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Abstract

With the development of remote sensing techniques, a large number of high-resolution aerial images is now available and benefit
many applications. Multi-scene recognition plays a key role in applying remote sensing images to these applications, which refers
to predicting multiple scenes coexisted in an aerial image and has attracted an increasing attention. Recently, most researchers tend
to invent deep learning-based recognition models and has gained great achievements. However, few efforts have been deployed
to explaining the success of deep neural networks in multi-scene recognition. To address this, we introduce concept bottleneck
model (CBM) to interpreting model performance and propose a novel network, namely Prototype- and Concept-based Interpretable
Network (PCINet), that projects aerial imagery into a prototype-concept memory bank and encode their correlations for explain-
ing how a network can identify coexisting scenes in an aerial image. Specifically, the proposed network mainly consists of two
branches: prototype matching that measures similarity scores between image features and scene prototypes, and concept bottleneck
branches that aligned image features to textual embeddings and compute their relations with concept embeddings. Afterwards,
Outputs are integrated for inferring scene categories. Experimental results show that the model enhances interpretability, provid-
ing valuable insights for urban planning and resource management, thereby bridging the gap between deep learning models and
practical applications.

1. Introduction

With the development of remote sensing techniques, a large
number of high-resolution aerial images is now available and
beneficial to many applications, e.g., urban planning (Marmanis
et al., 2018, Fang et al., 2023), traffic monitoring (Mou and
Zhu, 2018, Mou and Zhu, 2016) and natural resource manage-
ment (Du et al., 2022, Qiu et al., 2019, Weng et al., 2018). As a
bridge between imagery and applications, multi-scene recogni-
tion that refers to inferring multiple scenes coexisted in an aer-
ial image has now attracted an increasing attention. Recently,
most researchers tend to invent deep learning-based recognition
models and has gained great achievements (Long et al., 2021,
Zheng et al., 2022). However, few efforts have been deployed to
explaining the success of deep neural networks in multi-scene
recognition. To address this, we introduce concept bottleneck
model (CBM) (Koh et al., 2020) to interpreting model perform-
ance and propose a novel network that projects aerial imagery
into a prototype-concept memory bank and encode their cor-
relations for explaining how a network can identify coexisting
scenes in an aerial image. Afterwards, these correlations are fed
to a decision layer for scene classification.

2. Methodology

Our proposed model, called Prototype- and Concept-based In-
terpretable Network (PCINet), mainly consists of two branches:
prototype matching that measures similarity scores between im-
age features and scene prototypes, and concept bottleneck branches
that aligned image features to textual embeddings and compute
their relations with concept embeddings (cf. Figure 2). After-
wards, Outputs are integrated for inferring scene categories.
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Figure 1. Comparisons between (a) single- and (b) multi-scene
recogntion. In (a), each aerial image contains one dominant
scene, and the task is to classify each image into one scene

category. In (b), multiple scenes are present simultaneously in
one single image, and they are required to be thoroughly

identified. In our case, single-scene images, such as images in
(a), are leveraged to learn scene prototypes for inferring scenes

in multi-scene images.

2.1 Prototype Matching Branch

Given an aerial image, the prototype matching branch first ex-
tracts the feature map X using a convolutional neural network
(CNN), denoted as fϕ. The feature map X is then compared
with a set of predefined scene prototypes P = [p1,p2, ...,pn]

T ,
where N is the number of scene categories and pi denotes the
prototype of the i-th scene. In this work, we follow (Hua et
al., 2021a) and generate scene prototypes by first training fϕ
on a single-scene aerial image dataset and then summarizing
features of samples belonging to the i-th scene as its prototype
pi. Thus, pi is expected to be representative of its correspond-
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Figure 2. Architecture of the proposed PCINet. It mainly
consists of two branches: a prototype matching branch that

measures similarity scores between image features and scene
prototypes, and a concept bottleneck branch that aligned image
features to textual embeddings and compute their relations with
concept embeddings. Afterwards, outputs are integrated and fed

to the final classification layer for scene prediction.

ing scene (see Figure 5). Afterwards, the similarity score si
between the feature map and the i-th prototype pi is computed
through a dot product and a softmax function as follows:

Sp = softmax(Q(X) ·K(P )T ), (1)

where Q and K are query and key mapping functions stemming
from the Transformer (Vaswani et al., 2017).

2.2 Concept Bottleneck Branch

The concept bottleneck branch aims to align the image fea-
tures with textual embeddings and compute their relations with
concept embeddings. One of the crucial steps is to construct
the concept bank. To this end, we employ GPT-3.5, know as
a powerful large-scale language model, to distill keywords of
textual descriptions related to each scene. For example, we
send a prompt You are a remote sensing expert and experi-
enced in interpreting images. Now summarize ”what does a
soccer field look like from the nadir view? ” with 10 keywords
or phrases. to GPT-3.5, and it will respond with Rectangu-
lar shape, Green playing surface, Goalposts, White boundary
lines, Central circle, Corner flags, Goalkeeper boxes, Spectator
stands, Surrounding facilities, Team markings. Then we com-
pute word embeddings of these concepts and generate concept
embeddings C = [c1, c2, ..., cm]T , where m is the number of
concepts. To align image and language features, we employ a
vision-language model pretrained with Contrastive Language
Image Pretraining (CLIP) techniques (Radford et al., 2021).
Specifically, an aerial image is first transformed into textual
space, yielding a concept feature map Xtext. The concept fea-
ture map Xtext is then compared with predefined concept em-
beddings. The output of the concept bottleneck branch, Sc, is
computed with Eq. 1 but replacing X and P with Xtext and
C.

2.3 Scene Prediction

Afterwards, the outputs from the prototype matching branch
and the concept bottleneck branch are integrated and fed to the
final classification layer to make the final prediction. with the
following equation:

y = g([Sp · Vp(P ), Sc · Vc(C)]), (2)

where g is the classification layer, and Vp and Vc are value
mapping functions for prototype matching and concept bottle-
neck branches, respectively. By doing so, we can interpret net-
work decisions by figuring out prototypes and concepts with the
highest scores.

3. Experimental Results

We generate scene prototypes by training CNNs on single-scene
aerial image datasets, i.e., UCM (Yang and Newsam, 2010) and
AID (Xia et al., 2017) datasets, and evaluate the performance
of our model on the MAI dataset (Hua et al., 2021b), which is
specifically designed for multi-scene recognition. Quantitative
and qualitative results are reported for analysis and discussion.

3.1 Dataset Description and Configuration

MAI dataset. The MAI dataset includes 3923 large-scale im-
ages collected from Google Earth Imagery that covers the United
States, Germany, and France. Each is manually assigned one or
more of 24 predefiend scene categories: runway, apron, base-
ball, beach, commercial, farmland, woodland, parking lot, port,
residential, river, sea, bridge, lake, park, roundabout, golf course,
stadium, train station, works, soccer field, sparse shrub, storage
tanks, and tennis court. The size of each image is 512 × 512
pixels, and the spatial resolution ranges from 0.3 to 0.6 m/pixel.

UCM dataset. The UCM dataset is a widely used collection
of single-scene aerial images developed by Yang and Newsam
at the University of California Merced. These images, total-
ing 2100 in number, are extracted from aerial ortho imagery
provided by the United States Geological Survey (USGS) Na-
tional Map. They have a spatial resolution of one foot and each
image measures 256× 256 pixels. The dataset covers a diverse
range of scenes, with 21 scene-level classes including overpass,
forest, beach, baseball diamond, building, airplane, freeway, in-
tersection, harbor, golf course, runway, agricultural land, stor-
age tank, mobile home park, medium residential area, sparse
residential area, chaparral, river, tennis courts, dense residential
area, and parking lot. Each scene category consists of 100 aer-
ial images. For the purpose of training and validating the em-
bedding function to derive scene prototypes from these images,
we randomly allocate 80% of the samples from each scene cat-
egory for training and validation, reserving the remaining 20%
for testing.

AID dataset. The AID dataset is another widely used collec-
tion of single-scene aerial images, comprising 10,000 images
with dimensions of 600×600 pixels. These images are sourced
from Google Earth imagery covering various regions includ-
ing China, the United States, England, France, Italy, Japan, and
Germany. The spatial resolutions of the images range from 0.5
m/pixel to 8 m/pixel. The dataset encompasses a total of 30
scene categories, such as viaduct, river, baseball field, city cen-
ter, farmland, railway station, meadow, bare land, storage tanks,
beach, mountain, park, bridge, playground, church, commercial
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Figure 3. Example images in our MAI dataset. Each image is 512× 512 pixels, and their spatial resolutions range from 0.3 m/pixel to
0.6 m/pixel. We list their scene-level labels here: (a) farmland and residential; (b) baseball, woodland, parking lot, and tennis court;

(c) commercial, parking lot, and residential; (d) woodland, residential, river, and runway; (e) river and storage tanks; (f) beach,
woodland, residential, and sea; (g) farmland, woodland, and residential; (h) apron and runway; (i) baseball field, parking lot,

residential, bridge, and soccer field.

area, desert, forest, parking lot, industrial area, town square,
sparse residential area, pond, medium residential area, port, re-
sort, airport, school, stadium, and dense residential area. The
number of images varies across categories, ranging from 220 to
420. Similar to the UCM dataset, we adopt a data split approach
where 20% of images from each scene category are allocated as
test samples, while the remaining images are used for training
and validation of the embedding function.

Dataset configuration. In order to widely evaluate the per-
formance of our method, we utilize two variant dataset config-
urations, MAI-UCM and MAI-AID, based on common scene
categories shared by UCM/AID and MAI. Specifically, the MAI-
UCM configuration consists of 1600 single-scene aerial images

from the UCM dataset and 1649 multi-scene images from our
MAI dataset. 16 aerial scenes that are commonly included in
both two datasets are considered in UCM2MAI, and numbers
of their associated images are listed in Table 1. Besides, the
MAI-AID configuration is composed of 7050 and 3239 aer-
ial images from the AID and MAI datasets, respectively. 20
common scene categories are taken into consideration, and the
number of images related to each scene is present in Table 1.
Although such configurations might limit the number of re-
cognizable scene classes, we believe this limitation can be ad-
dressed by collecting more single-scene images by crawling
OSM data and producing large-scale multi-scene aerial image
datasets. We select only 90 and 120 multi-scene aerial images
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UCM2MAI AID2MAI
Scene Category UCM MAI AID MAI

apron 100 194 360 54
baseball field 100 75 220 235

beach 100 94 400 130
commercial 100 607 350 1391

farmland 100 680 370 983
woodland 100 762 250 1312
parking lot 100 708 390 1777

port 100 3 380 9
residential 200 958 700 2082

river 100 209 410 686
storage tanks 100 89 360 193

sea 100* 51 400* 59
golf course 100 75 - -

runway 100 230 - -
sparse shrub 100 336 - -
tennis court 100 114 - -

bridge - - 360 878
lake - - 420 756
park - - 350 638

roundabout - - 420 281
soccer field - - 370 302

stadium - - 290 136
train station - - 260 9

works - - 390 186
All 1600 1649 7050 3239

* indicates that the number of images is not counted
in total amounts, as the scene prototype of beach and
sea are learned from the same images.

Table 1. The Number of Images Associated with Each Scene.

from MAI-UCM and MAI-AID as training instances, respect-
ively, and test networks on the remaining multi-scene images.
For rare scenes (e.g., port and train station), we select all asso-
ciated training images, while for common scenes, we randomly
select several of their training samples. It is noteworthy that
we yield the scene prototype of residential by taking an av-
erage of high-level representations of aerial images belonging
to scene medium residential and dense residential. Be-
sides, although the UCM and AID datasets do not contain im-
ages for sea, their images for beach often comprise both sea
and beach. Therefore, we make use of training samples labeled
as beach to yield the prototype representation of sea.

3.2 Concept Generation

To construct a comprehensive and precise initial set of scene
concepts, this project proposes to adopt a concept generation
approach based on large language models (LLMs) and prompt
engineering. By designing prompt paradigms, we aim to guide
LLMs to simultaneously retrieve training sample corpora cov-
ering a wide range of contexts and online expert knowledge
bases with strong timeliness, thus generating an initial set of
concepts describing scene appearance, compositional structure,
functional purposes, adjacent features, and more. In the pro-
cess of prompt design, we first specify the system roles un-
dertaken by the LLM and clarify the purposes, contents, and
formats of the questions and answers. Next, we engage in multi-
round question-and-answer sessions to establish a model think-
ing chain. To enhance the accuracy and robustness of model
outputs, we will employ active-prompt techniques, where we
calculate the uncertainty of the model’s multiple responses to
the same prompt and supplement the model’s thinking chain by
manually retrieving relevant corpora for prompts with low con-
fidence in the answers, repeating this process until the model

produces highly confident results. Finally, we summarize the
LLM’s responses to prompts from different angles on the same
scene, manually filtering out highly irrelevant concepts to con-
struct an initial set of scene concepts with rich descriptive di-
mensions and high semantic confidence.

3.3 Training Details

The training process involves two phases: 1) learning the em-
bedding function fϕ using a large dataset of single-scene aerial
images, and 2) training the entire PCINet using a limited num-
ber of multi-scene images in an end-to-end fashion. Different
training strategies are applied to each phase, detailed as follows.

During the initial training phase, we initialize the feature extrac-
tion modules with CNNs pre-trained on ImageNet (Deng et al.,
2009). We utilize crossentropy as the loss function and employ
Nesterov Adam (Dozat, n.d.) as the optimizer, with recommen-
ded parameters: β1 = 0.9, β2 = 0.999, and ϵ = 1e − 08. The
initial learning rate is set to 2e− 04 and decayed by

√
0.1 if the

validation loss does not decrease for two consecutive epochs.

In the subsequent training phase, we initialize fϕ with the para-
meters learned in the previous phase and use a Glorot uniform
initializer to initialize all weights in Qh, Vh, Kh, and the final
fully-connected layer. We set L and U to 256, and the number
of heads to 20. All weights are trainable, and the embedding
function is fine-tuned during this phase as well. Scene-level la-
bels are encoded as multi-hot vectors, where 0 indicates the ab-
sence of a scene and 1 indicates its presence. The loss function
is defined as binary cross-entropy. The optimizer remains the
same as in the initial phase, but we use a relatively larger learn-
ing rate of 5e − 4. The network is implemented using Tensor-
Flow and trained on a single NVIDIA Tesla P100 16GB GPU
for 100 epochs. We set the training batch size to 32 for both
phases.

3.4 Evaluation Metrics

To quantitatively evaluate network performance, we employ example-
based F1(Wu and Zhou, 2016) and F2(Van Rijsbergen, 1979)
scores as evaluation metrics. These scores are calculated using
the following equation:

Fβ = (1 + β2)
pere

β2pe + re
, β = 1, 2, (3)

where pe and re represent example-based precision and recall (Tsou-
makas and Vlahavas, 2007), which are computed as:

pe =
TPe

TPe + FPe
, (4)

re =
TPe

TPe + FNe
, (5)

where TPe, FPe, and FNe indicate the numbers of true pos-
itives, false positives, and false negatives, respectively, within
each example. Each example in our case corresponds to a multi-
scene aerial image. By averaging scores across all examples
in the test set, we can determine the mean example-based F
scores, precision, and recall. Additionally, we calculate label-
based precision pl and recall rl using Eq. 4 and Eq. 5, respect-
ively, but substituting the counts of false negatives, false pos-
itives, and true positives specific to each scene category. The
mean pl and rl are then computed. It’s worth noting that the
primary metrics of interest are the mean F1 and F2 scores.
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Figure 4. Sample distributions of all scene categories in the MAI dataset.
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Figure 5. T-SNE visualization of image representations and
scene prototypes learned by CNN (e.g., VGGNet) on (a) UCM

and (b) AID datasets, respectively. Dots in the same color
represent features of images belonging to the same scene, and

stars denote scene prototypes.

3.5 Results

We report the results of our experiments in terms of accur-
acy, precision, recall, and F1-score. Our model achieves better
performance, and correlations between images, prototypes and
concepts are visualized to illustrate the decision process.

4. Conclusion

In conclusion, PCINet, with its dual branches integrating pro-
totypes and concepts, achieves superior performance in uncon-
strained scene recognition for high-resolution aerial images. The
model enhances interpretability, providing valuable insights for
urban planning and resource management, thereby bridging the
gap between deep learning models and practical applications.
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