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Abstract

Multiple sensors equipped on the Unmanned Aerial Vehicle (UAV) enables the acquisition of multi-modal and multi-source remote
sensing data. UAV remote sensing usually faces with real-time or near-real-time tasks in complex and highly dynamic environments,
such as disaster monitoring, traffic management, border patrol and so on. Under these conditions, the image fusion algorithm needs
to be high efficiency, precision and reliability. In this paper, we proposed an intelligent real-time fusion network for UAV multi-
source remote sensing data based on AI brain-like chips, and deployed the algorithm on the UAV platform to achieve online high-
efficiency computing. Firstly, we have developed a novel image fusion algorithm named SFNet for infrared and visible image fusion
based on ShuffleNetv2. Then, we use ZCA and l1-norm to process the remodeled deep feature. The weight maps are generated by bi-
cubic interpolation and soft-max operation. Finally, the fused image is reconstructed by weighted-average operation. The proposed
SFNet is deployed on the Lynxi KA200 brain computing chip, and a comprehensive inference test is carried out with UAV remote
sensing data. Several State-Of-The-Art (SOTA) data fusion algorithms are deployed on the same chip for experimental comparison.
The proposed SFNet is proved to have faster inference speed and better feature extraction results on brain-like chips. It is more
suitable for real-time UAV remote sensing image fusion tasks.

1. Introduction

Image fusion, particularly Infrared and Visible Image Fusion
(IVIF), is the process of integrating information from multiple
images of the same scene captured by different sensors or
imaging modalities into a single composite image. The
objective of image fusion is to enhance the overall visibility,
improve image quality, and extract more comprehensive
information than can be achieved with individual images alone.
In the context of visible and infrared image fusion, it involves
combining the complementary information provided by both
modalities to generate a fused image that reveals details not
readily visible in either the visible or infrared images alone. As
an essential component of computer vision, IVIF solutions are
extensively researched and categorized based on adopted
theories into five categories: multi-scale transformation-based
methods, sparse representation-based methods, subspace
decomposition-based methods, hybrid-based methods, and
optimization model-based methods.

Convolutional Neural Networks (CNNs) have demonstrated
remarkable success in the field of IVIF. CNN-based approaches
offer numerous advantages for image fusion tasks, such as
automatic feature learning, end-to-end optimization, and the
ability to capture intricate spatial dependencies within images.
Through training CNNs on extensive datasets containing paired
visible and infrared images, these models can effectively learn
to extract and fuse relevant features from both modalities,
resulting in fused images with enhanced visibility, improved
image quality, and better preservation of important details.

CNN-based methods for IVIF have proven highly effective in a
wide range of applications, such as target detection, surveillance,
remote sensing, and medical imaging. These methods have
excelled in addressing challenges, such as modality alignment,
variations in illumination conditions, and differences in scene

content. Additionally, CNN-based fusion methods can be
customized to meet specific application needs by modifying
network architectures, loss functions, and training strategies.
This adaptability further enhances their performance across
diverse scenarios.

IVIF plays a crucial role in unmanned aerial vehicle (UAV)
remote sensing as it offers complementary information about
the observed environment. Visible imagery captures surface
details such as color, texture, and shape, while infrared imagery
captures thermal radiation emitted or reflected by objects,
providing insights into temperature distribution and material
composition. By fusing these modalities, UAV remote sensing
systems can overcome limitations associated with each
individual modality and gain a more comprehensive
understanding of the observed scene.

In the context of UAV applications, such as environmental
monitoring, agricultural assessment, and surveillance, the fusion
of visible and infrared images enables more comprehensive
analysis and interpretation of the captured data. For example, in
agriculture, the fusion of visible and infrared imagery can
facilitate crop health monitoring, detection of irrigation issues,
and assessment of soil moisture levels. In environmental
monitoring, it can aid in the identification of land cover types,
detection of vegetation stress, and mapping of ecological
parameters. Additionally, in surveillance and security
applications, fused imagery can improve target detection,
enhance situational awareness, and support decision-making
processes.

Overall, the fusion of visible and infrared images in UAV
remote sensing tasks enhances the effectiveness and efficiency
of data collection, analysis, and interpretation, leading to better-
informed decision-making and improved outcomes in various
fields.
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Therefore,we propose a light-weight image fusion network. Our
method realizes the simplification of the model by transferring
some model parameters of ShuffleNetv2. Meanwhile,our SFNet
can efficiently extract infrared and visible image features, and
then obtain high quality fusion results.

In this paper, experiments are carried out on public image data
sets and compared with other 7 methods. The experimental
results show that the proposed method can effectively improve
the quality and efficiency of image fusion.

2. Related Works

2.1 Traditional Image Fusion Methods

In the recent years, extensive traditional infrared and visible
image fusion methods are proposed and applied well. Many
splendid theories In all these traditional methods,multi-scale
transform(MST)-based methods are used widely.

MST methods consider that objects in the physical world are
typically composed of components of various scales, and the
multi-scale transform is consistent with the human visual
system. Therefore, the fused images obtained by MST have
pleasing visual effect. MST achieved outstanding fusion
performance thanks to the design of diverse transformation tools
such as wavelet transform(Petrovic et al,2004),non-subsampled
contourlet trans-form(Bhatnagar G et al,2013), edge-
preserving filter based transform, and Retinex theory-based
transform, to extract features at different scales. After this, we
decompose the source image into a set of base images. Then
apply Singular Value Decomposition(SVD) to each base image
to extract its singular values and corresponding singular
vectors.Next, select the most informative singular values from
each base image.

Now focus on subspace-based(SR based) image fusion. In
image fusion, the idea is to decompose the source images into
different subspaces and then fuse these subspaces to create a
composite image that preserves the most relevant information
from each source.Kim M et al(2016) proposed a fusion method
based on patch clustering. The authors cluster patches from
different sources with their structural similarities.This learning
method is called a clustering-based dictionary learning. Sparse
coefficients are estimated by a simultaneous orthogonal
matching pursuit. And their proposed method requires lower
processing time with better fusion quality.To sum up,SR based
methods target to construct an over-complete dictionary from
high-quality natural images.

The core idea of model-based methods is to choose suitable
models. The authors proposed a new fusion method based on
gradient transfer and TV minimization. It can keep both
the thermal radiation and the appearance information in the
source images.More recently,Liu et al(2021) propose a generic
image fusion method with a bilevel optimization paradigm,
targeting on multi-modality image fusion tasks. Corresponding
alternation optimization is conducted on certain components
decoupled from source images. Via adaptive integration weight
maps, we are able to get the flexible fusion strategy across
multi-modality images.
Although the aforementioned IVIF methods have a lot of
success,they have some common drawbacks, such as the loss of
information, limited adaptability, artifacts and distortions.

2.2 Deep Learning-Based Fusion Methods

With strong non-linear fitting and feature learning abilities of
the neural network, deep learning technique has achieved
significant advances in image fusion.At first, deep learning is
only employed in feature extraction or weight-map generation.
An typical example is adopting two pretrained CNN models to
get two weight maps, so they can be used to merge the base and
detail layer. It is explicit that the overall process still has
limitations.

Recently, A new architecture--auto encoder model has emerged.
Feature extraction and feature reconstruction are realized by this
architecture, in which the fusion rules are designed manually. In
the encoder part, a dense block is integrated, so the feature can
be extracted comprehensively. Then use addition and l1-norm
rule in the fusion layer to generate fused results. Considering
that vital information often degenerates from the network, the
author employed different reception dilated convolutions to
extract feature from a multi-scale prospective, and then employ
edge attention mechanism to refine the details.

Li and Wu(2018) present a novel deep learning architecture for
infrared and visible images fusion problems. Their encoding
network is combined with convolutional layers, a fusion layer,
and dense block in which the output of each layer is connected
to every other layer. Two fusion layers (fusion strategies) are
designed to fuse these features. The proposed fusion method
achieves the state-of-the-art performance in objective and
subjective assessment.

Moreover, extensive generative adversarial network(GAN)-
based fusion methods has superior unsupervised distribution
estimation ability, which well suits to IVIF.An adversarial game
between the visible image and fused results, aiming to enhance
the textural details. As an attempt, Li et al (2021) introduced an
end-to-end GAN model that integrates multi-classification
constraints.More recently,Li et al(2023)first apply a multi-scale
extractor to achieve shallow features, which are employed as the
necessary input to build graph structures. Then construct the
extracted intermediate features of the infrared/visible branch
into graph structures. Besides, the proposed leader nodes can
improve information propagation in the same modality. Finally,
we merge all graph features to get the fusion result.

As a hot topic in computer vision, Vision Transformer(VIT) is
also designed to fuse the images. The patch embeddings along
with positional encodings are then passed through transformer
encoder layers. V.Vs et al(2021) proposed a method that
follows a two-stage training approach. Firstly train an auto-
encoder to extract deep features at multiple scales. Secondly,
multi-scale features are fused using a Spatio-Transformer (ST)
fusion strategy. The ST fusion blocks capture local and long-
range features, respectively.Extensive experiments show that
the proposed method performs better than many competitive
fusion algorithms.

Moreover,Liu Z et al(2023) established the hierarchical dual
tasks-driven deep model to bridge these tasks. They construct an
image fusion module to fuse complementary characteristics and
cascade dual task-related modules. They provide a bi-level
perspective to formulate image fusion and follow-up
downstream tasks. An efficient first-order approximation is
developed to compute corresponding gradients and present
dynamic weighted aggregation to balance the gradients for
fusion learning.
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The fusion task is formulated as a conditional generation
problem under the proposed sampling framework by Z. Zhao et
al.(2023), which is further divided into an unconditional
generation sub-problem and a maximum likelihood sub-problem.
The latter is modeled in a hierarchical Bayesian manner with
latent variables and inferred by the expectation-maximization
(EM) algorithm. So it is worth noting that diffusion models can
also be utilized for IVIF tasks. And we are actively looking for
new perspectives in the direction of image fusion.

3. The Proposed Method

3.1 Motivation

With the development of remote sensing technology and the
continuous maturity of computer vision field,tasks about real-
time image fusion are booming.Deep learning techniques offer
new ideas to MMIF.There are so many brilliant network
frameworks that we can use.However,sizeable networks only
use direct features,which means feature extractions are not
participated,leading to the fusion performance degradation.But
we are glad to see there are Image Fusion with network and
zero-phase component analysis.In that article,authors chose
ResNet50.Although it is a nice light-weight network, its not fit
for the research of real-time infrared and visible image fusion
on UAV. Thinking about the later work of AI chip
deployment,we decide to follow the practical guidelines,and use
ShuffleNetv2 to achieve real-time image fusion with light-
weight network.

3.2 Network Architecture

We have been aware that infrared images and visible light are
fed separately into the ShuffleNetv2,and with the process of
feature extraction,images fusion and weighted fusion,ultimately
obtain the fused images.The architecture is shown in Fig.1.

Figure 1: The whole architecture of our network SFNet

3.3 The Proposed SFNet

The infrared and visible images are called 푆푐표푢푟푐푒1 and
푆푐표푢푟푐푒2 respectively.ShuffleNetv2 typically includes several
1x1 convolutional layers, 3x3 convolutional layers, as well as
depthwise separable convolution layers and standard
convolutional layers.In our SFNet,we use 5 convolution
blocks(from conv1 to conv5).The output of the i-th block is
shown by the deep features 푆푘

푖,1:퐶 ,which contain C channels.
Then all the channels are combined into a tensor,so we have less
time consumption. We use ZCA and l1-norm to process the
remodeled deep feature. By bicubic interpolation and soft-max
operation, the weight maps 푤푘 is ready. Finally by using
weighted-average operation, the fused image is reconstructed,
which has the same dimension to the origin one.

3.3.1 Model Migration:ShuffleNetv2
When we evaluate a network structure, accuracy is always the
most important.But besides this,computation complexity is also
worth noting. As AI technology has made huge progress, they

are closer to the real world tasks, which often aim at obtaining
better accuracy under a limited time and calculation environ-
ment. And that’s why we design a light-weight network.We
chose ShuffleNetV2, which starts from practice and is guided
by the actual inference speed.

In ShuffleNetv1's module, 1x1 group convolution is used
extensively, and v1 uses a bottleneck layer similar to ResNet's,
with different input and output channels. In order to improve
v1's shortcomings, v2 introduced a new operation: channel split.
Specifically, at the beginning, the input feature graph is divided
into two branches in the channel dimension, and the number of
channels is half of the original. The left branch is equally
mapped, and the right branch contains three continuous
convolution, and the input and output channels are the same.
The other two branches have been divided into two groups, their
output is no longer Add elements, but concat together, followed
by a channel shuffle of the concat results of the two branches to
ensure that the two branches communicate information.

ShuffleNetv2 summarizes 5 design essentials of lightweight
network, and proposes ShuffleNetV2 according to the essentials,
which gives a good balance to accuracy and speed. Among
them, the channel split operation is very bright, and the input
features are divided into two parts.

Figure 2:Units in ShuffleNetv2

Table 1:Overall architecture of ShuffleNetv2

Layer
Output
size KSize Stride Repeat

Output
channel

Image 224×224 3
Conv1
MaxPool

112×112
56×56

3×3
3×3

2
2 1 24

Stage2
28×28
28×28

2
1

1
3 116

Stage3
14×14
14×14

2
1

1
7 232

Stage4
7×7
7×7

2
1

1
3 464

Conv5 7×7 1×1 1 1 1024

Above guidelines and empirical studies,authors(Ma et al.,2018)
conclude that an efficient network architecture should :
1) use convolutions that hold equal channel width;
2) be aware of the cost of using group convolution;
3) reduce the degree of fragmentation;
4) reduce element-wise operations.
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These desirable properties depend on platform characterics
(such as memory manipulation and code optimization) that are
beyond theoretical FLOPs. They should be taken into account
for practical network design.
As our tasks based on UAV real-time image fusion, speed is a
direct metric to be considered.Choosing ShuffleNetV2 could
better meet the needs.We also make some progress to adapt to
remote sensing multi-model images.We will introduce the
proposed network in the next section.

3.3.2 Zero-phase Component Analysis(ZCA):The whiten-
ing and decorrelation by ZCA operation is analyzed by Kessy
et al. ZCA is a preprocessing technique commonly used in
machine learning and signal processing to decorrelate and
normalize data. Its primary goal is to transform the data into a
new space where the covariance matrix is the identity matrix,
making the features statistically independent and better suited
for learning algorithms. So let us briefly introduce the concrete
operation.

The d-dimensional random vector is shown by Eq.1.
X=(푥1, 푥2, . . . , 푥푑)푇 (1)

And the mean values are shown by Eq.2.
u=(푢1, 푢2, . . . , 푢푑)푇 (2)

The covariance matrix Co is calculated bt Eq.3.
Co = (X − u) × (X − u)T (3)

Then utilize the Singular Value Decomposition(SVD) in Eq.4.
Co( 푈,훬, 푉 =SVD(Co)) (4)

so Co is calculated by Eq.5.
Co= (푈훬푉)T (5)

Finally,get the new random vector 푋� = U(훬 + 휖퐼)−
1
2UT × X ,

where 휖 is a small value to avoid bad matrix inversion,and 퐼
means the identity matrix.

3.3.3 ZCA and l1-norm Operations:ZCA can project the
raw features into the same space,and these features benefit more
to later work.In our SFNet,we choose ShuffleNet v2 as our
backbone.The feature maps produced by stage2,stage3 and
stage4 are used to fuse the images.

After generating the deep features,we process these deep
features 퐹푘푖 by ZCA operation,i =1,2,3,4,5,i indicates the i-th
convolutional block.So we get the processed deep features 퐹푘푖

� .

Let’s see the calculation in ZCA,which is shown by Eq.6.
퐶표푘푖 = 퐹푘푖 × 퐹푘푖

T
,

퐶표푘푖= (푈훬푉)T (6)

So as mentioned,퐹푘푖
�=푠푘푖 × 퐹푘푖 ,and 푠푘푖 is shown in Eq.7.

ski = U(훬 + 휖퐼)−
1
2UT (7)

Finally,we utilize local l1-norm and average operation,so the
original weight maps 푆푘푖 is calculated by Eq.8.

푆푘푖 =
푝=푥−푠
푥+푠

푞=푦−푠
푦+푠 퐹푘

푖�(푝,푞)∑∑

2푠+1 × 2푠+1
(8)

3.3.4 Reconstruction:We have get the infrared and visible
images’ original weight maps 퐹1푖 and 퐹2푖 ,we utilize upsampling
and soft-max operations to obtain the final weight maps 푤1

푖 and
푤2
푖 ,as is shown in Fig.3.

Figure 3: Resize and soft-max operation and the formula

So we obtain the fused images in Eq.9.
Fused(x, y) = 푘=1

2 푤푘
푖 (푥, 푦)푆표푢푟푐푒푘(푥, 푦)∑ (9)

4. Experiments

4.1 Experiments settings

4.1.1 Datasets:We choose VEDAI datasets.It is a widely
used benchmark datasets in the field of computer vision and
remote sensing,specifically designed for vehicle detection in
aerial imagery. VEDAI contains high-resolution aerial images
captured from different sensors and platforms, covering various
geographic locations and environmental conditions.

VEDAI comprises images captured from different altitudes,
angles, and lighting conditions, providing a diverse set of visual
data for training and testing vehicle detection algorithms.And
each image in the VEDAI datasets is annotated with bounding
boxes around vehicles, along with corresponding class labels,
such as car, truck, van, etc. These annotations facilitate the
evaluation and benchmarking of object detection models.The
images also have high spatial resolution, enabling the detection
of vehicles with fine details even from aerial viewpoints.
VEDAI is commonly used for developing and evaluating
vehicle detection algorithms, especially in scenarios where
aerial surveillance or monitoring is required, such as traffic
management, urban planning, and environmental monitoring.

4.1.2 Evaluation Metrics:We choose four common
metrics ,which play crucial roles in assessing the quality and
performance of image fusion algorithms, helping researchers
and practitioners make informed decisions regarding algorithm
design and parameter tuning.

Average gradient:It is often used as an objective metric to
evaluate the performance of various image fusion algorithms.It
provides a quantitative measure of the fusion quality, helping
researchers compare different fusion techniques and optimize
parameters.A larger average gradient can be considered
indicative of better image clarity and fusion quality.

Spatial frequency:In the field of image fusion, spatial
frequency is a crucial evaluation metric. It refers to the rate of
change of intensity or color information in an image across
space. High spatial frequency indicates rapid changes and fine
details, while low spatial frequency suggests slower changes
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and broader features. This metric helps assess the level of detail
and information preservation in fused images.

Standard Deviation: It measures the amount of variation or
dispersion of pixel values within an image. In image fusion
evaluation, standard deviation is often utilized to assess the
level of contrast and detail preservation in the fused image.
Higher standard deviation values indicate greater variability in
pixel intensities, which may suggest better preservation of
image details.

Correlation Coefficient: It quantifies the degree of linear
relationship between pixel values of two images. In image
fusion evaluation, correlation coefficient is employed to
determine the similarity or consistency between the fused image
and the source images. A high correlation coefficient indicates
strong similarity, implying that the fused image effectively
retains information from the source images.

4.2 Ablation experiment

ShuffleNetv2 consists of 3 Stage models, which is Stage2,
Stage3 and Stage4, and some pooling layers and convolution
layers. However, when carrying out image fusion, only a certain
layer in the ShuffleNetv2 structure needs to be selected as the
output of the whole feature layer. The choice of which of the
three stages has a crucial impact on the accuracy and effect of
the network. Therefore, we carried out image fusion for each
output feature map of the three output layers from stage2 to
stage4, and obtained the average image fusion results of the
different three output layers in Tab2. For the highest data of
each indicator, we made the font bold, and the second highest
data was underlined.

Table 2:Fusion quality comparison of different layer outputs
Output
layers AG SF STD CC

Stage2 21.1286 48.3601 72.0311 0.7876
Stage3 21.1863 48.3146 74.3925 0.7935
Stage4 21.2448 48.2539 74.6924 0.8028

From the data in the above table, we know that Stage4 has the
highest image fusion quality,meaning that our work is effective.
Stage4 has the highest value of AG, indicating the best image
clarity. The three stages have similar performance in SF,
showing that the processing in these stages preserves as much
details of the image as possible.From Stage2 to Stage4, the
value of STD and CC becomes higher and higher, indicating
that the level of contrast and detail preservation and similarity
between the infrared and visible images in the fused image is
getting better,therefore the image fusion strategy of our network
is undoubtedly effective.

4.3 Fusion Performance Evaluation

Among the above four indicators we selected, our network
SFNet performed well.We ran several superb baselines.Because
we want to build a light-weight image fusion network based on
deep learning, we do not choose a network using traditional
fusion methods, but directly compare it with well-known deep
learning-based image fusion networks.Let us introduce the
seven methods we compared with.

CoConet (A Collaborative Convolutional Network,Liu,2022) is
a convolutional neural network designed for multi-spectral and
panch-romatic image fusion.It operates in a coarse-to-fine

manner, gradually refining the fused image at multiple scales.
The network architecture incorporates skip connections to
facilitate information flow between different layers.

Reconet (Residual Convolutional Neural Network,Gao,2018)
leverages residual learning to ease the training process and
improve convergence.The network architecture emphasizes
feature reuse and propagation to enhance fusion performance.

CBF (Convolutional Block Fusion,Faye,2024) utilizes
convolutional blocks to capture multi-scale features from input
images.The network architecture focuses on adaptability and
scalability across various fusion scenarios.

SeAFusion (Selective Attention Fusion Network, Linfeng
Tang,2022) selectively attends to informative regions in the
input images, enhancing fusion quality.It incorporates attention
mechanisms at different stages of the fusion process to highlight
relevant features.

YDTR (Infrared and Visible Image Fusion via Y-Shape
Dynamic Transformer,Tang,2022)design a network structure
with two branches, two encoders and one decoder,which is
called Y-shape dynamic transformer.The infrared image and
visible image are fed into two Y branches,respectively. Each
branch consists of an decoder and special transformer structure.
Afterwards, these two branches are added and fed into the main
path, which involves a module for feature integration and a
decoder for dimensionality reduction.

DIDFuse(Deep Image Decomposition for Infrared and Visible
Image Fusion,Zhao,2020)is an image fusion network based on
auto-encoder (AE), and the network structure is based on UNet.
The core idea is that the encoder decomposes an image into
background and detail feature maps with low- and high-
frequency information, respectively, and that the decoder
recovers the original image. To this end, the loss function makes
the background/detail feature maps of source images
similar/dissimilar. In the test phase, background and detail
feature maps are respectively merged via a fusion module, and
the fused image is recovered by the decoder.

AUIF (Attention-based Unimodal and Intermodal Fusion,Zhao,
2020) is a fusion network that leverages attention mechanisms
to fuse information from both unimodal and intermodal sources.
It employs attention mechanisms to dynamically weight the
contribution of each modality during fusion, focusing on
relevant information. AUIF enhances the fusion process by
selectively attending to informative regions, improving
performance in tasks such as image classification and
segmentation. The comparison data are shown in tab.3.

Table 3:Fusion quality comparison of different fusion methods
Methods AG SF STD CC
Our SFNet 21.24 48.25 74.69 0.81
CoConet 18.97 39.57 61.70 0.77
Reconet 4.54 10.3 32.34 0.76

SeAFusion 10.55 21.92 35.10 0.83
CBF 13.66 25.20 30.22 0.73
YDTR 7.78 17.48 28.94 0.76
DIDFuse 11.42 24.73 44.39 0.75
AUIF 13.20 28.04 46.56 0.77

For the highest data of each indicator, we made the font bold,
and the second highest data was underlined. It is obvious that
our SFNet has a splendid performance in AG, SF and STD,
although the index of correlation coefficient is slightly lower
than that of network SeAFusion, but it is still at a high level.
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It is worth noting that although the performance of the first
three indicators of these eight methods is quite different, the
performance of the correlation coefficient is very good.This is
because the image fusion method based on deep learning has
stronger adaptability and nonlinear fitting ability, and can better
capture the features of remote sensing images, making the
fusion accuracy high. Moreover, the deep learning algorithm
can automatically learn features without manual design, and can
extract features and fuse them more accurately for various types
of remote sensing images.

4.4 Model Complexity Analysis

The Shuffle Unit is the building block of ShuffleNetV2. It
consists of a grouped convolution operation followed by
channel shuffling and point-wise convolution. This architecture
enables efficient information exchange across channels while
maintaining computational efficiency.So we compare the fusion
efficiency of different fusion methods.

Table 4:Comparison of fusion efficiency of different methods
Methods Model size/MB Mean running time/s
Our SFNet 1.37 0.1033
CoConet 42.81 0.2333
Reconet 20.79 0.5821

SeAFusion 51.92 0.7817
CBF 72.56 0.3461
YDTR 32.98 0.2332
DIDFuse 49.62 0.1206
AUIF 39.45 0.1379

Figure 4: mean running time of different fusion methods

The mean running time of different image fusion methods can
be observed visually from fig.4.And it is clear that our SFNet
has the least amount of the time,while the slowest SeAFusion
consumes more than six times of ours.While DIDFuse and
AUIF perform well in running time, the AG and STD is much
less than our SFNet. So the proposed SFNet achieves the
balance of image fusion quality and time efficiency.

4.5 Subjective Evaluation

Infrared

Visible

SFNet

CoConet

Reconet

SeAFusion

CBF

YDTR

DIDFuse

AUIF

Figure 5:Fusion results of different image fusion methods

Figure 6:Fusion details of different image fusion methods
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Fig.5 shows different methods’ performance to the same images.
Our SFNet has the best visual effect.

And as you can see in fig.6, our network is clearest for the small,
closely connected houses in the red box.This is due to the
highest AG value,and it indicates the best image clarity. As for
texture information,our SFNet performs just as well as the
Coconet. Because Coconet has a lot of attention mechanisms,
refining the fused image at multiple scales, while our SFNet
obtain the fused images with ZAC and other light-weight
algorithms.

Most image fusion methods based on neural networks have a
good fusion effect, because deep learning takes into account
both semantic information and detailed information. However,
different neural networks have different performance in the
clarity and rationality of fused images.Under such a premise, we
hope to do a more lightweight network is meaningful, how to
balance efficiency and quality, is we will continue to study.

4.6 SFNet Deployed On Brain-like Chips

The proposed multi-model data fusion network is deployed on
the Lynxi KA200 brain computing chip, and a comprehensive
inference test is carried out with UAV remote sensing data.

We implemented all the experiments using PyTorch and
deployed SFNet on the Lynchip KA200 brain-inspired
computing chip to conduct infrared and visible image fusion of
UAV remote sensing cameras. That displays the high efficiency
as well as high fusion quality of our network.

We almost achieved the same fine image fusion effect on the
chip as on the end.

On the end On KA200chip
Figure 7:Fusion results of different devices

And more particular data are shown in tab.5. You can see the
tiny difference between the computer and the KA200 chip.

Table 5: Fusion quality comparison of different devices

Devices AG SF STD CC

computer 21.245 48.254 74.692 0.803
KA200 chip 21.242 48.249 74.419 0.797

Our SFNet continues to perform well on brain-like chips,
although all four indicators are slightly lower than the results on

the computer, the overall integration is excellent. This indicates
that our network has good performance and high scalability.
The average time per image is 1.2 seconds, it is lower than our
running time on computer. However, our network is also
capable of performing real-time fusion work on the drone
platform, we will also continue to improve the network to
improve efficiency.

5. Conclusions

Image feature extraction and fusion strategy design are the key
to infrared and visible image fusion. The existing deep
convolutional feature extraction network has many parameters,
deep structure and time-consuming calculation, and is not
suitable for mobile and embedded devices.

In this paper, an image fusion method based on lightweight
ShuffleNetv2 is proposed, and ShuffleNetv2 is used as an image
feature extraction network to improve the shortcomings of the
existing network. Experiments show that the proposed method
can not only compress the network scale, but also greatly
improve the speed and efficiency of fusion, and can adapt to
mobile and embedded devices well.

We use ZCA and l1-norm to process the remodeled deep
feature.By bicubic interpolation and soft-max operation,the
weight maps 푤푘 is ready.Finally by using weighted-average
operation,the fused image is reconstructed.This fusion strategy
works well on our selected remote sensing datasets. And we
deployed our network on KA200 brain-like chip, which is based
on a new integrated storage and computing, multi-core parallel,
heterogeneous fusion architecture, and can efficiently support
deep learning neural networks, biological neural networks and
large-scale brain simulation. Our SFNet performed well on the
brain-like chip. This gives us a lot more confidence in model
porting and really working in real time on the drone platform.
But it is worth noting that the design of fusion strategy is still a
challenging task in the field of image fusion. It is of great
significance to select appropriate network structure and feature
extraction method according to specific needs, which will
improve the quality of fusion image.
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