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Abstract

One of the urgent and constantly in demand problems is updating maps. Maps, representing geo-information in vector form, 
have undoubted advantages in compactness and ”readability” compared to aerial photographs. The issue of maps actuality is 
critically important for rational urban planning, precision farming, the relevance of the cadastre and other geospatial applications. 
Various sources of data are used for maps updating, with aerial imagery being the main and rich source of information. Automatic 
processing of aerial photographs makes it possible to efficiently extract vector information, providing operational monitoring and 
accounting for changes that have appeared. The presented study addresses the problem of multi sensor information fusion in order 
to obtain accurate vector information. We use aerial images as a main data source and additionally the data of laser scanning and 
ground survey to increase performance of automatic image semantic segmentation and vectorization. The proposed framework is 
demonstrated on the task of forest monitoring.

1. Introduction

The actuality of maps is very important factor, that is neces-
sary for the most of geospatial applications for correct decisions
making. Maps representing geo-information in vector form
have undoubted advantages in compactness and ”readability”
compared to aerial photographs. The issue of maps actuality is
critically important for sound urban planning, precision farm-
ing, the relevance of the cadastre and other geospatial applica-
tions. Various sources of data are used for maps updating, with
aerial imagery being the main and rich source of information.
Automatic processing of aerial photographs makes it possible
to efficiently extract vector information, providing operational
monitoring and accounting for changes that have appeared.

The scientific community pays great attention to the problem
of image vectorization due to the high demand for a reliable
and effective method of extracting vector information from re-
mote sensing data. The first photogrammetric procedures for
processing of stereo pairs of aerial photographs utilized com-
plex photogrammetric devices such as stereo comparators and
stereo plotters. Such processing required a large number of
manual operations from the user. Advances in computers and
digital image processing have given a powerful impetus to re-
search in the field of automatic photogrammetric image pro-
cessing methods, in particular for image segmentation and vec-
torization (Gruen and Li, 1995, Gruen and Li, 1997).

Nowadays, with significant advances in computers power and
possibilities for acquiring and storing a huge amount of data,
machine learning based methods demonstrate the state-of-the-
arts results in this problem as in pixel-wise segmentation and
vectorization. Data-driven methods exploit the power of hidden
information that could be retrieved by analysis of huge amount
of data. So, the representative and diverse task-oriented dataset
is necessary part of machine learning study. A number of data-
sets exists (Bastani and Madden, 2021, Mohanty, 2018, Bay-
anlou and Khoshboresh-Masouleh, 2021), that are available for
scientific community interested in semantic segmentation and

image vectorization problems.

The presented study addresses the problem of multi sensor in-
formation fusion in order to obtain accurate vector information.
We use aerial images as a main data source and additionally the
data of laser scanning and ground survey to increase perform-
ance of automatic image vectorization. The proposed frame-
work is demonstrated on the task of forest monitoring.

The main contributions of the study are the following:

• the framework for multi sensor data analysis for accurate
vectorization of aerial images

• case study of the proposed technique in task of forest mon-
itoring

• the estimate of improvement of vectorization quality
provided by the proposed technique

2. Related work

The problem of image vectorization attracts attention of sci-
entific groups in photogrammetry and computer vision for a
number of decades. A notable progress in methods of semantic
image segmentation and vectorization have been reached with
appearing digital images and developing method of digital im-
age processing. The study (Gruen and Li, 1995, Gruen and
Li, 1997) proposed active contour models (Snakes) as a task
of least squares minimization and then extended it for integ-
rating multiple images for 3D linear features extraction. The
concept of Least Squares B-spline Snakes improved perform-
ance of active contour models by implementing: internal qual-
ity control through computation of the covariance matrix of the
estimated parameters; the exploitation of any a priori known
geometric and photometric information; and the simultaneous
use of any number of images through the integration of cam-
era models. Compared to the two-image approach the proposed
multi-image mode allows controlling blunders.

Nowadays, with significant advances in computers power and
possibilities for acquiring and storing a huge amount of data,
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machine learning based methods demonstrate the state-of-the-
arts results in this problem as in pixel-wise segmentation and
vectorization.

The study (Pu, 2021) provides a sight on various optical and
light detection and ranging (LiDAR) sensors. It analyses cur-
rent various techniques and methods for data classification and
identify limitations and recommend future directions. They
main conclusions of the study are the following: a large group
of studies on the topic were using high-resolution satellite, air-
borne multi-/hyperspectral imagery, and airborne LiDAR data;
a trend of “multiple” method development for the topic was
observed; machine learning methods including deep learning
models were demonstrated to be significant in improving classi-
fication accuracy; unmanned aerial vehicle- based sensors have
caught the interest of researchers and practitioners for the topic-
related research and applications.

The approach, named PolyMapper (Li et al., 2018), skips con-
ventional pixel-wise segmentation of images and tries directly
to forecast the object vector representation. PolyMapper dir-
ectly retreive the topological map from overhead images as
collections of building footprints and road networks. Eval-
uation of the proposed technique on both existing and self-
collected large-scale datasets demonstrated that proposed learn-
able model can predict polygons of building footprints and road
networks very close to the structure of existing online maps.
The developed model work in a fully automated mode. Quant-
itative and qualitative evaluation demonstrated the state-of-the-
art level of performance.

Several studies have been addressed to the problem of image
vectiorization in computer graphics context, where image vec-
torization remains a major challenge (Ma et al., 2022). Layer-
wise Image Vectorization (LIVE) technique, proposed in (Ma
et al., 2022), simultaneously converts raster images to vec-
tor graphics and maintains image topology. LIVE generates
compact vector forms with semantic layer-wise structures. By
adding progressively new bezier paths and optimizing these
paths with the layer-wise framework governed by newly de-
signed loss functions, LIVE presents plausible vectorized forms
that outperforms the methods-analogues.

The specially collected dataset MUNO21 (Bastani and Madden,
2021) is designed for solving the map updating task. The main
goal of creating this dataset is to solve practical map updating
problem, specifically, updating an existing map by adding, re-
moving, and shifting roads, without introducing errors in parts
of the existing map that remain up-to-date. The evaluation of
several state-of-the-art road extraction methods on MUNO21
showed that further improvements in accuracy is necessary for
automatic map updating.

The study (de Castro et al., 2021) analyses a set of techniques
for UAVs in vegetation monitoring, which applied to diverse
agricultural and forestry scenarios. Three general categories
are highlighted: sensors used for surveys and applying vegeta-
tion indices for classification, technological goals pursued, and
precision farming and precision forestry applications. UAV
flight operations, spatial resolution requirements, and compu-
tation and data analytics are consudered, along with the ability
of UAVs for characterizing relevant vegetation features. The
authors analyse UAV-based technological solutions for a bet-
ter use of agricultural and forestry resources and more efficient
production with relevant economic and environmental benefits.

Semantic segmentation and image vectorization techniques are
also in demand for woodland aerial imagery analysis. With in-
creasing availability of unmanned aerial vehicles for acquiring
various kind of remote sensing data, such methods very import-
ant for precision forestry. They are applied for palm tree invent-
ories, continuous monitoring, vulnerability assessments, envir-
onmental control, and long-term management. The study (Gib-
ril et al., 2023) addresses the reliability and the efficiency of
various deep vision transformers in extracting date palm trees
from multiscale and multisource VHSR images. The evalu-
ation of various vision transformers, such as Segformer, Seg-
menter, UperNet-Swin transformer, the dense prediction trans-
former, with various levels of model complexity, has shown
that transformers models demonstrate the state-of-the-art per-
formance on woodland imagery. Also the current state of mul-
timodal data processing (Knyaz, 2019) allows to hypothesize
that multi sensor data fusion can improve the performance in
tasks of segmentation and vectiorization

The comprehensive review (Li et al., 2019) summarises recent
remote sensing applications in urban forestry from the perspect-
ive of three distinctive themes: multi-source, multi-temporal
and multi-scale inputs. It reviews how different sources of re-
motely sensed data offer a fast, replicable and scalable way to
quantify urban forest dynamics at varying spatiotemporal scales
on a case-by-case basis. Combined optical imagery and LiDAR
data results as the most promising among multi-source inputs;
in addition, future efforts should focus on enhancing data pro-
cessing efficiency. For long-term multi-temporal inputs, in the
event satellite imagery is the only available data source, future
work should improve haze-/cloud-removal techniques for en-
hancing image quality.

3. Materials and Methods

3.1 Sensors used for the study

We use materials of forest area survey for developing and test-
ing the proposed framework. An unmanned aerial vehicle
(UAV) equipped with a set of multimodal sensors was used for
the surveying. Three sensors acquired information during sur-
veying flights. The equipment of the UAV includes:

• color (RGB) camera SONY DSC-RX1R;

• multi spectral camera MicaSense RedEdge-M;

• laser scanner AGM-MS3.

Images of the sensors are presented in Figure 1.

(a) laser scanner
AGM-MS3

(b) multi spectral
camera MicaSense
RedEdge-M

(c) color camera
SONY DSC-RX1R

Figure 1. Sensors used for the surveying

Color infra-red (CIR) images are acquired by MicaSense
RedEdge-M multi spectral camera. It acquires images with
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photometric resolution (image depth) of 16 bits of five spec-
tral bands: Blue, Green, Red, RedEdge (RE) and Near Infra
Red (NIR). Main technical characteristics of the MicaSense
RedEdge-M camera are presented in Table 1.

Parameter Value

Band Blue Green Red RE NIR
Wave length nm 475 560 668 717 840
FWHM nm 20 20 10 10 40
Image depth bit 16 16 16 16 16
Image width pix 1280 1280 1280 1280 1280
Image height pix 960 960 960 960 960

Table 1. Technical characteristics of MicaSense RedEdge-M
multi spectral camera.

Color (RGB) images are acquired by SONY DSC-RX1R cam-
era. It acquires high resolution color images with photometric
resolution of 8 bits. These high resolution images are used for
generating dense digital elevation model and high quality ortho-
photo. Main technical characteristics of the SONY DSC-RX1R
camera are presented in Table 2.

Parameter Value

Wave length nm 535. . . 670
Bits Per Sample 8
Image width pix 6000
Image height pix 4000

Table 2. Technical characteristics of SONY DSC-RX1R camera.

Laser scanner AGM-MS3 provides range data of high accur-
acy and high spatial resolution with high acquisition rate up to
604 kHz. Main technical characteristics of the AGM-MS3 laser
scanner are presented in Table 3.

Parameter Value

Data acquisition rate kHz up to 640
Range m up to 300
FOV grad up to 360
Deflection unit rotation speed rps up to 20
Spatial accuracy mm 30. . . 50
Range accuracy Mm 30
Dimensions mm 124x124x113
Weight kg 1.1
Power consumption 12 V, 1.3 A
Operating temperature oC -20 ... +55

Table 3. Technical characteristics of AGM laser scaner.

3.2 Multi-Sensor Data

Multi sensor data acquired during the survey includes six sets of
images: RGB, images in Blue, Green, Red, RedEdge and Near
Infra Red bands and range data.

Samples of the acquired data for the same surveyed area are
shown in Figure 2.

For tree detection, classification and vectorization current
standard processing procedure includes several phases, that are
presented as Algorithm 1.

Algorithm 1: Remote sensing data processing
Input:

Set of color (RGB) images {Ijc}, j = 1, . . . , Nc of the area
Set of multi band (CIR) images {Ij

mb
}, j = 1, . . . , Nmb of

the area
Range data R of the same area

Output:

Digital elevation model He

Color orthophoto Oc

Multi band CIR rthophoto Omb

1 Processing procedure ;
2 Procedure Pre-processing():

/* Color image pre-processing */

3 for Ijc 2 Ic do

4 Correct distortion(Ijc ))
/* Multi-band image pre-processing */

5 for Ij
mb

2 Imb do

6 CorrectDistortion(Ij
mb

))
7 CalibrateRadiometry(Ij

mb
))

8 NormalizePixelValue(Ij
mb

))
9 return;

10 Photogrammetric image processing ;
11 Procedure Photogrammetric processing(t,s):

/* Photogrammetric image processing */

12 for Ijc 2 Ic do

13 FindDescriptors(Ijc ))
14 MatchDescriptors(Ijc ))
15 OrientImage(Ijc ))
16 GenerateSparsePointCloud({Ic}))
17 GenerateDensePointCloud({Ic}))
18 He = GenerateDEM({Ic}))
19 Oc = GenerateRGBOrthophoto({Ic}))
20 Omb = GenerateCIROrthophoto({Imb}))
21 return He, Oc, Omb;

Multi band images were processed by standard procedure, that
includes the following phases:

3.2.1 Radiometric calibration. Radiometric calibration is
performed for accounting gain and exposure of the camera, dir-
ectional parameters (the position of the sensor and the position
of the sun), irradiance parameters (exploiting special tools such
as light sensors or reflectance panels). Using this data, raw di-
gital array (raw image) are converted into sensor reflectance (or
irradiance), and then to reflectance values of imaged surface.

Radiometric calibration allow to calculate absolute spectral ra-
diance values basing on the raw pixel values of an image. Abso-
lute spectral radiance is measured in W/(m2 · sr · nm). Such
factors as sensor gain and exposure settings, sensor sensitiv-
ity and black-level, and lens vignette effects are compensated
by radiometric calibration, thus providing accurate data for ra-
diometric analysis of images in order to obtain adequate inform-
ation about surface reflectance needed for the task of tree clas-
sification.
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(a) Blue 475 nm (b) Green 560 nm (c) Red 668 nm (d) Red Edge 717 nm

(e) NIR 840 nm (f) RGB (g) Range

Figure 2. Samples of data used in the study. From top to bottom: RGB image, one channel of CIR image, laser scanning data

The spectral radiance L (in W

m2·sr·nm
) for pixel with value p is:

L = V (x, y) · a1

g
· p� pBL

te + a2y � a3tey
(1)

with
p – the normalized raw pixel value,
pBL – the normalized black level value
a1, a2, a3 – the radiometric calibration coefficients
V (x, y) – the vignette polynomial function for pixel (x, y).
te – the image exposure time
g – the sensor gain setting
x, y – the pixel column and row number, respectively

3.2.2 Pixel Value Normalization. Multi band images from
MicaSense camera have 16-bit depth. As the radiometric model
operates with normalized pixel values in the range 0 to 1, so
raw digital pixel values are converted to normalized form by
dividing the the value the pixel by 2N (N = 16 – the image
depth). Such kind of transformation is also applied the black
level values.

For transformation of raw pixel values into reflectance, im-
ages of special calibrated reflectance panel taken before or after
flight a used. For each calibrated reflectance panel the trans-
fer function is given The transfer function gives the relation
between the raw pixels of the panel image to units of absolute
reflectance (a value between 0.0 and 1.0) in the range of 400 nm
to 850 nm with the increment of 1 nm.

The average value of radiance for the pixels located inside the
actual panel area of the image avg(Li) is used for determining
the reflectance calibration factor for each band. For the i � th
band the transfer function of radiance to reflectance is:

Fi =
⇢i

avg(Li)
(2)

with

Fi – the reflectance calibration factor for band i,
⇢i – the average reflectance of the calibrated reflectance panel
for the i� th band.

This factor is used for the i � th band to convert all radiance
values to reflectance. This same procedure is applied independ-
ently to each band for converting the images reflectance units.

3.3 Framework for Segmentation and Vectorization.

After pre-processing of the raw data acquired during the sur-
vey, images are processed by standard routine to generate pho-
togrammetric products: digital elevation model (DEM) and or-
thophoto for testing area. These routine includes images orient-
ing, feature detecting and solving the correspondence problem,
sparse and dense point clouds generating, DEM recontructing,
orthophoto producing. The resulting orthophoto is then used
for semantic segmentation and vectorization.

The resulting products of photogrammetric processing (digital
elevation model, RGB orthophoto, and CIR orthophoto) are
shown in Figure 3.

(a) RGB orthophoto (b) digital elevation
model

(c) CIR orthophoto

Figure 3. Corresponding regions at RGB orthophoto, digital
elevation model, CIR orthophoto

Due to the complexity of the problem of matching images of
woodlands, which leads to a mismatch of the corresponding
points, the output digital elevation model contains errors. These
errors lead to significant distortion of the orthorectified image,
and can dramatically affects the results of segmentation and de-
cryption.
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(a)
height
scale

(b) Range data (c) digital elevation model (d) Composite image of (b) and (c)

Figure 4. Corresponding regions at range data, digital elevation model, and mixed image of half-transparent DEM and range image.
(a) is the height scale, from 140 m (red) and 180 m (blue).

Figure 5 demonstrates a typical image distortion caused by er-
rors in digital elevation model. Due to these errors it is not
possible detect and separate several trees in the area A (shown
by red rectangle).

To overcome the problem of orthophoto distortion caused by
error in digital elevation model we use laser scanner data (Fig-
ure 2(g)) as additional information source. We use an image
representation of the range data (Figure 4(b)), which allows us
to perform cluster data analysis and detect individual trees in
the forest area.

For data clusterization into individual trees in range image we
use algorithm similar to the work (Kniaz et al., 2021), based on
analysis of a set of images obtained by image binarization by
sequentially decreasing threshold. The pixels of a range image
are then aggregated in one cluster (individual tree) using grav-
itation model. An example of data clusterization is shown in
Figure 5.

We process a subset of the images by the described above tech-
nique, and then use this subset as training data for WireNet
neural network model (Kniaz et al., 2020). After training stage,
we use WireNet for segmentation of the rest of the images. The
results of segmentation demonstrated more than 18% improve-
ment of average precision AP metric, used for evaluation, com-
paring with the standard segmentation procedure.

AP (Sgt, Sp) =
1

NT ·NO

TmaxX

t=0

NOX

i=0

1J(Sgt,Sp)>t, (3)

with

NT is the power of the set of threshold values used;
NO is the power of the set of detected objects;
Tmax is the maximum of thresholds;
1v is the indicator function;
Sgt is the ground truth segmentation;
Sp is the predicted segmentation;
J(Sgt, Sp) is the Intersection-over-Union value (or Jaccard in-
dex).

J(Sgt, Sp) =
Sgt \ Sp

Sgt [ Sp
. (4)

At the next phase we use segmented images as mask ones for
the classification of the detected trees. For this purpose, we
overlay the mask images on the CIR orthophoto to select indi-
vidual trees for classification. Then each tree inside the mask is
classified by standard procedure using vegetation indexes.

The whole framework can be presented as Algorithm 2.

Algorithm 2: Orthophoto segmentaion
Input:

Orthophoto O of the area
Range data R in image form Ir
Output:

Weights of the CNN model {Wi}

1 Data clusterization ;
2 Procedure Clusterization(R):

3 Rt = CreateTrainingSubset(R)
4 for rj 2 Rt do

5 {Ct} = FindClusters(rj))
6 Aggregate({Ct})
7 Ijm = GenerateMaskImage({Ct})
8 return {Im};

9 Training ;
10 Procedure Training():

11 for Ijr 2 Ir do

12 Ijs = FindAreas(Ijm))
13 Correct(Ijs ))
14 TrainCNNModel({Is}))
15 return {Wi};

16 Inference ;
17 Procedure Segmentation(O):

18 Os = SegmentingOrthoPhoto(O,Wi)
19 return Os;

We estimated the performance of the proposed technique on
the data, obtained during the forest area survey using various
sensors. As a baseline we used the results of processing by
standard processing routine. We applied average precision AP
metric for estimating the performance of the proposed frame-
work (Table 4), and evaluation results demonstrated up-to 18%
progress in segmentation and vectorization accuracy comparing
with the baseline.
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(a) Area A (red rectangle) with indistinguishable
image of separate trees

(b) Semantic segmentation of the same area (c) CIR-based classification

Figure 5. Image distortion caused by errors in digital elevation model and semantic segmentation of this area

P[0.5] P[0.7] P[0.9] AP

Standard procedure 0.663 0.576 0.381 0.540
Proposed Framework 0.817 0.743 0.625 0.728

Table 4. Performance evaluation

3.4 Conclusion

The framework for accurate semantic segmentation and vector-
ization is developed. It utilizes three type of data acquired dur-
ing UAV-based aerial survey, specifically: RGB imagery, CIR
imagery and range data acquired by laser scanner. To improve
the performance of semantic segmentation range data is used
for annotating training dataset in semi-automated mode.

The image segmentation network model, trained on created
dataset has demonstrated up-to 18% progress in segmentation
and vectorization accuracy comparing with the standard seg-
mentation procedure.
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