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Abstract

Over the last decades, Structure from Motion (or image orientation) has been widely studied in the fields of photogrammetry and 
computer vision, mainly thanks to its feasibility for dealing with various image datasets (such as crowdsourced or UAV images). 
However, due to the fact that images are becoming easy to obtain, nowadays, it is challenging to deal with large scale of datasets, 
wherein the feature matching and pose-graph generation are the key limitations in terms of time efficiency. In this work, we proposed 
an efficient method to accelerate the generation of correspondences and two-view geometries. Specifically, based on some already 
estimated two-view geometries, unknown two-view geometries can be computed via A* algorithm. Then, the corresponding 
feature matching can be perform in a guided way using an epiploar-hash bins that is derived from the estimated two-view epipolar 
geometries. The experimental results demonstrated that, our method can improve the speed of generating pose-graph by 3–4 times 
comparing to two popular packages (colmap and OpenMVG) and is also faster than one SOTA method of Barath et al., (2021), yet 
the results of SfM are typically on par with them and reprojection error of our works are even better.

1. Introduction

In the past few decades, Structure-from-Motion (SfM) has been
intensively studied in the field of computer vision, photogram-
metry. Nowadays, SfM methods can be mainly categorized as
incremental and global ones according to their ways to initialize
BA (bundle adjustment). The global methods, which consider
all images simultaneously, can obtain the similar accuracy as the
incremental method, while are much more time efficient. How-
ever, when processing large set of disordered images, there still
exists limitations regarding consuming time, which are difficult
to meet the requirements of quick production of high precision
geographic information in large-scale and complex scenes.

Figure 1. The workflow of conventional SfM pipeline.

As Fig.1 illustrates, the input of conventional SfM typically
consist of the following main steps: feature extraction, feature
matching, two-view epipolar geometric verification, in which
feature matching and two-view epipolar geometric verification
is the most time-consuming when dealing with large-scale of
image datasets (both of them exhibit quadratic complexity with
respect to the number of images). Furthermore, feature match-
ing possesses a quadratic worst-case time complexity, as it is
contingent upon the number of extracted local features on each
image. Recently, ample endeavors have been tried to improve
the efficiency of feature matching. For example, the well-
known ORB-SLAM (Simultaneously Localization and Map-
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ping) often accelerates this process via employing the binary
descriptors Rublee et al., (2011) or thresolding the number of
input features Mur-Artal et al., (2015). However, for precise
SfM reconstruction, this approach frequently results in impre-
cise camera pose estimations. In general, approximate nearest
neighbor algorithms such as kd-trees (Muja and Lowe, 2009)
or product quantization Jegou et al., (2010) are employed. By
organizing feature descriptors in a hierarchical tree structure,
kd-trees accelerate the process of identifying potential matches
by efficiently reducing search branches. This can accelerates the
matching process, particularly in scenarios involving large data-
sets or high-dimensional feature spaces, In addition, there also
exits Hardware-based speed-ups include using a GPU (Johnson
et al., 2019). Nevertheless, these methods fail to consider the
fact that the matching process is executed across multiple pairs
of images, wherein the relative pose might be pre-estimated
via propagation, at least a closed approximation can be calcu-
lated before the matching procedure. On the other hand, there
is scarce works that address the limitation of inefficient pose
graph generation (pose graph consists of node as images and
edge between two images that survive from two-view geometric
verfication). Barath et al., (2021) investigated the heuristic A*-
based (Hart et al., 1968) traversal algorithm, estimate two-view
geometry for unsolved image pair via propagation on a visible
path, which then make feature matching more ”light-weight” by
leveraging the pre-estimated two-view epipolar geometry.

To cope the discussed limitations, this paper proposes a method
to improve the feature matching and initial pose graph gener-
ation algorithms for Structure from Motion (SfM). Similar to
Barath et al. (2021), our main idea is to avoid unnecessary
massive two-view epipolar geometry of unsolved pairs via us-
ing the information of already estimated two-view epipolar geo-
metry and improve feature matching using a guided hashing
matching strategy, but, we improve the pose graph via using
sevaral orthogonal minimum spanning trees (MSTs) to build a
more complete pose graph. In particular, on the contrary to
Barath et al. (2021), our pose graph generation begins two-view
epipolar geometry based on the image pairs that are on ortho-
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gonal MSTs. And then, for all the remained unsolved pairs, A*
is used to find a visible path to propagate the two-view geo-
metry. Finally, feature matching is accelerated using a guided
hashing matching with estimated two-view geometry. The main
contributions of our work are listed as follows:
First, to generate a more complete pose graph faster, based on
image similarity degree, several orthogonal MSTs are built as
an pre-built initialization of pose graph.
Second, to verify unknow two-view geometry more time effi-
cient, a heuristic A* algorithm is employed to find visible path
between these two views, based on which the corresponding
two-view geometry is estimated via propagation along the path.
Third, to speed up the time efficiency of feature matching, a
hashing strategy based on epipolar lines (calculated from the
estimated relative pose) is utilized to narrow down the potential
candidate matchable points.

The rest of the paper is organized as follows. Some related
works are studied in section 2. In the next section 3, we provide
a detailed explanation of our method. Section 4 report our ex-
perimental results. Finally, conclusion and future work are out-
lined in section 5.

2. Related work

In this section, three relevant topics in the context of pose graph
generation are reviewed. Firstly we introduce the related work
of matchable image pair retrieval method (section 3.1), then the
estimating poses methods are investigated (section 3.2), in the
end, state of the art approaches in accelerating image matching
are introduced (section 3.3).

2.1 Efficient match pair retrieval

Large-scale unordered image data set always exhibit the charac-
teristics of high flexibility, high timeliness, and high resolution
(Jiang et al., 2021), thus results in a significant amount of re-
dundant computation overhead. Ample image retrieval methods
are used to select most similar image pairs to avoid this problem.
Generally speaking, the image match pair retrieval issue can di-
vided into two part: image representing with local or global fea-
tures and efficient indexing structure.
Firstly, in the field of image representing, some handcraf-
ted local features such as SIFT (Lowe, 2004), SURF (Bay et
al., 2006) and ORB (Rublee et al., 2011) are used to detect
descriptors that is invariant for scaling, rotation, and partial in-
variant for viewpoint changes. However, the feature descriptors
computed by these methods is of high dimension, resulting in a
complex computation process. On the other hand, the global
feature extraction method based on CNN has been widely stud-
ied. VGG (Simonyan and Zisserman, 2014) leverages several
stacking convolution layers to extract high dimensional features
from images. ResNet (He et al., 2016) using residual layers to
mitigating vanishing gradient issues, through skip connections,
it enables training of deeper networks and extracting hierarch-
ical image features. Recently, the transformer model based ap-
proach is used for a wide variety of tasks. The ViT (Dosovit-
skiy et al., 2020) utilizes self-attention mechanisms to transform
image patches into sequence embedding, effectively extracting
global features to representing image.
Secondly, after presenting the image with features, we need to
calculate the similarity between images in order to rank and
retrieve related view pairs. The most popular ANN search-
ing (Arya et al., 1998) is an NN (nearest neighbor) searching
problem based on a vocabulary-tree image retrieval method. In

2003, Sivic and Zisserman introduced the BoW (bag-of-words)
approach by considering the local features (Sivic and Zisser-
man, 2003), which creating a relationship between visual words
and local features and has been used extensively in many soft-
ware such as COLMAP and ORB-SLAM. However, the ef-
ficiency of searching high-dimensional descriptors using tree-
based methods will be significantly reduced, sometimes even
without improvement compared to brute-force search. The
locality-sensitive hashing LSH (Indyk and Motwani, 1998)
transforming high-dimensional vectors into binary codes via
hash functions. These methods above require a mount of
memory and initialize time and they only consider local fea-
tures and there are very few efficient retrieval method which
can applied to the global features based on CNNs.

2.2 Robust pose estimate

Using effective sampling strategies can accelerate the process
of robust pose estimation. Many algorithms aim to improve the
RANSAC method and have achieved certain success because
they can quickly find samples that happen to contain all inli-
ers. The PROSAC (Chum and Matas, 2005) algorithm, which
sampling from the continuously increasing set of best corres-
ponding points, can reduce computation resource and improve
processing speed. The MAGSAC (Barath et al., 2019) is also
an enhanced version of RANSAC, introduces the concept of
adaptive guided sampling. This means that in each iteration,
MAGSAC dynamically selects samples based on the current
estimate of model quality, rather than entirely random selec-
tion. Based on MAGSAC algorithm, MAGSAC++ (Barath
et al., 2020) was proposed to extends MAGSAC’s capabilit-
ies, it is more accurate and faster by an order of magnitude
compared to the original method. The NAPSAC (N Adjacent
Points Sample Consensus) (Torr et al., 2002) algorithm assum-
ing that the real-world data often are spatially coherent and ini-
tially localized minimal samples are more likely to be all inliers.
P-NAPSAC combines the advantages of PROSAC and NAP-
SAC, which sampling locally and then gradually transitioning
to global sampling. All above the methods are based on the
isolated two-view robust pose estimation scene, instead, our
method use the information on some subset of the hole image
pairs where some images are matched more than once.

2.3 Accelerating feature matching

There are many ways to accelerating the speed of feature match-
ing process. Such as using a binary descriptors like ORB
(Rublee et al., 2011), or reducing descriptors dimension like
PCA method.However, this usually leads to lower precision in
camera pose estimation results. The other solution is use index-
based methods, etc, k-d tree, LSH (Locality Sensitive Hashing).
Utilizing tree-based or hash-based index structures can acceler-
ate the feature matching process. A faster approach is to use
algorithms that support hardware acceleration such as CUDA.
However, none of these methods aiming at reducing the number
of featurematching executions. In fact, the approximate relative
pose can be infer from the existing pose graph, and then guid-
ing the feature matching process, we only need to match feature
points that are truly likely to be helpful for estimating the pose.

3. Methods

The goal of this work is to propose an solution that can signific-
antly improve the time efficiency for generating pose graph for
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image dataset while maintaining the performance of subsequen-
tial SfM processing, i.e., our method can be expected to more
time efficiently yield input for SfM.

The overall workflow of ourmethod is shown as Fig.2, the green
parts denote our main works. Firstly, based on the similarity
matrix estimated by the inner-product of global feature Res-
Net50 and GeM (Radenović et al., 2018) aggregation, several
orthogonal MSTs are found if there exist no MSTs in the pose
graph. Secondly, a starting pose graph is generated from the
edges of these orthogonal MSTs, vanilla matching using SIFT
and KNN is applied for correspondences which are then em-
ployed to compute two-view geometry. Third, unsolved im-
age pairs are input according to the similar degree from high
to low, visible check is then run to determine whether unsolved
image pair can be connected by the already solved edges, and
A* method is used to find the visible paths, from which the rel-
ative orientations is propagated to estimate unsolved image pair.
If the visible check fails, then vanilla match is again used, oth-
erwise, we alternate to the guided feature matching. In general,
the third step is repeated until all image pairs are explored. In
the next subsections, wewill introduce three relevant main com-
ponents.

Figure 2. The efficient pose graph construction and feature
matching pipeline.

3.1 Generation of orthogonal MSTs and starting pose
graph

To generate a complete pose graph which means more images
are included as possible as it can be, in the beginning of our
method, based on image similarity matrix, the Minimum Span-
ning Tree (MST) is used to obtain an optimal set of edges that
can connect all images. Specifically, assuming that all images
form an undirected graph G with weighted edges (via image
similarity degree, Sij represents the similarity score between the
images i and j in the similarity matrix). We assign each edge a
weight of 1/Sij , which means the higher image pair similarity
score corresponds to lower cost. The total cost can be presen-
ted as cost(G) =

∑
(i,j)∈G

1/Sij , the goal of MST is to find
an optimal path that can: first, connect all images; second, the
corresponding cost(MST ) is as minimum as possible.

To obtain a MST, firstly, each image is considered as a root
node of different trees in the graphG, and one edge (image pair)
has two vertices of root node. Secondly, retrieve the edge (im-
age pair) with the highest similarity degree from the estimated
similarity matrix, if two vertices of the edge belong to different

trees, then we merge the corresponding root nodes into one tree
and add the edge into the MST that is to be generated, otherwise
it continue to process the next image pair with second highest
similarity degree. Thirdly, repeat the second step until only one
tree left in the graph G, which is the final MST. Finally, a set
of edges T = {(i, j)|i, j ∈ G} that includes all images and has
the lowest cost is found.

In our work, instead of just using one MST, we propose to use
multiple orthogonal MSTs, the main reasons are: first, for only
single MST, the visible path retrieval might degrade due to the
limited length of explored connecting edge via A* method, as a
consequence, the vanilla matching is applied due to no visible
path is found, which is very time-consuming; Second, the single
MST might be corrupted by outliers of two-view geometry es-
timation along the edges, this may lead to poor accuracy of es-
timated relative poses, thereby increasing the epipolar hashing
(see section 3.3) cost time. Therefore, to generate a robust pose
graph and further improve the time efficiency, we proposed to
multiple orthogonal MSTs to build moreMSTs in pose graph, in
which ”orthogonal” means that any two MSTs do not share any
single same edge. In our work, at least three orthogonal MSTs
are used to improve the possibility that any new image pair can
be successfully traversed via the A*.

As shown in Fig.3, when the first MST tree is built, all the edges
in the tree are added to the excluded set, the second MST tree is
then constructed by traversing the rest image pairs in descend-
ing order of similarity score. In this way, we can get multiple
orthogonal MSTs by repeating the above steps several times.

Figure 3. Multiple orthogonal MSTs generation according to the
similarity degree among images.

After generating the orthogonal MSTs, the feature matching of
each image pair in MSTs uses the vanilla match strategy (such
as FLANN), based on which two-view epipolar geometry is es-
timated, and the starting pose graph is formed.

3.2 Visible path determination based on A* and two-view
geometry propagation

Generally speaking, estimating the relative pose among image
pairs can be a time-consuming process, In the worst case, the
maximum number of iterations in RANSAC needs to be run.
However, if a pose graph with t edges is built beforehand,
the process can be accelerated and a large number of redund-
ant two-view epipolar geometry calculations can be avoided.
An effective path can be found between two views using the
A* algorithm, which is a well-designed heuristic method. By
propagating relative rotation and translation, we can predict a
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closed relative pose for the new (t + 1) image pair. As shown
in Fig.4, when the image pair view1,3 is added, we can first es-
timate the pose via path view1 − view2 − view3. Note that
we’re not aiming for a very high accurate relative pose in this
part. Instead, the approximate pose relative can help guide fea-
ture matching to be completed more quickly and avoid the need
to run heavy RANSAC.

Figure 4. Pose propagation: view(1, 3) image pair relative pose
can be estimated by view(1, 2) and view(2, 3).

Based on the starting pose graph built in section 3.1, the rest
of image pairs are added by descending order of correspond-
ing similarity degree. According to the characteristics of MST,
relative poses among all image pairs can be estimated by the ex-
isting starting pose graph. Let us defineW = (Iv1 , Iv2 , ..., Ivn)
as a path between an unknown image pair (Iv1 , Ivn) found by
A* algorithm, which Iv1 denotes the start view and Ivn denotes
the destination view, The pose Φ(ev1,vn) can be represented as
(R1n, t1n) ∈ SE(3), which v1, vn means the start and destin-
ation node in the edge. We can calculate the estimated relative
pose between the unknown edge in the pose graph by:

Φ(W ) = Φ(Iv1 , Iv2 , ..., Ivn)

= Φ(ev1,v2)Φ(ev2,v3)...Φ(evn−1,vn) (1)

As the number of walking steps between views increases, the
error of estimated relative pose are prone to become larger, and
it is even possible for the search path to fall into a deadlock.
Therefore, we set a threshold for the search depth, and paths
that exceed this threshold are considered invalid search results.

3.3 Guided feature Matching with propagated two-view
geometry

Featurematching is typically themost time-consuming task, and
it possesses a complexity of O(n2). After the relative posed of
start and destination image are solved in the prebuilt pose graph,
for one selected keypoint in destination image, it is possible to
find matched feature point near the corresponding epipolar line
in the source image, thus, a hashing strategy based on epipolar
lines is proposed. Once we identify potential candidate features,
the speed of feature matching process is expected to be greatly
improved.

Specifically, the guided feature matching method contains two
parts which are epipolar hash and quick match. As Fig.5 shows,
the epipolar hash method use the essential matrix estimated in

section 3.2 to find the possible points which lies nearby the epi-
polar lines projected on the source image. In practice, the fea-
tures in the corresponding hashed bin (sector of covering the
epipolar line on the source image) are considered, in which this
bin is centered by the epipole within a certain angle. Due to the
characteristic of epipolar geometry, the angle value range may
be [0, π) (the epipole e1 is inside image shown as Fig.5) or [a, b]
(the epipole e1 is outside image), which a,b denote theminimum
and maximum angle value of the line connecting between the
epipole and the corners of image. After getting the range of epi-
polar line angles, all features on the images can be hashed into
different bins. Each bin shares the same epipole and the span
of bin’s angle is [0,π)

bins number
or [a,b]

bins number
. Among all bins

formed by the line with the epipole, the one that hits the epipolar
line is the candidate to be explored. Ultimately, the vanilla fea-
ture matching are performed via considering the features on the
candidate bin. It should be emphasized that the vanilla feature
matching only runs on a small feature set in the image, because
feature that are obviously far away from the epipolar line have
been excluded.

In sum, by combining the approaches of predict propagated
two-view geometry and quick feature matching, we can narrow
down the potential candidate points for feature matching, thus
speed up the process.

Figure 5. Epipolar hash: feature p2 in image C2 is assigned to
the bin in C1 which corresponds to epipolar line.

4. Experiments

To validate the performance of the proposed method, we test
several different image datasets (see section 4.1 for more de-
tails). To evaluate the time efficiency, two popular package
(Colmap and openMVG) and one state-of-the-art methodBarath
et al., (2021) are compared (section 4.2). Finally, the results
of SfM are reported using the evaluation metric of mean track
length, mean reprojection error and number of registered images
(section 4.3).

4.1 Experimental datasets and setups

Our method is tested on three image datasets of Knapitsch et al.,
(2017), named as Family, Lighthouse and Playground, Tab.1
lists the information of image size and number of images and
Fig.6 shows sample image of these three datasets. Before test-
ing our method, the first step is to compute the similarity degree
matrix among images, which is normalized into (0, 1) and with
dimensions of n × n, higher value indicates that the two cor-
responding images are more likely to overlap with each other.
To do this, we use ResNet50 as backbone and GeM (Radenović
et al., 2018) as aggregation layer that is pre-trained on GLD-v1
(Noh et al., 2017) to extract global feature. After that, similarity
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degree is computed via cosine distance, and in our experiment
image pairs with similarity over 0.5 are eligible for subsequen-
tial processing and 3 orthogonal MSTs are used to generate the
starting pose graph.

Datasets Name Image Width Image Height Image Numbers
Family 1920 1080 152

Lighthouse 2048 1080 200
Playground 1920 1080 307

Table 1. The detailed information of tested datasets.

Figure 6. A sample image of Family, Lighthouse and
Playground.

The number of extracted SIFT features is set at around 6000.
For the A* algorithm, the weight of the heuristic parameter is
set to 0.8, and the maximum path search depth is set to 5 layers.

4.2 Performance of time efficiency

In this part, we compared the cost time taken for generating pose
graph by the state-of-the-art SfM pipelines including Colmap
and openMVG, feature extraction time is also reported here.
In addition, we conducted a comprehensive comparison with
Barath et al., (2021), in which the cost time of each step is dis-
cussed.

Datasets Method
Cost time(s)

extract feature pose graph

Family

our method 128.25 106.14
Barath et al., (2021) 91.83 305.82

openMVG 273.99 139.13
Colmap 13.98(GPU) 381.36

Lighthouse

our method 121.18 104.12
Barath et al., (2021) 120.00 149.47

openMVG 172.13 115.40
Colmap 15.96(GPU) 439.68

Playground

our method 189.06 277.31
Barath et al., (2021) 180.56 391.10

openMVG 331.21 308.24
Colmap 31.86(GPU) 1465.32

Table 2. Comparison of time consuming by different methods.
Best results are highlighted in bold.

From Table.2, we can find that our method is always the fast
solution when generating pose graph and exhibits significantly
reduction in processing time compared to Colmap. Colmap
computes pose graph time slowest, primarily due to its utiliz-
ation of BF-search (brute-force) matching strategy. The second
fastest pipeline is the method of OpenMVG, which utilizes the
Fast-Cascade-Hashing-L2 matching algorithm. While this ap-
proach results in a significant speed improvement, but it typic-
ally need a greater amount of memory (Cheng et al., 2014). As
the feature extraction step in Colmap benefits from GPU accel-
eration, the total time for the initialization part was not included
in the comparative analysis. Comparing to Barath et al., (2021),
we are in general faster, this can be explained by the benefit of
the initialization stage using orthogonal MSTs.

To further explore how the proposed method improve Barath
et al., (2021), the cost time of several key stages are invest-
igated, including the A*-based visible path-finding, Epipolar
Hash matching, vanilla matching, two-view geometric verifica-
tion. The relevant results are qualitatively shown in Fig.7-9.

Figure 7. Cost time of Family.

Figure 8. Cost time of Lighthouse.

Figure 9. Cost time of Playground.

From Fig.7 to Fig.9, the experiment results indicate that the in-
corporation of multiple orthogonal MSTs can speed up the pro-
cessing of the corresponding key stages. This improvement
arises from the fact that any unknown image pairs can be re-
trieved at least one visible paths after initializing the pose graph
which can avoids some vanilla matching. It is noteworthy that
on the Playground datasets, the improvement of epipolar hash-
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ing does not happen, whereas the cost time of vanilla matching
decreases slightly. After an investigation on the dataset itself,
we find that the Playground dataset was captured in a sequen-
tial way, i.e., two adjacent images typically overlap with each
other, which are more likely to be included by MSTs. Con-
sequently, the image pairs of generated orthogonal MSTs that
are built using similarity degree are basically consistent with the
image pairs that are used by Barath et al., (2021) for initializing
pose graph. Nevertheless, our method still demonstrates lowest
processing time.

In sum, our method provide a time efficient solution for feature
matching and generating pose graph, which are expected to im-
prove the whole SfM pipeline by fast input estimation.

4.3 Performance of SfM

The performance of SfM relies on the quality of feature match-
ing and two-view geometric results. Therefore, in this section,
the popular framework - openMVG is employed as a SfM en-
gine which take the output of our method and Barath et al.
(2021) as input to estimate image poses and 3D sparse point
cloud. Three evaluation metrics are computed:

Mean Track length (MTL). Track length denotes the number
of images that a 3D point can be viewed on. Mean Track length
is the averaging track length for all triangulated 3D points. A
MTL value can typically imply the quality of feature matching,
i.e., higher MTL means better feature matching.
Mean Reprojection error (MRE). The reprojection error
represents a geometric discrepancy measured as the distance
between a reprojected 2D point and its corresponding feature
point on the image. MRE can be used to indicate how good the
whole SfM result is consistent to the projection model, such as
pin-hole.
Registered images number (RIN).The number of successfully
registered images in the photogrammetric block. A higher num-
ber of successfully registered images indicates a more complete
pose graph.

We primarily employed the pipeline of openMVG and
COLMAP for our experiments. For the algorithms mentioned
in this paper, we utilized feature points extracted using open-
MVG as our method’s input. Tab.3 presents the quantitative
results of these three evaluation metrics. It can be observed that
the method proposed in this paper exhibits the highest recon-
struction accuracy regarding MRE, while the pipeline based on
Colmap always exhibit the longest MTL. In terms of the suc-
cessfully registered number of images, the method proposed is
just slightly inferior to Colmap. For colmap, the inherent feature
extraction module is used which generate approximately 3000
more feature points per image, as a result, the corresponding
MTL and RIN is always the best as more correspondences are
found and more edges are likely to pass the two-view geomet-
ric verification. Compared to the original pose graph method
Barath et al., (2021), our method shows superior results on all
three metrics, which demonstrate the efficacy of the proposed
integration of multiple orthogonal MSTs. The visual SfM re-
construction results are shown in Fig.10-12.

5. Conclusion

This paper proposed an efficient solution for accelerating the
speed of finding correspondences between images and gener-
ating pose graph, thus shrinking the feature matching process

Figure 10. SfM result of Family.

Figure 11. SfM result of Lighthouse.

Figure 12. SfM result of Playground.

time. In details, we made some improvements based on the
Barath et al., (2021), before we start the pose graph construc-
tion process, a sorting method based on the multiple orthogonal
MSTs is employed. The experimental results indicate that com-
pared to several major pipelines (Colmap and openMVG), our
method can achieve an speed improvement of average 3 times or
even more. Moreover, compared with the Barath et al., (2021),
our method exhibiting a higher pose-graph initialize efficiency.
Regarding the accuracy of 3D reconstruction, our method has
the best performance in terms of reprojection error, indicating
that our method’s output pose graph is robust and of high qual-
ity. However, there is still a lot of space for the improvement of
our work, which lies in two directions. On the one hand, we will
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Dataset Method MTL MRE(px) RIN

Family

our method 7.53 0.50 152/152
Barath et al., (2021) 3.80 0.83 141/152

openMVG 7.02 0.67 152/152
Colmap 8.06 0.87 152/152

Lighthouse

our method 5.41 0.61 198/200
Barath et al., (2021) 5.35 0.63 186/200

openMVG 5.21 0.90 196/200
Colmap 7.74 0.66 200/200

Playground

our method 5.73 0.49 307/307
Barath et al., (2021) 5.67 0.68 307/307

openMVG 4.20 0.99 302/307
Colmap 6.03 0.65 307/307

Table 3. Comparison of SfM results. Best is highlighted in bold.

conduct tests on more challenging datasets, such as those con-
tains over a thousand images or datasets with even greater dis-
order to test the robustness of our method. On the other hand, in-
stead of calculating the similarity by the cosine distance between
extracted global features, the end-to-end method such as NetV-
LAND can also be used to calculate similarity degreematrix and
input into the pose graph.
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