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Abstract

Estimating forest canopy height is crucial for assessing aboveground biomass and carbon sequestration. Light detection and ranging
(lidar) is an important technology for its ability in capturing vertical structural information. However, due to instrument limitations
and cost constraints, acquiring large-scale and continuous forest data solely through lidar is challenging. To compensate this, remote
sensing images can be used to cover wide regions. Therefore, leveraging multi-source data for constructing canopy height models
(CHMs) holds great promise in this field. The objective of this study is to evaluate and compare the contributions of multi-source
remote sensing data and methods in estimating forest canopy height. In constructing the CHM, the commonly used random forest
(RF) and fully convolutional network (FCN) are assessed. The canopy height obtained from GEDI was used as the reference data,
and Landsat 8 and Sentinel-2 data were used for prediction. Multiple CHMs were constructed for the Dabie Mountains, Central
China, in 2019 based on different data sources and methods, respectively, which are then comparatively analysed. The results
showed that (1) the accuracy of the CHM using Sentinel-2 as input is marginally better than that using Landsat 8 based on RF,
where the difference is insignificant; and (2) FCN is less accurate than RF despite domain-specific fine-tuning, although further
improvement in accuracy is expected by weighing in more FCN models.

1. Introduction

Forest canopy height is a representative parameter of forest
structure, particularly in its ability to reflect aboveground bio-
mass, which holds significant implications for carbon sequest-
ration estimation (Tolan et al., 2024). Light detection and ran-
ging (lidar), as an active remote sensing technology, possesses
the capability to acquire the vertical structure of trees and obtain
tree canopy height (Lefsky et al., 2002). However, due to cost
constraints, airborne lidar data is not suitable for large-scale and
repetitive forest observations (Coops et al., 2021). On the other
hand, spaceborne lidar can overcome this limitation. Space-
borne lidar can obtain the vertical structure of forests, including
canopy height, but its footprint is discrete and has low spatial
density, so continuous coverage of canopy height cannot be dir-
ectly obtained. Integrating spaceborne lidar footprints with con-
tinuous optical remote sensing images is a significant approach
to estimating forest canopy height with large-scale continuous
coverage (Wang et al., 2023).

Remote sensing images are becoming increasingly abundant,
offering a wealth of data sources that can be harnessed to en-
hance canopy height models (CHMs) through the utilization of
multi-source data. However, it is important to note that the mere
incorporation of multiple data sources does not always result in
a significant improvement in model accuracy. In fact, it may
lead to an increased reliance on the data, potentially limiting
the applicability of the model (Fayad et al., 2024). To address
this issue, the selection of the most appropriate data source for
a specific study becomes crucial. Researchers must carefully
consider various factors, such as the spatial resolution, spectral
characteristics, and temporal coverage of the data sources, to
ensure the compatibility with their objectives. This selection
process requires a thorough understanding of the strengths and
limitations of different remote sensing platforms and sensors.

In parallel, advancements in deep learning techniques have fa-
cilitated the integration of neural networks into canopy height
estimation, resulting in superior performance compared to tra-
ditional regression analysis and conventional machine learning
methods (Fayad et al., 2024; Illarionova et al., 2022). These
deep learning models have demonstrated exceptional capab-
ilities in capturing complex relationships and patterns within
the data, thereby leading to more accurate and robust CHMs.
However, despite these advancements, there remains a lack of
consensus regarding the optimal data sources and model archi-
tectures for canopy height estimation. Many studies have fo-
cused on specific data sources or models, disregarding the po-
tential benefits of integrating multiple data sources or explor-
ing alternative model architectures. For instance, Wang et al.
(2023) primarily investigated the impact of multimodal space-
borne lidar data on CHMs without analyzing the potential con-
tribution of multi-source optical remote sensing images. Sim-
ilarly, Gupta and Sharma (2022) compared various machine
learning methods without considering the latest advancements
in neural networks. Consequently, there is a clear need for
further research to improve the accuracy of canopy height es-
timation by carefully evaluating and selecting appropriate data
sources and exploring innovative model architectures. This can
involve investigating the synergistic benefits of combining dif-
ferent remote sensing modalities, such as optical imagery, lidar
data, and synthetic aperture radar (SAR) data. Additionally, ex-
ploring novel deep learning architectures, such as convolutional
neural networks (CNNs) or recurrent neural networks (RNNs),
specifically tailored for CHM tasks, holds promise for achiev-
ing more accurate and reliable results.

In this end, the main objective of this study is to assess and
compare the contributions of multi-source remote sensing data
and methods in estimating canopy height. We conducted our
study in the Dabie Mountains, in central China. The random
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forest (RF) algorithm and a model based on the fully convolu-
tional neural networks (FCN) architecture (Lang et al., 2023)
are comparatively analysed, using both Landsat and Sentinel
data.

2. Study site and data

2.1 Study site

Figure 1. Forest range and GEDI footprint distribution in the
Dabie Mountains, Central China.

We conducted our study in the Dabie Mountains, which are
located at the junction of Anhui, Hubei, and Henan provinces,
China. The Dabie Mountains are about 380 kilometers east and
west and 175 kilometers north and south. It is a special dis-
tribution area of rare and endangered wild animals and plants
in China, and is a national nature reserve. However, there is a
lack of research on long time-series large-scale canopy height
mapping.

The forest range and GEDI (Global Ecosystem Dynamics In-
vestigation) footprint distributions in the Dabie Mountains are
shown in Figure 1. The forest area of the Dabie Mountains
was derived after applying a forest type coverage mask to the
data. Each footprint of the GEDI data has a width of 25 m,
with a spacing of 60 m between consecutive footprints. Addi-
tionally, there are 8 parallel tracks simultaneously sampling the
area (Jucker et al., 2023).

2.2 Data

In this study, the primary data utilized include spaceborne lidar
data from GEDI, optical remote sensing data from Sentinel-2
and Landsat 8.

2.2.1 GEDI data NASA’s Global Ecosystem Dynamics In-
vestigation (GEDI) provides precise measurements of forest
canopy height, canopy vertical structure, and surface elevation.
GEDI covers regions within 51.6° N and S worldwide and op-
erates from 2018 to 2023, collecting a lot of ground data. This
study used GEDI L2A Version 2 data product from the Dabie
Mountains obtained throughout 2019. The Version 2 has higher
positioning accuracy compared to the Version 1. The GEDI
L2A product features ground elevation, canopy top height, and
relative height (RH) metrics, making it highly suitable for sim-
ulating canopy height and widely used in large-scale forest re-
search (Ceccherini et al., 2023; Dubayah et al., 2020; Turuban-
ova et al., 2023).

2.2.2 Remote sensing images Google Earth Engine (GEE)
dataset provides rich historical images. This study obtained
Landsat 8 and Sentinel-2 images for the entire year of 2019
based on the GEE platform, and completed cloud removal and
fusion to obtain two images of the Dabie Mountains in 2019,
respectively.

2.2.3 Auxiliary data In order to remove non forest areas
from the study area, we used the 2020 global 30m land-cover
map publicly released by Zhang et al. (2021).

3. Methodology

Figure 2. Framework of the research methodology.

3.1 Overall workflow

In this study, we employed Landsat 8 and Sentinel-2 images as
training data for feature extraction and prediction. GEDI data
was used as reference data to extract canopy height information.

In order to compare the performance of different data sources
on the same model, Landsat 8 and Sentinel-2 images were
used to construct CHMs based on RF, respectively. In order
to compare the performance of different models on the same
data source, we leverage the FCN model generated by Lang
et al. (2023) to conduct a canopy height prediction focused on
the Dabie Mountains region, which was compared with our RF
model. During the construction of the FCN model by Lang
et al. (2023), five separate models were trained with different
weights. Then the resulting five models are then strategically
fused to obtain an optimal outcome. Furthermore, we fine-
tuned the FCN model by retraining with Sentinel-2 data and
GEDI data from the Dabie Mountains region.

Upon acquiring the CHMs, we conducted precision evaluations
and comparative analyses of the final predictions using GEDI
data as validation datasets.
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To ease reading, the CHMs based on RF with Landsat 8 or
Sentinel-2 as input are referred to as L8RF or S2RF, respect-
ively. The CHM based on the FCN model with Sentinel-2 as
input was referred to as S2FCN-5 and the CHM based on the
FCN model which has undergone retraining is referred to as
S2FCN-1. 1 and 5 represent its model trained with one or five
model weights. The framework of the research methodology is
shown in Figure 2.

3.2 Random forest

RF is a powerful machine learning algorithm widely applied in
data mining and predictive modeling. It is an ensemble learn-
ing method that predicts outcomes by constructing multiple de-
cision trees and combining their outputs (Breiman, 2001).

In this study, we chose RF as our predictive model to estimate
forest canopy height. We integrated a variety of feature vari-
ables, including nine vegetation indices and six feature com-
ponents in addition to the original bands of the remotely sensed
image. By inputting these features into the RF model, we were
able to generate comprehensive and extensive CHMs by regres-
sion prediction using canopy height data provided by GEDI and
optical image data.

3.3 Fully convolutional neural network

FCN is a deep learning model based on convolutional neural
networks (CNNs) that lacks fully connected layers and con-
sists solely of convolutional layers (Long et al., 2015). FCN
is primarily employed for image segmentation tasks, aiming to
generate pixel-level predictions for images. In semantic seg-
mentation, FCN can predict the class membership of each pixel,
thus achieving the objective of partitioning the image into dis-
tinct regions. The key advantage of FCN is its ability to handle
input images of arbitrary sizes, as convolutional operations can
be performed on inputs of any dimensions. Furthermore, FCN
can produce output maps with the same dimensions as the input
image.

In this study, FCN is applied to extract tree canopy height in-
formation from Sentinel-2 optical satellite images. The model
combines sparse height data from the GEDI spaceborne lidar
mission with Sentinel-2 satellite imagery to map the canopy
height.

4. Experiment

The main steps in constructing CHM in this study include data
preprocessing, model construction, accuracy assessment and
comparison.

4.1 Preprocessing

The preprocessing of GEDI mainly involves data screening and
conversion into rasters, while the preprocessing of remote sens-
ing image data focuses on cloud removal, fusion and feature
extraction.

4.1.1 GEDI data In order to obtain high-precision canopy
height, we filtered all GEDI data obtained in 2019. Mainly util-
izing the attributes of L2A level products (Liu et al., 2022; Po-
tapov et al., 2021), the following conditions were set:

1. Collected at night.

2. In power beam mode.
3. Sensitivity not less than 0.9.
4. Quality flag equal to 1.
5. Degrade flag equal to 0.
6. The ground elevation of the GEDI footprint location dif-

fers from the STRM elevation by less than 50 meters.

Only footprint points that meet all quality requirements will be
retained. Based on the 2020 land classification data released by
Zhang et al. (2021), remove the GEDI footprints that fall out-
side the forest. We use the 95% energy return height relative to
the ground (RH95) of the suggested result for each laser foot-
print as the canopy height obtained by GEDI (Potapov et al.,
2021).

4.1.2 Landsat 8 images We obtained Landsat 8 images
with cloud coverage less than 20% in 2019 from USGS Landsat
8 Level 2 Collection 2 at GEE, and selected 6 bands (bands 2 to
7) suitable for classification.

Cloud removal procedures were applied to each image, fol-
lowed by a fusion process utilizing the median value. Sub-
sequently, the calculation of vegetation indices, principal com-
ponents analysis (PCA), and Tasseled-Cap (T-C) transformation
were carried out to obtain 9 vegetation indices, 3 PCA com-
ponents, and 3 T-C transformation components. The vegetation
indices are shown in Table 1.

The optical bands, indices, and components form Landsat 8
were combined as input data for the RF model.

Features Describe Reference

NDVI NIR−Red
NIR+Red

Carlson and Ripley
(1997)

NDWI Green−NIR
Green+NIR

McFEETERS (1996)

EVI 2.5∗(NIR−Red)
NIR+6∗Red−7.5∗Blue+1

Dorigo et al. (2007)

SAVI (1+0.5)∗(NIR−Red)
NIR+Red+0.5

Herrmann et al.
(2010)

NBR NIR−SWIR2
NIR+SWIR2

Key and Benson
(1999)

NDMI NIR−SWIR1
NIR+SWIR1

Klemas and Smart
(1983)

RVI NIR
Red

Bannari et al. (1995)

DVI NIR−Red
Richardson et al.
(1977)

NDSI Green−SWIR1
Green+SWIR1

Salomonson and Ap-
pel (2004)

Table 1. The indices used in Landsat 8.

4.1.3 Sentinel-2 images The Sentinel-2 images are sourced
from GEE’s Harmonized Sentinel-2 MSI: MultiSpectral Instru-
ment, Level-2A dataset, which selected 12 bands other than
Band 10 and sampled them all to a resolution of 10 meters.
The image filtering, cloud removal, fusion, and calculation were
performed in the same way as above to obtain 12 bands, 9 ve-
getation indices, 3 PCA components, and 3 T-C transformation
components. Finally, Sentinel-2 was formed as the input data
for the RF model.

The FCN model requires 12 bands that are consistent with the
above as model inputs, and a Scene Classification (SCL) map
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was used for assistance. After sampling all 13 channels to a res-
olution of 10 meters on GEE, the required values for the FCN
model input were obtained through image filtering, cloud re-
moval, and fusion processing.

4.2 CHM based on RF

4.2.1 Dataset When constructing an CHM based on RF, we
used two datasets consisting of GEDI and different remote sens-
ing data. Taking GEDI and Landsat 8 as examples, we use
pyGEDI to convert preprocessed GEDI footprints into a 25m
resolution canopy height raster image, then match each canopy
height with the nearest Landsat 8 pixel and store them in a new
channel, and divide pixels with canopy height into training and
validation sets in an 8:2 ratio. The method of creating datasets
for GEDI and Sentinel-2 can be extrapolated in this way.

The canopy height data obtained from GEDI is predominantly
clustered around the median value, with limited representation
in the lower and higher ranges. This imbalance dataset could
potentially bias the model towards capturing the characteristic
features of the majority class, neglecting those of the minority
class, consequently impacting the overall predictive perform-
ance. To alleviate this problem, we resampled the training set
of the RF. The canopy height was divided into 20 categories at
intervals of 2 meters. Classes with few samples in each inter-
val were oversampled by cloning samples, while classes with
numerous samples were undersampled by randomly removing
samples. After balancing the dataset, the training set had ap-
proximately 4000 samples in each canopy height interval.

4.2.2 Train This study used scikit-learn to construct a RF
regression model. Using the canopy height obtained from
GEDI as the validation value, the optimal model is obtained by
adjusting the number of decision trees, maximum tree growth
depth, minimum sample size of leaves, and minimum sample
size of branch nodes through triple cross validation. After op-
timizing the hyperparameters, the number of decision trees in
S2RF is 280, the maximum growth depth of the tree is 470, the
minimum number of samples for leaves is 2, and the minimum
number of samples for branch nodes is 1. The number of de-
cision trees in L8RF is 270, with a maximum growth depth of
300, the minimum number of samples for leaves is 2, and the
minimum number of samples for branch nodes is 1.

4.3 CHM based on FCN

4.3.1 Dataset The FCN model studied by Lang et al. (2023)
was trained using global Sentinel-2 images in 2020, with a dif-
ferent scope and time compared to this study. Therefore, we
used GEDI and Sentinel-2 data to create the 2019 Dabie Moun-
tains dataset and retrained the model.

Unlike the RF dataset, this dataset not only includes 12 bands
and canopy heights of Sentinel-2, but also sample weights,
SCL, cloud (CLD), latitude and longitude. CLD is used for
cloud masks, and the larger the value, the greater the degree to
which the pixel is covered by clouds. We performed cloud re-
moval on Sentinel-2 in GEE, so in this study, all CLDs were
assigned 0 values.

We centered each pixel with a canopy height and cropped the
surrounding 15 × 15 sized images to obtain pixel values of 12
bands and other attributes. Then, we used a softened version of
inverse sample-frequency weighting to re-weight each sample
(Lang et al., 2023). The canopy height was divided into Kbins

at intervals of 1 meter, and the number of samples Nk in each
K bin is calculated. Formula 1 was used to calculate the weight
of samples in each K bin

qi =

√
1/Ni∑K

j=1

√
1/Nj

(1)

where, qi is the weight of the samples in K bin which k = i, K
is the total number of K bins.

We save the above attributes for each sample, divide them into
training and validation sets in an 8:2 ratio, and organize them
into H5 files, consistent with the research format of Lang et al.
(2023) and others. This way, it can be read in without making
any changes to the input part.

4.3.2 Train This model is based on the FCN architecture in
Lang et al. (2019). But in order to accelerate the deployment
speed of the model, its size was reduced by setting the number
of blocks to 8 and the number of filters for each block to 256.
The input of this model is 12 bands of Sentinel-2 and cyclic
encoded geographic coordinates, with a total of 15 channels.
Its output is the height predicted by the model and its variance,
which have the same spatial dimension as the input.

Figure 3. Change plot of the model accuracy.

We used the Dabie Mountains dataset for model training using
sparse supervision as in previous studies. Before the input data
was passed into the convolutional layer, each channel was nor-
malized to standard normal using the statistics of the training
set. The canopy height used for calibration was normalized in
the same way. The neural network was trained using the Adam
optimiser over 51,000 iterations with a batch size of 1600. The
base learning rate for model training was 0.0001, which de-
creased by a factor of 0.1 after 10,200 and 20,400 iterations,
respectively. The model accuracy changes during the training
are shown in Figure 3.

4.4 Accuracy evaluation

We used different metrics to assess the accuracy of the CHM,
including Root Mean Square Error (RMSE), Mean Absolute Er-
ror (MAE).

RMSE =

√√√√ 1

N

N∑
i=1

(yi − f(xi))2 (2)

MAE =
1

N

N∑
i=1

|yi − f(xi)| (3)
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where N represents the number of samples, yi represents the
ground truth values, and f(xi) represents the predicted values.

5. Results and analysis

5.1 Results

The estimated forest canopy height maps are shown in Figure
4. The results show that the L8RF predicts a maximum can-
opy height of 39.5 m and that the forests located in the west
and dispersed have lower canopy heights than the dense forests
in the east. The S2RF predicts higher canopy heights in the
central and eastern forests, with a maximum of 32.9 m. The
S2FCN-1 predicts higher canopy heights north and south of the
centre, with a maximum of 38.0 m. The S2FCN-5 predicts the
highest 35.6 m canopy was located in the western centre. There
was some variation in the predictions of high canopy among the
four models. Consistently, each model predicted lower canopy
heights in the eastern and western dispersed forests.

Metrics Model Value

RMSE

L8RF 6.945
S2RF 6.931

S2FCN-5 7.185
S2FCN-1 7.345

MAE

L8RF 5.650
S2RF 5.645

S2FCN-5 5.760
S2FCN-1 5.799

Table 2. Results of the accuracy assessment.

The results of the accuracy assessment of L8RF, S2RF, S2FCN-
1 and S2FCN-5 using the canopy height obtained by GEDI as
the observation are shown in Table 2, and the scatter plots are
shown in Figure 5.

The results show that S2RF has the lowest RSME and MAE of
6.931 m and 5.645 m, respectively. The predicted values of the
L8RF and S2FCN-5 correlate relatively well with the observed
values. The S2FCN-5 has an RMSE of 6.0 m in the global
experiments.

5.2 Analysis

5.2.1 Compare different data In the model based on RF,
the inputs of L8RF and S2RF come from different data sources,
but their differences in accuracy assessment metrics are less ob-
vious. The RMSE and MAE of S2RF are slightly smaller than
that of L8RF.

With more bands and higher resolution than Landsat 8,
Sentinel-2 might have been thought to be superior in canopy
height prediction. However, this was not the case in the ex-
perimental results, and its characteristics did not lead to excep-
tionally good results. It probably because the GEDI resolution
is closer to the former and RF is a pixel-based method, so the
higher match between GEDI and Landsat 8 pixels aids in accur-
ate estimation. Therefore, the close accuracy of the final L8RF
and S2RF may be the result of the interaction of several factors
such as the number of bands and resolution.

Although the accuracy of L8RF and S2RF is not much different,
the canopy height estimated by S2RF has a higher resolution.
This will be an advantage of Sentinel-2 in CHM.

(a) L8RF

(b) S2RF

(c) S2FCN-1

(d) S2FCN-5

Figure 4. Forest canopy height map of the Dabie Mountains in
2019 using different CHMs.

5.2.2 Compare different models S2RF, S2FCN-1 and
S2FCN-5 all use Sentinel-2 as the data source. Among them,
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(a) L8RF (b) S2RF

(c) S2FCN-1 (d) S2FCN-5

Figure 5. Scatter plots of predictions and GEDI observations.

S2RF has better RMSE and MAE.

S2RF is based on classical machine learning, which is pixel-
based regression. It uses input features to construct the model.
S2FCN-1 is based on deep learning and learns new features
autonomously. The better accuracy of S2RF is most likely be-
cause we input features for RF that are more relevant to can-
opy height, while FCN does not learn those important features.
This proves that the RF with reasonable features input is more
accurate in canopy height estimation than a single FCN with no
features extracted for the data source.

S2FCN-1 and S2FCN-5 use exactly the same input data for pre-
diction and the overall framework of the model is consistent,
but the results are different. The RMSE of S2FCN-5 is lower,
possibly due to the use of five FCN models weighted by the
estimated aleatoric uncertainties to estimate canopy height in
Lang et al. (2023). The result of S2FCN-5 is the fusion of the
weighted average values of five models. This processing has
been proven to help improve model accuracy. In this study,
only one model was trained to estimate canopy height, which
may result in some accuracy loss compared to combining mul-
tiple models. However, the poor accuracy of S2FCN-5 in this
study compared to the original article is due to the fact that the
data used to train S2FCN-5 came from the global Sentinel-2
imagery in 2020, whereas the inputs used for forecasting came
from the Dabie Mountains in 2019. This proves that it is best
to ensure that the data used to train the model and the data used
for prediction come from the same source.

6. Discussion

We compared the impact of various remote sensing data and
models on CHM, but there are areas that can be improved and
continued to be explored.

In model training, the accuracy of S2FCN-1, on which we gen-
erated the dataset and trained it, still requires improvement.
Despite utilizing the dataset from the Dabie Mountains for

training, the accuracy of S2FCN-1 does not surpass that of
S2FCN-5. This can be done by weighing more variants of the
FCN, etc. All four models compared in this study had poor
estimates for both low and high canopy. These issues require
further investigation.

In the comparative analysis, we used the same data source for
the construction of S2RF and S2FCN-1, but due to the differ-
ent inputs required for RF and FCN, the Sentinel-2 data had
to be preprocessed differently. In this process, we have done
as much as possible to make the operations correspond to each
other. For example, FCN assigns weights to samples by canopy
height, mitigating errors caused by imbalanced canopy heights
in the dataset, so we resampled the imbalanced dataset in the
preprocessing of constructing S2RF to reduce adverse effects.
Such an approach ensures, as far as possible, that the differ-
ences in the final results come from the different models and
not from the input data. However, the impact of input on the
results cannot be completely eliminated.

In future studies, the effects of other factors on CHM can be
explored. For example, more comparisons and analyses can
be done by incorporating multi-source remote sensing data and
time-series features in CHM. Besides, choosing the best data
and model in an experiment should not only focus on the final
results, but also consider the purpose and requirements of the
study, as well as equipment, time, and other issues. Our work
can provide comparison and reference. However, the most ap-
propriate data and model need to be judged by the researcher
on a case-by-case basis.

7. Conclusion

In this study, the contribution of multi-source remote sensing
data and methods in estimating forest canopy height was evalu-
ated and compared using the Dabie Mountains as the study site.
In the comparison of remote sensing data, there is little dif-
ference in the accuracy of CHM based on RF using Landsat 8
and Sentinel-2, although the use of the latter provides a higher
spatial resolution of the predictions. In the comparison of re-
gression models, RF is more accurate than FCN, demonstrating
that RF with reasonable feature inputs could be more accur-
ate than a complex FCN without fine-tuning or a simple FCN
model. Further improvements in accuracy could be considered
by weighing in more variants of the FCN with domain-specific
training.
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Hernandez, J., Senf, C., Häme, T., Valbuena, R., Eklundh,
L., Brovkina, O., Navrátilová, B., Novotný, J., Harris, N.,
Stolle, F., 2023. Tree canopy extent and height change in
Europe, 2001–2021, quantified using Landsat data archive. Re-
mote Sensing of Environment, 298, 113797.

Wang, S., Liu, C., Li, W., Jia, S., Yue, H., 2023. Hybrid
model for estimating forest canopy heights using fused mul-
timodal spaceborne LiDAR data and optical imagery. Interna-
tional Journal of Applied Earth Observation and Geoinforma-
tion, 122, 103431.

Zhang, X., Liu, L., Chen, X., Gao, Y., Xie, S., Mi, J., 2021.
GLC FCS30: global land-cover product with fine classification
system at 30 m using time-series Landsat imagery. Earth System
Science Data, 13(6), 2753–2776.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-297-2024 | © Author(s) 2024. CC BY 4.0 License.

 
303


	Introduction
	Study site and data
	Study site
	Data
	GEDI data
	Remote sensing images
	Auxiliary data


	Methodology
	Overall workflow
	Random forest
	Fully convolutional neural network

	Experiment
	Preprocessing
	GEDI data
	Landsat 8 images
	Sentinel-2 images

	CHM based on RF
	Dataset
	Train

	CHM based on FCN
	Dataset
	Train

	Accuracy evaluation

	Results and analysis
	Results
	Analysis
	Compare different data
	Compare different models


	Discussion
	Conclusion



