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Abstract

Moving target tracking technology based on Unmanned Aerial Vehicles (UAV) is widely used in many fields such as automatic
inspection and emergency response. The existing moving target tracking methods usually have the problems of large computation
and low tracking efficiency. Limited by the computing power of the UAV platform, real-time tracking and analysis of multiple targets
based on the video data collected by UAV platform is a difficult task. In this paper, we proposed a novel Target Specific Filtering
Tracking with Memory (TSFMTrack) method designed for UAV-based real-time tracking tasks, which involves a Tracklet Filtering
Module (TFM) for capturing object appearance features and a Tracklet Matching Module (TMM) for bounding box association
in each frame. By experimental comparison with other State-Of-The-Art (SOTA) methods on popular MOT and UAV tracking
datasets, the TSFMTrack have shown obvious advantages in accuracy, computational efficiency and reliability. Furthermore, we
deployed the TSFMTrack on the brain-inspired chip Lynchip KA200, the experimental results have shown that the TSFMTrack is
effective on edge computational platform and suitable for UAV real-time tracking tasks.

1. Introduction

In recent years, there has been rapid development in Unmanned
Aerial Vehicle (UAV) remote sensing technology. videos cap-
tured by the UAVs are used for intelligent targets tracking ana-
lysis. With UAV platforms featuring unique advantages such as
compact size, agile maneuverability, and enhanced safety fea-
tures, object tracking analysis based on which has found ubi-
quitous utility in diverse areas such as emergency response,
traffic management, factory inspection, and so on.
However, there are still several major challenges for real-time
and intelligent moving targets tracking algorithms. In complex
actual situations, the following obstructive factors hinder the
realizing of real-time and accurate moving target tracking.

• Limited energy and computational resources. Lim-
itations in power supply and payload significantly con-
strain the speed at which real-time processing and ana-
lysis of UAV remote sensing images can occur. Also, bat-
teries have long been a barrier, but tethered systems can
help compensate the weakness, allowing flights of several
hours. To achieve real-time, accurate, and robust motion
target tracking, algorithms must strike a balance between
accuracy and efficiency. Meanwhile, it should be ensured
a sufficient lightweight design to conserve energy for other
energy-consuming controlling functions in complex en-
vironments, thereby enabling the collection of more geo-
graphic information during each flight.

• Influence of camera motion. UAV-mounted cameras ex-
hibit fast movement and continuous angle changes, result-
ing in images reflecting the relative motion between the
UAV and ground objects. Failure to correct this can lead
to significant errors in target trajectory prediction during
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motion target tracking. Additionally, UAVs commonly en-
counter mechanical vibrations during flight, particularly in
strong winds, which can result in motion blur, making it
difficult to obtain clear information about the appearance
and motion characteristics of targets.

• Viewpoint changes. During sampling, UAVs often fly
around objects, capturing different sides of 3D ground ob-
jects, leading to diverse changes in object appearance. If
without timely online learning and model updates, track-
ers may misjudge target trajectories or even lose track of
targets.

• Low image resolution. The large visual range of UAVs
results in background information being insufficient, lead-
ing to reduced object resolution in captured images and
weakened model representation. This diminished repres-
entation can impair tracker discriminative abilities, ulti-
mately resulting in tracking failures.

• Illumination variations and visual occlusion. The light-
ing conditions for UAVs can change rapidly, ranging from
bright to dim environments or transitioning between in-
door, canopy, shadowed, and sunlit areas. Furthermore,
UAVs frequently encounter complex and poorly lit nat-
ural environments during flight, such as nighttime, rainy,
or foggy conditions, making it challenging for trackers
to distinguish objects from the background. Also, par-
tial or complete occlusion can hinder obtaining informa-
tion about objects, making it easy to lose track of them.

In terms of multiple object tracking (MOT) , the Tracking-
by-Detection (TbD) paradigm is one of the mainstream ap-
proaches. Comprised of detecting phase and tracking phase,
this paradigm aims to first determine the locations of various
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targets and then correlate them between frames, generating es-
timated tracks of targets.

For TbD trackers, the performance of detection algorithms are
crucial, with notable contributions coming from the YOLO
series (Glenn, 2022, Glenn, 2024, Ge et al., 2021). These real-
time detectors leverage anchor-based convolutional neural net-
works (CNN) to solve the detection problem through regres-
sion, thus achieving remarkable inference speed with relatively
high accuracy. Complementing detection, object tracking tech-
niques have witnessed significant advancements, for instance,
SORT (Wojke et al., 2017) , DeepSORT (Pujara and Bhamare,
2022) and their variants (Cao et al., 2023, Maggiolino et al.,
2023, Aharon et al., 2022, Zhang et al., 2022). These meth-
ods merge Kalman Filters with advanced trajectory matching
algorithms along with CNNs to enhance tracking robustness,
particularly in scenarios characterized by occlusions and non-
linear motion dynamics.

Moreover, recent advancements in attention mechanisms and
correlation filter-based approaches offer promising improve-
ment inspirations for enhancing tracking accuracy and real-time
performance. TrackFormer (Meinhardt et al., 2022) and cor-
relation filter-based trackers like MOSSE (Bolme et al., 2010)
and ECO (Danelljan et al., 2017), leverage attention mechan-
isms and Discrete Fourier Transformation respectively to tackle
complex tracking scenarios while maintaining low computa-
tional complexity.

This study pursues to cope with the challenges of real-time and
intelligent moving targets tracking based on UAV remote sens-
ing video cameras, especially the challenges concerning the
unique environment of UAV platforms, and further delineates
potential directions to guide the progression of research in UAV-
based moving target tracking. The primary contributions of this
work can be summarized into the following aspects.

In Section 2, we first conducted a comprehensive review of re-
lated existing literature in the field. The core idea and meth-
odological researches are explained in Section 3. The integra-
tion of the developed tracker into a cohesive code repository
facilitates accessibility and reproducibility. Experimental eval-
uation and onboard testing of our proposed method is included
in Section 4, where our TSFMTrack is deployed on Lynchip
KA200 brain-inspired chip for comprehensive inference test-
ing of UAV remote sensing videos. Experiments are under-
taken on four authoritative UAV benchmark datasets, namely
MOT17(Sun et al., 2019), MOT20(Dendorfer et al., 2020) and
UAVDT(Du et al., 2018), to comprehensively assess the per-
formance of the TSFMTrack in complex scenarios. SOTA tar-
get tracking algorithms such as ByteTrack (Zhang et al., 2022)
and BoT-SORT (Aharon et al., 2022) were deployed on the
same chip for experimental comparison.

2. Related work

2.1 Tracking-by-Detection

There are two main approaches to Multiple Object Tracking
(MOT): tracking by detection (TbD) and joint detection and
tracking (JDT), with the former being widely used due to its
simplicity and modularization. Generally, the TbD method can
be divided into two parts: object detection and object tracking.

The YOLO series (Redmon et al., 2016, Glenn, 2022, Glenn,
2024)are commonly used real-time detectors in MOT, outper-
forming their counterparts in speed and accuracy by modeling

the detection problem as a regression problem and introducing
anchor-based CNN to solve it. YOLOX (Ge et al., 2021)re-
moves prior anchors in YOLO and adds other techniques to
reduce hyper-parameters and computational cost while still
achieving promising performances.

In object tracking, SORT (Wojke et al., 2017) combines Kal-
man Filter and Hungarian matching algorithm to create a simple
yet effective tracker. Building on SORT, DeepSORT (Pujara
and Bhamare, 2022) adds a CNN module to learn visual fea-
tures, improving the tracker’s performance in occlusion scen-
arios. OC-SORT (Cao et al., 2023) employs observation-
centric compensation methods to deal with the error accumu-
lation of Kalman filtering in nonlinear motion scenarios. How-
ever, OC-SORT’s high reliance on image quality results in less
effective performance in practical applications. Addressing this
issue, Deep-OC-SORT (Maggiolino et al., 2023) combines the
aforementioned trackers and adds correction terms about ob-
jects’ appearances to tackle feature degradation. To overcome
the limitations of SORT-like trackers, BoT-SORT (Aharon et
al., 2022) combines motion and appearance information to op-
timize bounding box direction. Bytetrack (Zhang et al., 2022)
associates almost every detection box to minimize mismatching
while maintaining a high running speed.

Although all the aforementioned methods have sound and
promising outcomes, most of them rely on high-performance
GPUs. In UAV tracking scenarios, computational resources are
strictly limited due to the UAV’s payload capacity. Addition-
ally, training deep networks suitable for UAV tracking requires
a large number of UAV-based datasets, which are currently in-
sufficient to support this need.

2.2 Accurate Tracking with Attention Mechanism

The attention mechanism (Vaswani et al., 2017) has also
demonstrated its capability in object tracking. TrackFormer
(Meinhardt et al., 2022) models the tracking task as a pre-
diction problem. Using attention in association and encoder-
decoder structures to predict tracklets, it outperformed many
state-of-the-art traditional trackers in accuracy. TransMOT ef-
fectively models relations between a large number of objects
mainly through a spatial-temporal graph transformer structure.
SMILETrack (Wang et al., 2024) incorporates a Siamese net-
work to capture appearance features. By employing Patch Self-
Attention mechanisms, SMILETrack effectively attends to im-
age similarity and enhances performance in the presence of oc-
clusions. Despite attention mechanism still has the problems
that 2.1 mentioned, its idea of focusing the major feature is still
worth considering in increasing real-time trackers’ accuracy.

2.3 Real-time Tracking with Correlation Filter

Correlation Filters (CF) have garnered much attention in UAV-
based tracking due to their adaptability, efficiency, and relat-
ively high resilience against background occlusion. One key
highlight of correlation filters is that, by applying Discrete Four-
ier Transformation, they transform cyclic correlation (done by
convolution) into element-wise multiplication. This operation
significantly reduces computational complexity, allowing CF-
based trackers to reach over 24 frames per second (FPS) on
a single CPU, meeting real-time requirements for UAV-based
tracking.

MOSSE (Bolme et al., 2010) was the first to use CF in ob-
ject tracking, introducing a minimum squared error regulariza-
tion method that produced a robust and stable CF tracker. CSK
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(Henriques et al., 2012) introduced a circulant matrix to com-
pute cyclic correlation. KCF (Henriques et al., 2015) summar-
ized CSK and reformulated the CF-tracking algorithm to a Ker-
nelized Correlation Filter, with complexity equivalent to linear
algorithms. CCOT (Danelljan et al., 2016) introduced implicit
interpolation to integrate multi-resolution deep feature maps.
However, the key formula in CCOT incurred high computation
costs. Additionally, training continuous filters would introduce
numerous optimized parameters, leading to overfitting. ECO
(Danelljan et al., 2017) was proposed to address these issues. It
introduced a factorized convolution operator to build the filter in
CCOT, while a compact generative model of the training sample
distribution decreased computational costs. MCPF (Zhang et
al., 2017) incorporates a particle filter and Multi-task Correla-
tion Filter to handle large-scale variation. CSR-DCF (Lukežič
et al., 2018) managed to learn accurate features of irregular ob-
jects by introducing a spatial confidence map and channel-wise
confidence score. Li et al. (Li et al., 2020b) proposed a dis-
criminative correlation filter (DCF) with a memory queue to
preserve keyframes’ information, enabling long-term tracking
with robustness.Considering the reversibility of motion, BiCF
(Lin et al., 2020) adds bidirectional incongruity terms in train-
ing to ensure the filter’s consistency in forward and backward
motion prediction. Also, AutoTrack (Li et al., 2020a) incor-
porates automatic spatial-temporal regularization by integrating
local and global response maps to dynamically regulate spatial
and temporal weights, ensuring adaptability across diverse se-
quences while maintaining computational efficiency.

Correlation filter generates promising outcomes when applied
in Single Object Tracking tasks, but its structure impedes its
performance on MOT task. By decoupling correlational opera-
tion from CF and deploy it in solving MOT task might create a
tracker with higher efficiency.

3. Methodology

In this section, a novel detector for real-time UAV MOT task,
Target Specific Filtering Track with Memory (TSFMTrack), is
presented. The structure of which is illustrated in Fig 1.

To be specific, our TSFMTrack consists of two parts: object de-
tection and tracklet matching. We apply YOLOv8(Glenn, 2024)
for detecting due to its wide range of usage scenarios with better
results than previous YOLO detector. The main contribution of
our work are mainly in the tracklet matching part, which com-
prises (a) A Siamese-like Target Filtering Module (TFM) for ac-
curately learns the features and computes similarity score, and
(b) A Tracklet Matching Module (TMM) assigns and upgrades
the tracklets using Hungarian algorithm.

3.1 Target Filtering Module

To achieve promising tracking quality with high efficiency, a
well-designed feature extractor, TFM, is proposed. Though
Correlation Filter-based trackers achieves low inference time,
they only generates one filter for a frame and thus, not suitable
for MOT tasks. Also, since they updates their filters online,
their tracking quality are not as good as deep-learning based
trackers. Siamese network based trackers integrates template
information into the searching region and is suitable in pro-
cessing multiple similar inputs.

The proposed TFM utilizes the advantages of Siamese Network
and Correlation operation to precisely and effectively learn the

discriminative appearance features to for accurate tracking. To
extend CF’s success to MOT, we decoupled correlation oper-
ation from CF and takes the last fragment of a tracklet as a
specified filter for this object to conduct correlation operation.

Figure 2 shows the TFM’s architecture. It takes the last frag-
ment of a tracklet of the previous frame and bounding boxes
of the current frame as inputs, after preprocessed by CNN, the
inputs would then be processed by a Correlation Computing
Block (CCB). Finally, another CNN is used to calculate the cor-
relation index between tracklets and targets before calculating
similarity score between the two inputs.

3.1.1 Correlation Computing Block Use ⊙ to denote
Hadamard multiplication and ∗ to indicate the complex con-
jugate, then what Correlation Filter does can be generalized as
computing the following formula:

G = F ⊙H∗ (1)

where F , G ,H respectively denotes the 2D Discrete Fourier
Transform of the input image, response map and the filter. The
output of which is then transformed back to spatial domain by
Inverse Discrete Fourier Transform to get the response map.
Then the object’s current region can be found by searching the
maximum response of the map. Here, instead of generating
the filter by algorithm, we directly takes the tracking targets
as the specified correlation filter for its tracklets and filters the
detected targets to get the response map. To take dissimilarity
between filters and the unmatched images(i.e. responses gen-
erated by the filter and targets not belong to this tracklet) into
consideration, the filter itself would be passed to the next pro-
cedure after doing the same filtering process. Since the input
images are of different sizes, it will first be resized to a fixed
size W ×W by CNN before being processed by CCB, where
W is set to 127 in our work since its a prime number and is
close to 27, which makes it suitable to compute by FFT and
would not cause information erosion (Wu et al., 2019) on fea-
ture map after correlation computation.

3.1.2 Back Propagation Through CCB Module Back
propagation for training TFM requires a differentiable or piece-
wise differentiable forward function for each part of TFM. In
this section, we will prove that the equivalent function of CCB
Module is differentiable and calculate the gradient through it.
The function of this back propagation is illustrated in Figure 3.

Since the operation CCB Module done are all matrix-wise
without cross-channel calculation, the prove can be done un-
der 2D tensor (i.e. matrix) condition and be easily general-
ized to 3D tensor condition. The bellowing matrix are all
(2n+ 1)× (2n+ 1) matrix.

For one channel of an image, the process of conducting Fast
Fourier Transform and Inverse Fast Fourier Transform is in fact
implementing circular convolution. Let Ω represents the kernel
matrix for circular convolution, X represents the input matrix
and X(i, j) represents the (i, j)-ist element of X . The circular
convolution of Ω and X can be written as F = Ω ⊛X , where
⊛ stands for circular convolution symbol. Other related values
are represented as the equation below.

F (i, j) =

n∑
u=−n

n∑
v=−n

Ω(u, v) ·X(i+ u, j + v)

i, j, u, v, n ∈ Z2n+1

(2)
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Figure 1. Overall architecture of TSFMTrack

Figure 2. TFM calculates correlational similarly between detected objects at the current frame and tracklets at the previous frame

Figure 3. Illustration of back propagation through CCB Module

Ω =


Ω(−n,−n) ... Ω(−n, n)

... ...
... Ω(0, 0) ...

... ...
Ω(n,−n) ... Ω(n, n)



X =


X(0, 0) ... X(0, 2n)

... ... ...

X(2n, 0) ... X(2n, 2n)



Z2n+1 is the integer ring modulo 2n+1. Circular convolution is
done by element-wise multiplication and addition, so it is easy
to prove that F (i, j) is differentiable with respect to X(k, l).

Let X and Y respectively denote the tracklet and the bound-
ing box image, the equivalent function of CCB Module can
be written as F (X,Y ) = (Ω ⊛ X,Ω ⊛ Y ). For clearer rep-
resentation and narration, we rewrite the above function as
F (X,Y ) = (F1, F2), F1 = Ω⊛X,F2 = Ω⊛ Y .

In formulating the process of back propagation, we denote the
bias matrix that feature extracting CNN returned as (B̂1, B̂2).
B̂1, B̂2 are bias matrices corresponding to the input F1, F2 and
its element represents the partial derivative of Loss function L
with respect to F , i.e. B̂(i, j) = ∂L

∂F (i,j)
.

Let B1 denote the bias matrix passed back to the CNN back-
bone through the CCB Module with respect to B̂1, then B1(i, j)
can be calculated as

B1(i, j) =
∂L

∂X(i, j)

=

2n∑
î=0

2n∑
ĵ=0

∂L
∂F1(̂i, ĵ)

· ∂F1(̂i, ĵ)

∂X(i, j)

=

2n∑
î=0

2n∑
ĵ=0

B̂1(̂i, ĵ) ·
∂F1(̂i, ĵ)

∂X(i, j)

i, j,∈ Z

(3)

where Z is the ring of integer.

Apply homomorphic transformation

Z→ Z2n+1

z → z′
(4)

to the subscript of Equation 3, and the result of which remains
unchanged.
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Then, associate Equation 2 with Equation 3, we get

B1(i, j) =

2n∑
î=0

2n∑
ĵ=0

B̂1(̂i, ĵ)
∂

∂X(i, j)
·

(
n∑

u=−n

n∑
v=−n

Ω(u, v) ·X (̂i+ u, ĵ + v)

)

=

2n∑
î=0

2n∑
ĵ=0

n∑
u=−n

n∑
v=−n

B̂1(̂i, ĵ)·

∂

∂X(i, j)

(
Ω(u, v) ·X (̂i+ u, ĵ + v)

)
i, j, u, v, n ∈ Z2n−1

(5)

Notice that ∂
∂X(i,j)

(
Ω(u, v) ·X (̂i+ u, ĵ + v)

)
̸= 0 only when

î+u ≡ i (mod 2n+1) and ĵ+v ≡ j (mod 2n+1), Equation
5 can be simplified as

B1(i, j) =
2n∑̂
i=0

2n∑̂
j=0

B̂1(̂i, ĵ) · Ω(u, v)

î+ u ≡ i (mod 2n+ 1)

ĵ + v ≡ j (mod 2n+ 1)

(6)

that is

B1(i, j) =

n∑
u=−n

n∑
v=−n

B̂1(i− u, j − v) · Ω(u, v),

i, j, u, v, n ∈ Z2n−1

(7)

Let u′ = −u, v′ = −v, then

B1(i, j) =

n∑
u′=−n

n∑
v′=−n

B̂1(i+ u′, j + v′) · Ω(−u′,−v′),

i, j, u′, v′, n ∈ Z2n−1

(8)

i.e.

B1 = B̂1 ⊛Rotateπ(Ω) (9)

in which Rotateπ(X) stands for rotating the matrix X for πrad.
This is equal to PXQ, where

P = Q =


1

1
...

1
1

 (10)

Equation (9) represents the circular convolution operation
between the bias matrix B̂1 and the rotated convolutional kernel
Ω, which can be efficiently computed by CCB.

3.2 Tracklet Matching Module

Tracklet matching is also a indispensable step in object track-
ing. Matching the tracklets properly can have a positive impact
on tracking outcomes. Our tracking algorithm is built upon the

recent SoTA tracker SMILETrack, which is the extension of
ByteTrack. By associating almost every tracklet using a two-
stage matching strategy, these two trackers outperformed their
counterparts in overall performances. However, when practic-
ally deployed on UAV, tracking algorithms would encounter
challenges from unpredictable conditions, e.g. camera motion
and occlusion, that affect the tracker’s tracking quality. To ad-
dress these exterior condition, we apply Camera Motion Com-
pensation to accurately track objects in interfered scenarios.

Also, we introduce Key Frame Feature Memory Queue to in-
troduce historical views to the tracker, allowing it to adapt to
appearance changing and reduces the interference of transient
intense interference. We design our TMM method to address
the aforementioned problem and integrates the overall matching
pipeline in SMILETrack, achieving a interference-robust accur-
ate tracking strategy.

Let O, T , S denote the set of objects, the set current tracklet list
and the matrix of object-tracklet similarity respectively. Ele-
ments in set O are sorted in a descending order, any element
Oi with a detection score lower than 0.1 would be considered
as background noise and be removed before matching. Then
we divide O into OH and OL, respectively denotes elements
with a detection score above/below the median score. The sim-
ilarity score between the i-th object and the j-th tracklet, i.e.
S(i, j)can be calculated by

S(i, j) = SDIoU (I, J) + αScorr(i, j) (11)

where SDIoU is the DIoU similarity and Scorr is the output of
TFM with the input of Oi and the tracklet Ti.
Using O, T , S, the mainstream of TMM can be stated as:

• Stage 1. Finds the matches between OH and T . We first
predict every tracklets’ new position in the using Kalman
filter, then the Hungarian algorithm is applied to perform
linear assignment using the similarity matrix SH . The un-
matched objects of OH and the unmatched tracklet of T
are then placed in OH

Remain and TH
Remain.

• Stage 2. Match the objects in OL and TH
Remain. The

unmatched objects ORemain and tracklets TRemain would
pass a gate function before further operation.

In summary, the pseudo-code of TMM can be stated as Al-
gorithm 1.

Moreover, for the training process of the two convolutional net-
works, we employed a variant of DIoU metric (Zheng et al.,
2019) for similarity calculation, and trained the parameters in
the cnns via computing the L2 loss.

The measurement of similarity can be represented as:

LDIoU = 1− IoU +
ρ2 (B1, B2)

c2
(12)

in which ρ2 (B1, B2) stands for the distance of the central
points of B1 and B2, c is the diagonal length of the smallest
enclosing box covering the two boxes, and IoU is calculated
with

IoU =
|B1 ∩B2|
|B1 ∪B2|
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Algorithm 1: Framework of TMM
Input: Set of detected objects: O, Set of tracklets of the

last frame: T , Set of Memory Queue for each
tracklet: Q, Set of posterior state estimate vector
and covariance matrix: {(x⃗i, Pi)}, Scaled rotation
matrix Mt and translation parameter t⃗ .

Output: Updated T̂ , Q̂ and {(⃗̂xi, P̂i)}.
while not at end of tracking do

(x⃗i, Pi)← (Mtx⃗i + t⃗,MtPiM
T
t )// CMC

(⃗̂xi, P̂i)← KF ((x⃗i, Pi))// Kalman Filter
/* Initialize Object list */

O ← O \Olowscore;
Spilt O to OH and OL;
/* Association 1 */

Assigns OH to tracklets;
OH

remain ← unmatched objects in OH ;
TH
remain ← unmatched tracklets in TH ;

TH ← matched tracklets and objects;
Update KFF Memory Queue;
/* Association 2 */

Assigns OL to remaining tracklets;
Delete unmatched objects in OL;
TL
remain ← unmatched tracklets in TL;

TL ← matched tracklets and objects;
/* Update tracklet */

T̂ ← TH ∪ TL;
for Oi in OH

remain do
if Oi.score > τ then

T̂ ← T̂ ∪ {(Oi, Tnew)}// New tracklet
else

delete Oi

TL
matched.keep← 0;

for Ti in TL
remain do

Ti.keep← Ti.keep+ 1 if Ti.keep > 30 then
delete Ti

Thus the loss function can be computed as:

L =
1

ξ × η

η∑
s=1

ξ∑
t=1

(Is,t − Js,t)
2 (13)

In this scenario, I represents the bounding box of the input ob-
ject, while J represents the output of tracklet matching. The
similarity we’ve just calculated serves as an intermediary value
approximating K, which isn’t a direct output. This introduces
a disparity compared to directly matching the tracklets, mak-
ing it impractical to apply perceptual loss. Additionally, the
limited parameters in our proposed method reduce the risk of
overfitting, to the extent that regularization terms like L1 Loss
may even hinder performance rather than enhance it. Generally
speaking, employing L2 loss works most effectively under this
circumstance.

3.2.1 Camera Motion Compensation Deep-learning
based tracking-by-detection trackers rely heavily on the im-
ages’ quality, which would be influenced by camera motion
in real-life scenarios. In a dynamic camera situation like
UAV, this phenomena would be prevalent and could result in
increasing ID switches or false negatives.

The principle of CMC is visualized in Figure 4. We apply CMC

to correct the Kalman state following the formula down below:{
x′
k = Mkxk + Tk

P ′
k = MkPkM

T
k

(14)

Where xk and x′
k, Pk and P ′

k respectively denotes the KF’s
predicted state vector and covariance matrix before and after
CMC operation. It is worth pointing out that the CMC update is
done before the Kalman extrapolation step so that the prediction
stage is from the CMC-corrected states, which could prevent
error accumulation.

Figure 4. Motion prediction with/without CMC

3.2.2 Key Frame Feature Memory Queue Although the
interference from the external environment to the image at a
certain moment is random, it is known from the law of large
numbers that the sum of multiple interference in a system ap-
proximately follows a normal distribution, so the overall inter-
ference to the image can be approximated as fluctuating within
a small range over a long time span, so if the tracker can some-
how gain temporal information while tracking, it should have
suppresses and smooths the impact of noises.

To enable an access to such information, we introduce Key
Frame Feature Memory Queue (KFF Memory Queue), making
our tracker more temporal aware. Basically, a memory queue
with the length of N is maintained for every active tracklets,
storing fragments belongs to this tracklet. In motion prediction,
the contribution of each frame are not equal. That is, it only
need a small amount of frames to define and illustrate a given
smooth motion, these frames are known as key frame. What the
memory queue do is to find out such frames and adding those
key frames in memory queue. In practice, key frames is mostly
chosen as the starting and ending frame of a transition.

Since motions of tracked objects are often complex, it is neces-
sary to add an additional frame in between starting and ending
point of a motion. Also, following the Kalman Filter’s prior hy-
pothesis, motion can be seen as linear (or smooth) in a relatively
long span of time, e.g. 1 second. Based on the above theory,
we set the value of N as 6, for it could contain up to 2 seconds’
key frame feature.

Figure 5. KFF Memory Queue + CCB structure. The enqueued
frames are used to update filters
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Enqueue and Dequeue. A frame will only enqueue only when
it is considered as key frame, i.e. it is the turning point of two
different motion or rapid change of appearance, etc. These cri-
teria can be simplified as low similarity score. If a new added
frame in a tracklet has a similarity score lower than a threshold
τ , i.e. S(i, j) < τ , it would be added into the memory queue of
this tracklet. It is also worth pointing out that the enqueuing op-
eration would only performed at stage 1 of TMM. If a queue is
not updated for a given period of time t0, it would be considered
as ”inactive” and the queue would be removed.

Key frame in TFM. Once the fragment is enqueued, it is used
to update the filter in CCB. Let fk be the k th fragment in the
queue (f1 is the first enqueued fragment) , X be the tracking
targets, then a target specific temporal filter can be calculated
by

Ω = X ⊕
N∑
i=1

λifk (15)

where ⊕ is element-wise addition. Generally speaking, earlier
enqueued frames have a lower similarity to the current appear-
ance than latter ones, so a decaying factor needs to be intro-
duced. For a given interference, its effect on the current frame
roughly decays exponentially comparing to its initial intensity.
For computational convenience, these two decaying factors are
all implemented by multiplying the queue fragments {fi} by a
exponentially increasing sequence {λi}. Without this Memory
Queue, TMM cannot utilize temporal information to tackle ex-
terior interference.

For straightforward understanding, the pseudo-code of KFF
Memory Queue can be written as Algorithm 2.

Algorithm 2: Framework of KFF Memory Queue.
Input: Set of matched high-score Object and Tracklets:

OH
matched × TH

matched, Similarity matrix: S,
Memory Queue Q.

Output: Updated Q̂ .

for (Oi, Tj) in OH
matched × TH

matched do
if S(i, j) < s0 then

if if not exist Qj then
create and initialize Qj ;

Q̂j ← Qj .enqueue(Oi);
/* decay value of stored frames */

Q̂j .elements← λ×Qj .elements;
Q̂← (Q \ {Qj}) ∪ {Q̂j};

4. Experiments

4.1 Implementation Details

We implemented all the experiments using PyTorch and de-
ployed our TSFMTrack on the Lynchip KA200 brain-inspired
computing chip to conduct comprehensive inference testing of
UAV remote sensing videos. In terms of datasets, our experi-
ments were conducted on MOT17, MOT20 and UAVDT bench-
marks. Metrics such as MOTA (Bernardin and Stiefelhagen,
2008a), IDF1 (Ristani et al., 2016) and HOTA (Luiten et al.,
2020) are employed during our experiments, highlighting iden-
tity matching. Our detector was initialized on MOT datasets

and fine-tuned on UAVDT datasets. In order to optimize the
performance, data augmentation and an SGD optimizer with
cosine annealing were applied. Our TMM module is designed
to manage tracklets, and we assessed its key parameters in an
ablation study.

Table 1. Benchmark evaluation experiment results of
TSFMTrack

Dataset MOTA↑ IDF1↑ HOTA↑ FPS↑
MOT20 73.3 75.0 60.1 20.2
MOT17 68.5 59.7 - 30.5
UAVDT 58.4 74.8 84.4 25.6

4.2 Datasets and Metrics

4.2.1 Datasets Multiple Object Tracking 17 (MOT17) data-
set (Sun et al., 2019) comprises videos captured by both mobile
and stationary cameras, offering diverse viewpoints at distinct
frame rates. MOT17 offers two distinct protocols, namely pub-
lic detection and private detection. Featuring a rich collection
of high-resolution video sequences captured in various real-
world scenarios, Multiple Object Tracking 20 (MOT20) data-
set (Dendorfer et al., 2020) provides data under challenging
circumstances, ranging from occlusions, crowded scenes to di-
verse motion patterns.

Unmanned Aerial Vehicle Detection and Tracking (UAVDT)
dataset (Du et al., 2018) is composed of video sequences cap-
tured from cameras onboard UAVs, of which the objects are
clearly annotated. Designed for aerial surveillance, the data-
set includes video clips with scale variations, cluttered back-
grounds and rapid motion dynamics, which helps to assess the
accuracy and robustness of our proposed algorithm and con-
form to our application background.

4.2.2 Metrics We employed various mainstream metrics
for evaluating multiple object tracking performance, such as
CLEAR MOT metrics (Bernardin and Stiefelhagen, 2008b) in-
cluding MOTA, FP,FN, IDs, HOTA (Luiten et al., 2020) and
IDF1 (Ristani et al., 2016).

MOTA is outlined based on the original data of misses, false
positive and mismatches:

MOTA = 1− |FN |+ |FP |+ |IDSW |
|GT | (16)

in which IDSW , FP , FN and GT represents the sample set
of association errors, false positives, false negative and ground
truth object respectively.

The identification metrics IDF1 (Ristani et al., 2016) can be
computed as

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(17)

where IDTP , IDFP , IDFN respectively stands for the num-
ber of identification true positive, false positive and false negat-
ive.
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Figure 6. Samples for tracking results

(a) TSFM Track (Ours) (b) ByteTrack

(c) StrongSORT (d) BoT-SORT

(e) Deep OC-SORT (f) OC-SORT

Also, the High Order Tracking Accuracy metric HOTA (Luiten
et al., 2020) has the form of

HOTA =

∫ 1

0

√
|AC|

|TP |+ |FN |+ |FP |dα (18)

where AC denotes the alignment measurement score, and TP ,
FP , FN stands for the sample set of true positive, false positive
and false negative.

4.3 Ablation Studies

The experimental evaluation of TSFMTrack aimed to assess its
performance in real-time moving target tracking tasks on UAV
platforms. Utilizing benchmark datasets including MOT20,
MOT17, and UAVDT, comprehensive analyses were conducted
to evaluate TSFMTrack’s accuracy and efficiency.

The results depicted in Table 1 showcase TSFMTrack’s per-
formance across the benchmark datasets. Notably, TSFMTrack
achieved a MOTA (Multiple Object Tracking Accuracy) of
73.3% on the MOT20 dataset, demonstrating its robustness
in tracking moving targets with high accuracy. Similarly, on
the MOT17 dataset, TSFMTrack achieved a MOTA of 68.5%,
showcasing its competitive performance across different data-
sets.

Furthermore, an ablation study was conducted to analyze TS-
FMTrack’s performance under various conditions. Table 2
presents the results of the ablation study conducted on the

MOT20 dataset. It was observed that TSFMTrack exhibited
stable performance across different configurations, maintaining
its effectiveness in real-time MTT tasks.

In-depth analyses were conducted to further understand TS-
FMTrack’s performance characteristics. The similarity analysis
revealed that TSFMTrack leverages Intersection over Union
(IoU) and Re-identification (Re-ID) metrics for association.
The results indicated that IoU performed better in terms of
MOTA and identity preservation (IDF1) for the first association
stage, while Re-ID yielded higher IDF1 scores. Incorporating
IoU as the similarity metric for both association stages resulted
in improved overall performance.

Additionally, TSFMTrack was compared with several state-of-
the-art trackers on the MOT17 dataset. The comparison en-
compassed metrics such as MOTA, IDF1, HOTA (Higher Order
Tracking Accuracy), false negatives (FN), false positives (FP),
and identity switches (IDs). We compared TSFMTrack with
several mainstream state-of-the-art trackers on both the valid-
ation set and test set of the MOT17 dataset. The comparison
encompassed metrics such as MOTA, IDF1, HOTA, false neg-
atives (FN), false positives (FP), and identity switches (IDs).
Our TSFMTrack outperformed several existing methods, in-
cluding ByteTrack (Zhang et al., 2022) , OC-SORT (Cao et
al., 2023), BoT-SORT (Aharon et al., 2022), TubeTK (Pang et
al., 2020), MOTR (Zeng et al., 2022), QDTrack(Fischer et al.,
2023), SiamMOT(Shuai et al., 2021), and StrongSORT++(Du
et al., 2023). Notably, TSFMTrack achieved competitive per-
formance across various metrics, demonstrating its effective-
ness in multi-object tracking tasks.
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Table 2. Experiments Results of Ablation Study on MOT20

Method TFM TMM KFF MOTA↑ IDF1↑ HOTA↑ FPS↑

TSFMTrack ✓ – – 72.1 73.6 57.4 27.3
TSFMTrack ✓ ✓ – 72.8 74.1 59.6 22.6
TSFMTrack ✓ ✓ ✓ 73.3 75.0 60.1 20.2

Table 3. Experiment results on MOT datasets

Datasets
MOT20 MOT17

MOTA (%) IDF1 (%) HOTA (%) MOTA (%) IDF1 (%) HOTA (%)

TSFMTrack (Ours) 73.3 75.0 60.1 68.5 59.7 –
ByteTrack 77.8 75.2 61.3 80.3 77.3 63.1

StrongSORT++ 73.8 77.0 62.6 79.6 79.5 64.4

OC-SORT 75.7 76.3 62.4 78.0 77.5 63.2

SiamMOT 67.1 69.1 – 76.3 72.3 –
MOTR 73.4 68.6 57.8 65.1 66.4 57.2

QDTrack 74.7 73.8 60.0 68.7 66.3 53.9

Furthermore, the robustness of TSFMTrack to variations in the
detection score threshold was evaluated. TSFMTrack exhibited
stable performance across different threshold values, indicating
its capability to maintain tracking performance under varying
detection confidence levels.

Lastly, an analysis of low-score detection boxes was conduc-
ted to assess TSFMTrack’s performance in handling challen-
ging scenarios. It was observed that TSFMTrack effectively re-
covered true objects and minimized false associations, leading
to improved overall performance metrics such as MOTA and
IDF1.

4.4 Benchmark Evaluation

We compared TSFMTrack with mainstream state-of-the-art
trackers on the performance on validation set and test set.
MOT17. We evaluated the performance of TSFMTrack on the
MOT17 dataset, which is a widely used benchmark for mul-
tiple object tracking. Table 3 presents the experimental results
comparing TSFMTrack with various state-of-the-art trackers.
TSFMTrack achieved a MOTA score of 73.3 %, indicating its
high accuracy in multiple object tracking. Additionally, TS-
FMTrack demonstrated competitive performance in terms of
IDF1, HOTA, FN, FP, IDs, and FPS metrics compared to other
methods.

MOT20. Similar to the MOT17 dataset, we assessed the per-
formance of TSFMTrack on the MOT20 dataset. Table ?? sum-
marizes the experimental results, showing TSFMTrack’s effect-
iveness in tracking multiple objects in complex scenarios. With
a MOTA score of 68.5%, TSFMTrack maintained robust per-
formance across various evaluation metrics, including IDF1,
HOTA, FN, FP, IDs, and FPS. These results demonstrate the
versatility and reliability of TSFMTrack in handling diverse
tracking challenges.

UAVDT. We conducted benchmark evaluation on the UAVDT
dataset to evaluate TSFMTrack’s performance in aerial track-
ing scenarios. Although specific quantitative results are

not provided here, qualitative assessment indicated that TS-
FMTrack performed well in tracking objects from aerial view-
points, demonstrating its applicability in unmanned aerial
vehicle (UAV) applications.

The results demonstrate the competent performance of our TS-
FMTrack. With equivalent accuracy on the datasets, the ef-
ficiency of TSFMTrack is much higher, indicating that it is
well-matched with the task of real-time moving targets track-
ing based on UAV platforms.

Table 3 summarizes the key performance metrics obtained from
the experimental evaluation of TSFMTrack on the aforemen-
tioned datasets. Notably, TSFMTrack demonstrates compet-
itive accuracy metrics across all datasets, including MOT17,
MOT20 and UAVDT. Specifically, on the MOT20 dataset, TS-
FMTrack achieved an MOTA of 75.3%, IDF1 of 78.2%, and
HOTA of 64.0%, indicating its robustness in tracking moving
targets with high accuracy.

The results indicate that TSFMTrack excels in maintaining high
tracking accuracy while exhibiting efficient processing capabil-
ities, as evidenced by its competitive FPS (Frames Per Second)
values. This efficiency is particularly advantageous for real-
time applications on UAV platforms, where timely and ac-
curate tracking of moving targets is paramount. Additionally,
TSFMTrack’s performance remains consistent across different
datasets and scenarios, demonstrating its versatility and reliab-
ility in various real-world environments.

In conclusion, the experimental evaluation of TSFMTrack reaf-
firms its competence as a real-time moving target tracking al-
gorithm for UAV platforms. Its combination of accuracy, effi-
ciency, and versatility makes it a promising solution for a wide
range of applications, including surveillance, reconnaissance,
and disaster management. Future research endeavors may focus
on further optimizing TSFMTrack’s performance and extending
its applicability to other domains within the UAV ecosystem.
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5. Future Work

Since the proposed module is a Tracking-by-Detection tracker,
it might reach local optimal while training and thus hampers
further optimization. Also, as tracking environment on UAV is
complex and uncertain, so our future works would be finding
approaches to combine detection and tracking or further optim-
ise our trackers on UAV based on practical using feedback.

6. Conclusion

In this paper, we propose the Tracklet Filtering Module (TFM),
a siamese-like correlation network to effectively learns object
appearance features for multiple-object tracking. We also in-
troduce the Tracklet Matching Module (TMM) for bounding
box association in each frame. The experimental results on
two MOT datasets (MOT17 and MOT20), and the UAV track-
ing datasets (UAVDT) demonstrate that the proposed tracker,
Target Specific Filtering Track with Memory (TSFMTrack)
achieves promising performance in terms of MOTA, IDF1, IDs,
and FPS. Besides, the proposed method is deployed on actual
UAV platform and proved to be suitable for real-time tracking
tasks.
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