
A Deep Neural Network for Road Extraction with the Capability to Remove Foreign Objects 

with Similar Spectra 

Haiqing He 1, 2, Yan Wei 1, Fuyang Zhou1, Hai Zhang1 

1 School of Surveying and Geoinformation Engineering, East China University of Technology, Nanchang 330013, China 
(hyhqing, weiyan08210921, fuy_zhou, haizhang2024) @163.com 

2 Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake of Ministry of Natural Resources, East 
China University of Technology, Nanchang 330013, China 

Keywords: Road extraction, Deep neural network, Dual channel model, Feature fusion, Similar spectra. 

Abstract 

Existing road extraction methods based on deep learning often struggle with distinguishing ground objects that share similar spectral 

information, such as roads and buildings. Consequently, this study proposes a dual encoder-decoder deep neural network to address 

road extraction in complex backgrounds. In the feature extraction stage, the first encoder-decoder designed for extracting road 

features. The second encoder-decoder utilized for extracting building features. During the feature fusion stage, road features and 

building features are integrated using a subtraction method. The resultant road features, constrained by building features, enhance the 

preservation of accurate road feature information. Within the feature fusion stage, road feature maps and building feature maps 

designated for fusion are input into the convolutional block attention module. This step aims to amplify the features of different 

channels and extract key information from diverse spatial positions. Subsequently, feature fusion is executed using the element-by-

element subtraction method. The outcome is road features constrained by building features, thus preserving more precise road feature 

information. Experimental results demonstrate that the model successfully learns both road and building features concurrently. It 

effectively distinguishes between easily confused roads and buildings with similar spectral information, ultimately enhancing the 

accuracy of road extraction. 

1. Introduction

The significance of road extraction lies in its ability to 

automatically identify and delineate roads from satellite images 

or maps. This process is essential for various applications such 

as urban planning, transportation management, infrastructure 

development, environmental monitoring, and disaster response. 

Accurate road extraction facilitates navigation systems, helps 

improve traffic flow analysis, aids in updating maps, and 

supports various location-based services. 

Traditional road extraction methods are labor-intensive, relying 

on designing features based on road texture, shape, edges, and 

other characteristics. The accuracy of extraction is not high, and 

the robustness is poor. Moreover, this method is not suitable for 

road extraction in complex scenarios. Support vector machine 

(SVM) classification method (Simler, 2011) and Markov 

random field classification method (MRF classification method) 

(Li et al., 2017), formulate rules according to the spectral and 

spatial characteristics of roads, extract road fragments from 

images, and further refine them. He et al. proposed a color-

based road detection algorithm by combining boundary 

estimation results from grayscale images with road region 

extraction results from color images (He et al., 2004). SIMLER 

et al. proposed an SVM technique using spectral and spatial 

features to extract roads from aerial images with a spatial 

resolution of 0.5m. YAGER et al. used SVM to extract roads 

from aerial images with a spatial resolution of 0.45m by 

utilizing important features such as edge length, intensity and 

gradient (YAGER and Sowmya, 2003). Wegner et al. proposed 

a high-order conditional random field (CRF) model for road 

network extraction (Wegner et al., 2013). 

Currently, deep learning is highly favored in the field of 

semantic segmentation. An increasing number of studies are 

using deep learning to tackle various problems. Among them, 

the most commonly used are Convolutional Neural Network 

(CNN) and Fully Convolutional Networks (FCN) (Long et al., 

2015). Additionally, with the advancement of deep learning, 

transformers have also been widely employed. U-Net 

architecture adopts cascaded upsampling and combines multiple 

loss functions for road extraction (Ronneberger et al., 2015). To 

minimize information loss, LinkNet directly connects the 

encoder to the decoder (Chaurasia and Culurciello, 2017). D-

LinkNet adopts the LinkNet architecture and utilizes shortcut 

connections in the central part to combine atrous convolution 

blocks into several parallel branches (Zhou et al., 2018). Due to 

occlusions from buildings and shadows, discontinuities occur in 

roads. Therefore, in the CoANet model, a connectivity attention 

module (CoA) is designed to address the continuity issues in 

roads (Mei et al., 2021).  Zhang et al. proposed a semantic 

segmentation neural network for road extraction that combines 

the advantages of residual learning and U-Net (Zhang et al., 

2018). Since CNNs struggle to capture global representations, 

transformers are used to obtain comprehensive contextual 

information. Therefore, Seg-Road (Tao et al., 2023) and 

DPENet (Chen et al., 2023) models effectively combine local 

and global information using a dual-encoder structure for road 

extraction. SemiRoadExNet is a semi-supervised road 

extraction framework that employs Generative Adversarial 

Networks (GANs) and utilizes multiple discriminators to ensure 

consistency in feature distributions between labeled and 

unlabeled data, enhancing the generalization capability of the 

model (Chen et al., 2023). 
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However, road extraction methods based on deep learning still 

have limitations. These include issues with road connectivity, 

object occlusion, and difficulty distinguishing between objects 

with similar spectral characteristics (such as roads and 

buildings). Therefore, this paper proposes a dual-encoder-

decoder structure to simultaneously learn features of roads and 

buildings, with building features suppressing the learning of 

road features. Additionally, Convolutional Block Attention 

Module (CBAM) is employed to enhance features, reduce 

semantic information loss, and more effectively utilize extracted 

information. Our contributions are as follows: 

 

• We propose a model consisting of a dual-encoder-decoder 

architecture to simultaneously learn features of roads and 

buildings, which are prone to confusion. 

• We employ CBAM to enhance features, extract, and leverage 

more shared information. 

 

• We adopt an exclusion strategy for feature fusion, using 

building features to suppress the learning of road features, 

thereby reducing misclassification during road extraction. 

 

2. Methods 

Our proposed model primarily consists of two encoder-decoder 

structures and a CBAM module integrated with element-wise 

subtraction for feature fusion, as illustrated in Fig. 1. 

 

 
 

Figure 1. Architecture of the proposed network. 

 

2.1 Dual Encoder-Decoder Network Model Structure 

The dual encoder-decoder architecture is mainly based on the 

encoder-decoder structures of the CoANet (Mei et al., 2021) 

and TransUNet (Chen et al., 2021) models. 

 

The first encoder-decoder structure is dedicated to extracting 

road features, with the decoder segment utilizing a pre-trained 

ResNet101. It comprises five modules, with the first module 

containing a convolutional layer, batch normalization layer, 

activation function, and max-pooling layer. The subsequent four 

modules consist of convolutional layers, normalization layers, 

and activation functions, with layer depths of 3, 4, 23, and 3, 

respectively. The last two modules employ dilated convolutions 

with dilation rates of 2 and 4 to extract denser features, resulting 

in five feature maps. The deepest feature map, along with the 

feature map extracted from the second encoder-decoder 

structure for feature fusion, is input into CBAM. This amplifies 

features from different channels, extracts crucial information 

from various spatial positions, performs feature fusion using 

element-wise subtraction, and then feeds the fused features into 

Atrous Spatial Pyramid Pooling (ASPP) to increase the 

receptive field. Finally, it enters a decoder containing four strip 

conv modules, each capturing contextual information in four 

different directions. Finally, the feature map is inputted into a 

decoder with four strip conv modules, each containing four 

different directional strip convolutions to capture contextual 

information. Connected after the decoder are the segmentation 
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branch and the connectivity branch. The connectivity branch 

integrates SE (Squeeze-and-Excitation) for attention-weighted 

processing of feature maps across different channels. 

 

To distinguish between easily confused road and building 

features, we employ parallel encoder-decoder structures to 

avoid issues such as information loss due to small feature maps 

caused by deepening the model. The second encoder adopts 

ResNetV2, comprising three modules, each composed of 

convolutional layers, batch normalization layers, and activation 

functions. The encoder part produces three feature maps and 

one for obtaining global contextual information. The feature 

map used to acquire global contextual information is serialized, 

passed through twelve transformer layers, with positional 

encoding added. The resulting sequence is reshaped, and then 

passed through convolutional and activation functions. The 

resulting feature map is upsampled and fused with the feature 

map of the same shape from the encoder structure. The fused 

feature map is upsampled and then merged with the feature map 

of the same shape from the encoder structure. Then, the fused 

features are upsampled and fused once again. Finally, the fused 

feature map is upsampled, and segmentation is performed to 

obtain the predicted binary image. 

 

2.2 Feature Fusion 

The feature fusion structure diagram is shown in Fig. 2. The 

deepest feature map from ResNet101 and the feature map used 

for feature fusion from the second encoder-decoder structure are 

inputted into CBAM. Initially, they pass through a channel 

attention module, followed by a spatial attention module. The 

channel attention module performs max-pooling and average-

pooling operations on the input feature maps, then combines 

them through a Multilayer Perceptron (MLP) and element-wise 

addition. The resulting feature map is multiplied element-wise 

with the input feature map to produce the input feature map for 

the spatial attention module. The spatial attention module 

conducts max-pooling and average-pooling operations on the 

feature maps, fuses them based on channels, applies a 

convolution operation, and passes through a sigmoid to obtain 

the final feature map. The road and building feature maps 

processed by CBAM are fused using element-wise subtraction 

to yield the final fused feature. The formula is as follows: 

 

 
road buildF F F= −  (1) 

 

where  Froad = the road feature map processed by CBAM 

 Fbuild = the building feature map processed by CBAM 

 F = the fused feature 

 - = the element-wise subtraction 

 

 
 

Figure 2. Feature fusion structure diagram. 

2.3 Loss Function 

The loss function plays a crucial role in the model training 

process. After each batch of data is input into the model and 

predicts values through forward propagation, the loss function 

calculates the difference between the predicted values and the 

ground truth. Then, through backpropagation, the parameters in 

the model are updated to minimize this difference, thereby 

allowing the model to converge and achieve the training 

objective. Therefore, the choice of loss function is also critical 

during model training. 

 

This paper employs a combination of BCE (Binary Cross-

Entropy) and Dice loss functions to address the foreground-

background class imbalance issue in images. Based on the 

model architecture shown in Figure 1, the loss function L 

mainly consists of two parts: L1 and L2. L1 represents the loss 

function of the first encoder-decoder structure, while L2 

represents the loss function of the second encoder-decoder 

structure. Since the first encoder-decoder part includes both 

linking branches and segmentation branches, the loss function 

in L1 also comprises two parts: Ls and Lc. The linking branch is 

used to determine the connectivity between the current pixel 

and its surrounding eight pixels. Therefore, the loss function is 

formulated as follows. 
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where  LB = BCE loss function 

 LD = Dice loss function 

 yi = the ground truth 

 y'
i = the prediction of the segmentation branch 

 Q0 = the number of surrounding pixels 

 yc = the connectivity of the pixel with its surrounding 

pixels 

 y'
c = the prediction of the linking branch 

 α = adjust the weights of the BCE and Dice loss 

functions 

 α' = adjust the weights of the two linking branch loss 

functions 

 α'' = adjust the weights of the segmentation branch 

and linking branch loss functions 

 α''' = adjust the weights of the two encoder-decoder 

structure loss functions 
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3. Experiments 

3.1 Datasets 

Aerial Image Segmentation Dataset (Kaiser et al., 2017): The 

aerial images are divided into aerial remote sensing images 

from Google Maps and pixel-level buildings, roads and 

background labels from OpenStreetMap. Sourced from the 

website (https://zenodo.org/records/1154821#.XH6HtygzbIU). 

It covers Berlin, Chicago, Paris, Potsdam and Zurich. The 

image of part of the Zurich area was selected as the data set, 

which was cropped to 512*512 pixels, and the road and 

building parts in the label were extracted separately as the labels 

of their respective channel models. Among them, 8070 images 

were used as the training set, 1020 images were used as the 

verification set, and 1080 images were used as the test set.  

 

3.2 Implementation Details 

Training is conducted under the PyTorch deep learning 

framework, with training platform parameters as shown in 

Table 1 and model parameter settings for training as shown in 

Table 2. The poly learning rate decay strategy used in Table 2 is 

as shown in the formula. 

  

 
1

_
max_

power

iter
lr init lr

iter

 −
=  

 
 (3) 

 

where  lr = the learning rate 

 init_lr = the initial learning rate 

 iter = the number of iterations 

 max_iter = the maximum number of iterations 

 power = the exponent used to control the rate at which 

the learning rate decreases as the number of iterations increases 

 

Platform Configuration 

CPU Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 

GPU NVIDIA GeForce RTX 3090 24.0GB 

Memory 16GB 

DL Framework Pytorch V1.12.0 

Compiler PyCharm 2023.1 

Program Python V3.8.0 

Parallel computing CUDA V11.3.1 

DL Accelerator cuDNN V8.3.2 

Table 1. Training platform configuration 

 

Training Settings 

Optimizer SGD 

LR Policy Poly 

Loss Functions BCE/Dice 

Initial learning rate 0.001 

Momentum 0.9 

Weight decay 5e-4 

Batch size 4 

Epoch Loss Functions 50 

Table 2. Training settings 

 

3.3 Evaluation Metrics 

Road extraction is commonly perceived as a binary 

classification problem. The commonly used model performance 

evaluation metrics are Overall Accuracy (OA), Precision, Recall, 

Intersection over Union, and F1-score. We adopt the average 

Precision, the average Recall, the average Intersection over 

Union, and F1-score for both foreground and background, along 

with OA, to evaluate the road extraction performance of our 

proposed model. The formulas for OA, Precision, Recall, 

Intersection over Union, and F1-score are as follows. 
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where  TP = the number of pixels correctly predicted as roads 

 FP = the number of pixels incorrectly predicted as 

roads 

 TN = the number of pixels correctly predicted as 

background 

 FN = the number of pixels missed in predicting as 

roads 

 OA = the proportion of correctly predicted pixels to 

the total number of pixels 

 Precision = the proportion of correctly predicted 

samples to the predicted samples 

 Recall = the ratio of correctly predicted positive 

samples to the total number of true positive samples 

 F1-score = the harmonic mean of precision and recall 

 IoU = represents the ratio of the intersection of the 

actual region and the predicted region to the union of the actual 

region and the predicted region 

 

3.4 Comparative Analysis of other Modules 

To validate the feasibility of the model proposed in this paper 

for road extraction, we compared it with five other state-of-the-

art models (PSPNet50 (Zhao et al., 2017), TransUNet (Chen et 

al., 2021), DeepLabV3 (Chen et al., 2017), D-LinkNet (Zhou et 

al., 2018), and CoANet (Mei et al., 2021)) on the Aerial Image 

Segmentation Dataset. The accuracy results of the comparison 

are shown in Table 3. 

 

Model OA 

(%) 

mPre 

(%) 

mRecall 

(%) 

mIoU 

(%) 

mF1 

(%) 

PSPNet50 90.16 80.40 77.22 70.76 78.78 

TransUNet 89.78 79.42 71.72 65.44 75.37 

DeepLabV3 90.69 80.52 80.43 73.26 80.47 

D-LinkNet 89.71 79.54 78.36 64.75 78.95 

CoANet 90.55 79.84 88.61 74.32 84.00 

Proposed 91.26 81.98 89.21 75.34 85.44 

Table 3. Compare with five other state-of-the-art models 
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The comparison results of model accuracy in Table 3 indicate 

that our proposed model outperforms others on all five metrics: 

OA, mPre, mRecall, mIoU, and mF1. Among the six networks 

evaluated, CoANet exhibited the second-best performance in 

identifying roads, with superior performance in other metrics. 

DeepLabV3 outperformed others in five metrics. However, 

TransUNet, PSPNet50, and D-LinkNet show average 

performance across OA, mPre, mRecall, mIoU, and mF1 

metrics. TransUNet has the lowest mPre, mRecall, and mF1, 

while D-LinkNet has the lowest OA and mIoU. 

 

To further validate the feasibility of CBAM in road extraction, 

ablation experiments were conducted, and the accuracy results 

are shown in Table 4. 

 

Model OA 

(%) 

mPre 

(%) 

mRecall 

(%) 

mIoU 

(%) 

mF1 

(%) 

A 90.30 81.39 88.54 74.02 84.81 

Proposed 91.26 81.98 89.21 75.34 85.44 

Table 4. Comparison of CBAM ablation experiments 

 

In Table 4, Model A only inputs two feature maps used for 

feature fusion into CBAM, whereas our proposed model inputs 

four feature maps obtained from the first encoder and the 

feature map obtained from the second encoder-decoder used for 

model fusion into CBAM. The accuracy comparison results in 

Table 4 demonstrate that our proposed method achieves the 

highest scores on metrics OA, mPre, mRecall, mIoU, and mF1. 

The OA of proposed is 0.96% higher than that of Model A, 

mPre is 0.59% higher, mRecall is 0.67% higher, mIoU is 1.32%   

higher, and mF1 is 0.63% higher. 

 

To more intuitively assess the feasibility of the integrated 

feature module, the heatmap of the feature map was visualized, 

with the results displayed in Fig. 3. 

 

 

 

Figure 3. Heat maps of each layer of model encoder and fusion features. 

 

 
 

Figure 4. ROC curves and AUC values of 5 models. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-193-2024 | © Author(s) 2024. CC BY 4.0 License.

 
197



 

The heat map in Fig. 3 demonstrates that after applying the 

feature fusion module, it becomes possible to distinguish 

between the features of roads and buildings, resulting in more 

accurate feature extraction. This indicates the effectiveness of 

the feature fusion module we utilized. However, there are still 

areas for improvement, particularly in extracting features at the 

edges and in regions obscured by trees and shadows. 

 

In Fig. 4, the ROC curve plot has the true positive rate on the y-

axis and the false positive rate on the x-axis. The closer the 

curve approaches the upper-left corner, the better the 

performance of the model. The AUC value represents the area 

under the ROC curve, with a larger AUC indicating better 

model performance. It can be observed from the graph that our 

proposed model performs the best. 

 

 
 

Figure 5. Comparison of model results. 

 

The comparative results of various models in Fig. 5 demonstrate 

that our proposed method achieves the best extraction 

performance in shadow areas, with fewer instances of 

misextraction and strong performance in road connectivity. 

However, its performance in edge processing remains 

suboptimal. 

 

4. Conclusion 

In this paper, we propose a neural network model with a dual 

encoder-decoder architecture. By employing a dual-channel 

framework, we conduct separate learning of road and building 

features. We incorporate the CBAM attention mechanism with 

element-wise subtraction to amplify features from different 

channels, extracting crucial information from distinct spatial 

locations of roads and buildings. This facilitates feature fusion 

to distinguish between roads and buildings that are prone to 

confusion in images. The experimental results indicate that our 

proposed method shows improvement compared to other state-

of-the-art network models in distinguishing between complex 

roads and buildings, with better road extraction performance. 

 

Despite optimizing the model's performance, shortcomings still 

exist. Results from the Aerial Image Segmentation Dataset 

indicate subpar performance in extracting road edges. 

Additionally, the model is relatively large, resulting in longer 

training times. Therefore, in future research, our objective is to 

address road edge extraction issues and modify the model into a 

lightweight version to achieve more efficient, rapid, and 

accurate road extraction. 
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