monitoring, urban planning, population
density estimation, and energy supply. There is no doubt that this is an extremely difficult task, not only because of the labor
required to develop such a highly intelligent algorithm, but also because of the challenges posed by imperfect imaging conditions,
different building structures, and the complexity of the background. One of the current challenges in extracting building outlines
is to accurately recreate the polygonal boundaries of the building while extracting vectorized building masks as output for direct
use in various applications. This work provides a comprehensive workflow for building extraction and improves the predicted area
of buildings through boundary regularization. First, a convolutional neural network is used to train instance segmentation model,
then regularization and vectorization processes are performed. The main difference from existing methods is a new regularization
method based on the concepts of linear connectivity and convexity of a set of points. This approach can effectively identify and
remove points that do not belong to the detected building but were incorrectly segmented by the algorithm. Based on the results of
experiments, the algorithm showed a high level of efficiency, comparable to leading methods for extracting building boundaries as
PolyWorld.

1. Introduction

For many years, researchers have been developing an auto-
mated method that can replace humans for mapping vector
format outlines of individual buildings, which play an import-
ant role in GIS production, environmental monitoring, urban
planning, population density estimation and energy supply. Un-
doubtedly, this is an extremely difficult task, not only due to the
laboriousness of developing such a highly intelligent algorithm,
but also due to the challenges associated with imperfect ima-
ging conditions, varied building architecture, and background
complexity.

Automatic detection of buildings from aerial photographs has
been considered an important means of improving the effi-
ciency of vector map generation for decades (Paparoditis et
al., 1998, Persson et al., 2005, Yang et al., 2018). In recent
years, with the support of extensive training data and sufficient
computing power, deep learning methods such as convolutional
neural networks (CNN) (LeCun et al., 1989) and fully convo-
lutional networks (FCN) (Long et al., 2014) significantly im-
proved the accuracy of building detection from remote sensing

Figure 1. Example of extracting a building boundary.

images (Li et al., 2019, Chen et al., 2020, Sanca et al., 2023).
However, automatically generating high-quality vector building
maps from aerial photographs is not yet a reality for most com-
munities. This is partly because deep learning-based building
detection approaches still face challenges such as low recog-
nition rates of roofs obscured by trees or shadows (Chen et
al., 2019) and relatively poor generalization ability for certain
geographic regions to others (Maggiori et al., 2017). One of
the current challenges in extracting building outlines is to ac-
curately recreate the polygonal boundary of a building while
extracting a vectorized building mask as output for direct use in
various applications.

This paper proposes the algorithm for automatically extracting
building outlines based on instance segmentation, regulariza-
tion and vectorization. The main difference from existing meth-
ods is a new regularization method based on the concepts of lin-
ear connectivity and convexity of a set of points. This approach
can effectively identify and remove points that do not belong
to the detected building but were incorrectly segmented by the
algorithm. In summary, the main contributions of this paper are
as follows:

e We explore the use of the linear connectivity property to
identify “extra” pixels in the instance segmentation pro-
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e To analyze the results and compare them with existing
methods for highlighting building boundaries, one of the
most popular datasets for vectorization, CrowdAI (Mo-
hanty et al., 2020), is used.

2. Related work

Currently, the leading building extraction approaches are se-
mantic segmentation and instance segmentation methods.

2.1 Neural network methods

Since building predictions are made at the highest resolution,
holes may appear in the large-scale building predictions if the
global semantic information is insufficient, while small-scale
buildings may be omitted without enough local details. To ad-
dress these issues, (Wei et al., 2019) introduced a multi-scale
aggregation FCN that fuses multi-scale building features to gen-
erate final building predictions. The PolygonCNN proposed
by (Chen et al., 2020) first performs segmentation to extract
initial building outlines. Then, it utilizes a modified PointNet
to learn the shape prior and predict polygon vertices to gener-
ate precise building vector results by encoding the vertices of
building polygons and merging image features extracted from
the segmentation step. (Sanca et al., 2023) propose an end-to-
end workflow that utilizes binary semantic segmentation, reg-
ularization, and vectorization. The novelty of their approach
is applying the regularization task on an entirely new building
dataset, while adding their own implementation for the vector-
ization part. The study (Knyaz et al., 2020) proposed masking
technique for robust segmentation of the repeated structures in
images. Such approach allowed to improve segmentation per-
formance for 11%.

In (Zhao et al., 2018) the authors corrected the segmentation
masks produced with Mask R-CNN by first simplifying the
detected boundaries using the Douglas-Peucker algorithm and
subsequently refining the resulting polygons using a Minimum
Descriptor Length method. Aiming at the problem that the
quality of detection affects the integrity of the mask, (Zhao
et al., 2020) proposed an instance segmentation model for the
accuracy of segmentation contours, which used detection and
segmentation as a multi-stage process to obtain accurate seg-
mentation edges and improve the geometric regularity of the
segmentation results.

This methods create segmentation maps at the pixel level, but
the building boundaries produced by the algorithms are usu-
ally zigzag and far removed from manual delineation of ob-
jects. In addition, the results require extensive post-processing:
semantic segmentation cannot distinguish between individual
buildings, and the bounding box predicted by the instance seg-
mentation method may contain elements of other buildings,
making mask training difficult. However, geographic and car-
tographic applications typically require precise vector polygons
of extracted objects instead of rasterized output. (Zorzi et al.,
2022) introduces PolyWorld, a neural network that directly ex-
tracts building vertices from an image and connects them cor-
rectly to create precise polygons.

A few other studies (Ling et al., 2019, Peng et al., 2020, Liu
et al., 2021, Wei et al., 2022) have considered the instance seg-
mentation problem as contour regression, i.e., regressing the

vertex coordinates of a contour (in other words, a polygon rep-
resented by a series of discrete vertices). The contour-based
methods are theoretically advantageous in efficiency since they
straightforwardly regress the polygon coordinates, compared to
semantic/instance segmentation with a pixelwise operation, and
have the potential to get rid of the need for post-processing op-
erations such as raster-to-vector conversion and empirical regu-
larization.

2.2 Datasets

Since the Zeebrugge dataset (Campos-Taberner et al., 2016)
was published as part of the 2015 IEEE GRSS Data Fusion
Contest, dozens of building detection and segmentation data-
sets have been released. It is worth noting that the datasets used
to evaluate traditional methods are usually small in size, and the
training and testing sets are collected from the same local region
(or image), resulting in poor generalization ability. In the era of
deep learning, more advanced datasets can achieve spatial in-
dependence of training and test sets, wider spatial coverage and
larger data volume, which corresponds to reality.

Mask R-
CNN

Regularization
using linear
connectivity

Vectorization

Figure 2. The structure of the proposed algorithm.

Considering the size of buildings (> 10m?), we note some
benchmark satellite data/aerial imagery sets (Rottensteiner et
al., 2012, Ji et al., 2019, Yang et al., 2022, Tian et al., 2020,
Mohanty et al., 2020), most of which have spatial resolution
ranging from the centimeter level to 2 m, with the exception of
the relatively coarse resolution of SpaceNet 7 (4 m). In addi-
tion to the commonly used RGB channels, some datasets also
provide additional useful information to further image build-
ings. In terms of spectral information, the Potsdam and WHU-
Satellite datasets have RGB/near-infrared (NIR) bands, and the
SpaceNet and SpaceNet 4 datasets consist of eight spectral
bands from the WorldView 2/3 sensors. For vertical informa-
tion, the Potsdam, Vaihingen, Zeebrugge and DFC19-JAX data-
sets provide airborne LiDAR derived nDSMs, while the Spa-
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ceNet 4 dataset consists of 27 unique images for which view-
ing angles range from —32.5° to 54.0° (Weir et al., 2019).
Several datasets (e.g., DFC19-JAX) have also attempted to im-
prove deep learning networks by combining planar and stereo
remote sensing observations. In terms of temporal properties,
the WHU Building Change Detection, SECOND, Hi-UCD,
and ZKXT_2021 datasets contain multi-temporal remote sens-
ing observations, building contours for each date, and building
change records.

3. Method

This work provides a comprehensive workflow for building ex-
traction and improves the predicted area of buildings through
boundary regularization. First, a convolutional neural network
is used to train instance segmentation model. Second, the prop-
erty of linear set connectivity is used to organize the predicted
contours of buildings and improve their geometry. The final
step is the vectorization process, converting the regularized
building masks into polygons for use in any application. The
scheme of the algorithm is shown in Figure 2.

3.1 Instance segmentation with Mask R-CNN

The initial stage of our methodology involves identifying and
delineating the boundaries of buildings depicted in aerial photo-
graphs. The neural network Mask R-CNN was used to perform
this task.

Figure 3. The structure of the Mask R-CNN.

Mask R-CNN (He et al., 2018) extends Faster R-CNN (Ren
et al., 2016) by adding a branch for predicting segmentation
masks on each Region of Interest (Rol), in parallel with the
existing branch for classification and bounding box regression.
The mask branch is a small fully convolutional network (FCN)
applied to each Rol, predicting a segmentation mask in a pixel-
to-pixel manner. Mask R-CNN is simple to implement and train
due to the Faster R-CNN framework, which facilitates a wide
range of flexible architecture designs. Additionally, the mask
branch only adds a small computational overhead, enabling a
fast system and rapid experimentation.

The Adam optimizer with Binary Cross Entropy Loss with lo-
gits was used during training to measure the difference between
the predicted result and the ground truth. The loss function is
defined as:

D=y Dleidego(y)) + (1= a)logl1 ~ o)l (1)

where N is the batch size, z; is the ground truth image for
sample i, y; is the logit output of the model for sample i and

o is the Sigmoid function. A Sigmoid function is any mathem-
atical function whose graph has a characteristic S-shaped curve
(sigmoid curve). For the sigmoid function we use logistic func-
tion, which is defined as:

1

o(x) = Tre—= )

3.2 Applying regularization on predictions

Once the predictions are generated using the trained model, a
post-processing step applies regularization to further improve
the geometry and accuracy of the predicted building masks.
Since pixel-based classification results in rounded corners and
closed-edge predictions, regularization is an important step to
further improve predictions. Also, after the segmentation pro-
cess, the predicted bounding box may contain additional in-
stances, which makes it difficult to train the mask head of the
network.

Considering that the identification of building boundaries is car-
ried out on remote sensing images, we will assume that the
buildings in the images do not intersect or overlap each other. In
this case, each building is a closed limited set of pixels. Thus,
using the property of linear connectivity, unnecessary points
that do not belong to the main object are removed from the
bounding rectangles.

Figure 4. Schematic definition of path-connected set.

In topology and related branches of mathematics, a connected
space is a topological space that cannot be represented as the
union of two or more disjoint non-empty open subsets. A path-
connected space is a stronger notion of connectedness, requir-
ing the structure of a path. A path from a point x to a point y
in a topological space X is a continuous function f from the
unit interval [0,1] to X with f(0) = z and f(1) = y. A path-
component of X is an equivalence class of X under the equi-
valence relation which makes x equivalent to y if there is a path
from z to y. The space X is said to be path-connected if there
is exactly one path-component. For non-empty spaces, this is
equivalent to the statement that there is a path joining any two
points in X. The definition of a path-connected set is similar to
the definition for a space.

Thus, the developed algorithm has the following structure:

1. Detection of objects of the "building” class in the image

2. Segmentation of objects of the “building” class in each
identified bounding box

3. Find and remove points that do not belong to the main

building in the bounding box, but are segmented as build-

. ”

ing

4. Vectorizing the resulting images

It can be presented as Algorithm 1.
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Figure 5. Using the linear connectivity property to remove unnecessary points from images. In the first image, an object of the
“building” class is detected. On the second, objects of the “building” class are segmented in the bounding box. On the third, pixels
that do not belong to the main object, but are erroneously segmented, are highlighted (in red) and deleted. The last image contains the
final result of segmentation and regularization.

Algorithm 1: Regularization using properties of a path-
connected set of points

Input:

An image with set of points belonging to the class
“building” B = {z;},

Output:

An image with set of points belonging to the class
“building” B = {z}},

Search and removal unnecessary points from the set of points B ;

Procedure Search(B):

for each point x; of class "building” B do

Construct a straight line L; passing through points
x; and xo, where xg is the central point of the
bounding box

if Azerira ¢ Bo, but xertra € L; then

draw a straight line L;, to the last one,
belonging to the class “building” x1

take points 1, from the unit neighborhood 1,
belonging to the class “building” ;

draw straight lines to from points z1,, to z;;

repeat until polygonal chain PC appears
connecting xo and x;;

if 3PC then
| skip;

else
| delete z; from B

else
L skip;

return B;

4. Results
4.1 Evaluation metrics

Similarly to (Zorzi et al., 2022) we use the following evaluation
metrics.

Intersection-over-Union (IoU) or the Jaccard index, is the ratio
of the intersection area of the predicted and ground truth mask
to their union:

I ) TP
Tol — ntersection

Union " TP+ FP+FN

3)

Also precision and recall were calculated to determine average
precision (AP) and average recall (AR) values:

TP

TP+ FP “)

Precision =

TP

Recall = m—m

(&)

where TP, FP , FN are the true positive, false positive and false
negative of the building class.

4.2 Experiment

The developed algorithm was trained on the open CrowdAl
Mapping Challenge database (Mohanty et al., 2020), which
is composed of over 280k satellite images for training and 60k
images for testing. The training images were divided into two
parts: 80% of the images were used to train the algorithm, 20%
for validation. The training was performed locally with CUDA
11.7 on an NVIDIA GeForce RTX 3070 graphics card with 8
GB of memory.

Figure 6. Example images from the CrowdAI Mapping
Challenge dataset.

The meaning of the calculated metrics is given in Table 1. To
understand the level of efficiency of the algorithm, the table also
includes the results of the leading methods on similar data.

Method AP [ AR | ToU
Mask R-CNN 419 | 47.6 -
PolyMapper 55.7 | 62.1 -
PolyWorld 633 [ 754 | 913
LC(our method) | 652 | 749 | 91.4

Table 1. Results on the CrowdAl test dataset for all the building
extraction and polygonization experiments.

5. Conclusion

The main goal of our study was to develop an end-to-end work-
flow for extracting building outlines using instance segment-
ation, linear connectivity-based regularization, and vectoriza-
tion. We concluded that regularization using the linear con-
nectivity property improves segmentation accuracy by an aver-
age of 23.3 in AP(average precision) and 27.3 in AR(average
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Figure 8. Experiment results.

recall). Regularization not only improves predictions, but also
improves the geometric shape of building outlines. Based on
the results of experiments, the algorithm showed a high level of
efficiency, comparable to leading methods for extracting build-
ing boundaries as PolyWorld (Zorzi et al., 2022).
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