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ABSTRACT:

The extraction of roadside lampposts constitutes a significant research focus within the domain of vehicular LiDAR point cloud
object retrieval. Addressing the complexities inherent in discerning lampposts amidst convoluted vegetation in diverse roadway
settings, this study introduces an innovative, progressive technique for the individualized extraction of lampposts utilizing vehicular
LiDAR point clouds. The proposed method initiates with a bifurcation of the primary point cloud into terrestrial and aerial subsets
via the Cloth Simulation Filter (CSF) algorithm. Subsequent processes involve the extraction of distinct lamppost structures from
aerial point clouds through a methodology integrating elevation-normalized spatial partitioning and directional coverage analysis,
thereby facilitating precise lamppost localization. The culmination of this process involves the refinement of lamppost point clouds
through supervoxel clustering complemented by a non-discretization filter grounded in Principal Component Analysis (PCA). The
efficacy of this novel approach is substantiated through empirical studies employing a LiDAR dataset encompassing extensive ad-
hesive scenarios, whereupon comparative analysis with extant methodologies reveals its enhanced proficiency in isolating individual
lampposts in complex environments.

1. INTRODUCTION

The digitization of traffic infrastructure emerges as a founda-
tional element in the establishment of a comprehensive, inter-
connected, scenario-encompassing, and intelligent urban traffic
system, with streetlights being a vital component. Their role in
intelligent traffic systems underscores the necessity for swift ac-
quisition of streetlight attribute information, a critical demand
in the evolution of urban traffic systems towards smart and di-
gital modalities (Yu et al., 2014, Wu et al., 2016, Vaaja et al.,
2015).

The acquisition of streetlight data predominantly employs
methodologies like manual measurement, 3D photogrammetry,
and LiDAR (Light Detection And Ranging) scanning(Wang,
2013, Qin and Gruen, 2021) However, manual measurements,
hindered by safety and efficiency concerns, are progressively
diminishing in use. Photogrammetry, which relies on semi-
automated interpretation of remote sensing imagery to extract
three-dimensional geographic information of road elements, of-
fers enhanced efficiency but is constrained by external factors,
such as lighting conditions. In contrast, 3D LiDAR technology,
characterized by its high-frequency, rapid laser scanning cap-
abilities, captures extensive, high-resolution 3D data in a non-
invasive manner, thus standing out as a preferred approach for
rapid urban road data acquisition. Specifically, Mobile Laser
Scanning (MLS), a specialized LiDAR variant, demonstrates
exceptional efficiency, accuracy, and resilience to interference,
and is increasingly recognized as a crucial tool for urban road
data collection. Nonetheless, the intricate urban road environ-
ment, particularly the frequent overlapping of streetlights with
nearby vegetation, poses significant challenges in their identi-
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fication and extraction. Consequently, refining methods for ac-
curate and comprehensive extraction of streetlight point clouds
from MLS data remains an imperative research focus.

Recent research trends in MLS-based streetlight extraction
have diversified, predominantly categorizing into model-based,
feature-based, and machine learning approaches. Model-based
strategies, exemplified by the dual-cylinder model, focus on
identifying streetlight poles, followed by individualized extrac-
tion of man-made pole-like structures through techniques such
as region growing(Li et al., 2016, Kang et al., 2018, Shi et al.,
2018). Despite their general effectiveness, these methods are
susceptible to interference from nearby tree trunks and demon-
strate limited accuracy in scenarios where streetlights and trees
overlap. Feature-based methods, analyzing point cloud geomet-
rical and spatial attributes, construct classification features to
facilitate individualized extraction (Yang et al., 2018, Liu et al.,
2020, Huang and You, 2016). While this approach mitigates
tree trunk interference, it encounters substantial classification
errors in scenarios of extensive streetlight-vegetation overlap,
leading to potential misidentification. Machine learning-based
methods, leveraging annotated datasets for model training, of-
fer efficient extraction capabilities(Yadav et al., 2022, Li et al.,
2018). However, the time-intensive nature of manual annota-
tion and the need for improved accuracy in complex adhesive
scenarios highlight the limitations of this approach.

Overall, current methodologies predominantly focus on extract-
ing streetlights characterized by clear spatial independence. In
scenarios of overlapping streetlights and vegetation, these tech-
niques often misidentify streetlights as other objects, incorpor-
ating extensive vegetation data in the extraction results, thereby
diminishing accuracy in complex road environments. Address-
ing this challenge, this paper introduces a progressive MLS-

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-1-2024 
ISPRS TC I Mid-term Symposium “Intelligent Sensing and Remote Sensing Application”, 13–17 May 2024, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVIII-1-2024-305-2024 | © Author(s) 2024. CC BY 4.0 License.

 
305



based method for the individualized extraction of streetlights.
Illustrated in Figure 1, the method initiates with the prepro-
cessing of original MLS point clouds through statistical and
cloth simulation filtering. It then advances to extract streetlight
poles from non-ground point clouds via elevation-normalized
spatial segmentation, voxel region growth based on convex hull
area rate change, and spatial range coverage analysis, achieving
precise streetlight localization and recognition. Ultimately, the
method, integrating supervoxel clustering and Principal Com-
ponent Analysis, accomplishes the individualized extraction of
streetlight point clouds, marking a significant advancement in
the field.

2. INDIVIDUAL STREETLIGHT EXTRACTION

2.1 Point Cloud Preprocessing

Given the operational principles of mobile laser scanning
devices, the collected MLS point clouds typically contain a sub-
stantial amount of scattered noise points. Moreover, in MLS
point clouds, ground points occupy a significant portion of stor-
age space and amalgamate points from various objects into a
single set, which complicates the individual extraction process
of streetlights. Consequently, this paper employs statistical fil-
tering and the Cloth Simulation Filter (CSF) proposed by Zhang
et al.(Zhang et al., 2016) to remove noise and ground points
from the original data.

2.2 Streetlight Localization

The typical road environment containing streetlights often in-
cludes numerous interfering objects such as street trees, build-
ings, and vehicles, making it challenging to directly extract
streetlight point clouds from the original data. To address
this, the study first utilizes spatial elevation slicing to obtain
a point cloud slice primarily comprising streetlight poles. Sub-
sequently, the pole point clouds are extracted, providing crucial
localization information for streetlights and serving as the basis
for subsequent individualized extraction.

Spatial Segmentation Based on Elevation Normalization:
Due to potential variations in road surface heights, especially in
terrains with significant undulations, using a uniform elevation
threshold for point cloud filtering may result in the omission of
many lampposts, thereby impeding accurate streetlight localiz-
ation. To counter this, the study normalizes non-ground point
clouds to a common elevation plane prior to spatial elevation
segmentation, mitigating the impact of terrain undulations on
the results. Elevation Normalization: Utilizing the ground point
clouds obtained from preprocessing, the study employs inverse
distance weighted interpolation (Formulas 1 and 2) to interpol-
ate these points and create a Digital Elevation Model (DEM).
Following this, the non-ground point clouds are subtracted from
the DEM elevation (as per Formula 3) to align them on a con-
sistent horizontal plane.

Z =

∑n

i=1
Zi
Pi∑n

i=1
1
Pi

(1)

Pi =
(
(X −Xi)

2 + (Y − Yi)
2
) q

2 (2)

Zi,deter = Zi − Zgrid (3)

Where X,Y are the coordinates of the interpolation point,
Xi, Yi are the coordinates of the neighboring points, Pi rep-
resents the weight, q is the power, i is the index of the neigh-
boring points, n is the number of neighboring points within the
search area, Zi,deter is the normalized elevation value of any
non-ground point, Zi is the original elevation value of the point,
and Zgrid is the corresponding elevation value of the DEM grid
where the point is located.

Spatial Elevation Segmentation: Identify the lowest elevation
value of the non-ground point cloud after elevation normaliz-
ation, and set an elevation threshold. As shown in Figure 1,
based on elevation filtering, spatially segment the non-ground
point cloud within the elevation range to obtain a slice point
cloud that includes the streetlight poles.

Figure 1. The workflow of elevation-normalized spatial
segmentation.

Extraction of Streetlight Poles Based on Voxel Region
Growth and Spatial Range Coverage Analysis: After acquir-
ing the slice point cloud, the next step is to extract the pole point
cloud for streetlight localization. In this study, we employed
the voxel region growth algorithm based on the rate of change
in convex hull area that we previously proposed by(Wang et
al., 2023) to extract potential candidate point cloud clusters that
may represent lampposts. However, these candidate clusters
often include many tree trunks from street trees, necessitating
further differentiation to eliminate interference. Existing stud-
ies typically distinguish between lampposts and tree trunks by
analyzing the spatial distribution characteristics of neighboring
point clouds around the lampposts, but this presupposes that the
tops of the streetlights do not overlap with surrounding vegeta-
tion. Nevertheless, in extensive adhesive scenarios, the tops of
the lights often overlap with surrounding vegetation, making it
difficult for existing methods to differentiate between the two
using traditional approaches.

To address the issue of identifying streetlight poles in extens-
ive adhesive scenarios, this paper proposes a method of spatial
orientation coverage analysis, which operates as follows:

(1) Calculate the centroid of the candidate streetlight pole point
cloud cluster. Then, use this centroid as the center of a circle
with a specified radius to perform cylindrical filtering within
the non-ground point cloud, retaining only those points that are
higher than the candidate streetlight pole point cloud cluster.

(2) As shown in Figure 4, use the specified radius to layer the
cylindrical point cloud in the XY dimension, resulting in mul-
tiple annular point clouds that exclude the top region of the pole
structure. Red arrows originating from the center divide the
point cloud into eight spatial azimuthal sectors. For each layer
of annular point clouds, calculate the coverage value for each
azimuthal sector according to Formula 4 to represent the spa-
tial coverage situation, as illustrated in Figure 2. Here, Aring

denotes the horizontal convex hull area of the annular point
cloud within the azimuthal sector range, and Asector denotes
the area of the annular sector within the azimuthal range. If
Aring ≥ Asector for the k-th annular layer in the XY dimen-
sion, it is considered to cover the j-th azimuthal sector; other-
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wise, it does not cover. After completing the azimuthal cover-
age analysis for all annular layers, use Formula 5 to calculate
the coverage value for each azimuthal sector of the entire an-
nular structure, where Csector represents the coverage value of
the annular structure in the j-th azimuthal sector.

Figure 2. Principle diagram of spatial orientation coverage
analysis: (a) Roadside trees, (b) Overlapping artificial poles.

ACk
i = { 1 if

SCH

SSector
≥ 0.70otherwise (4)

ACi =
1

n

n∑
k=1

ACk
i (5)

(3) As shown in Formula 6, if more than half of the azimuthal
sectors of the annular layers have a coverage value of 1, and the
number of such layers is more than 4, then the candidate pole
point cloud cluster is considered a streetlight pole. Specifically,
if ACj

i = 1 for more than half of the azimuthal sectors, and if
SY ≥ 2 for the number of annular layers with such a condition,
then the candidate point cloud cluster is deemed to be that of
a streetlight pole, and the process proceeds to the next step;
otherwise, it is discarded.

ACi =
1

n

n∑
k=1

ACk
i (6)

2.3 Individualized Extraction of Streetlights

The localization information of streetlights is essential for their
individualized extraction. However, in extensive adhesive scen-
arios, streetlights are often surrounded by vegetation such as
tree canopies, and using mainstream extraction methods like
graph cut or region growing could result in the inclusion of a
substantial amount of vegetation in the point cloud, thus re-
ducing the extraction accuracy. To address this issue, build-
ing upon the point cloud classification method based on super-
voxels proposed by Li et al.(Li et al., 2018), this paper intro-
duces an individualized extraction method based on supervoxel
clustering and Principal Component Analysis (PCA).

Supervoxel Clustering: As shown in Figure 3, the VCCS
(Voxel Cloud Connectivity Segmentation) method is initially
applied to the cylindrical point cloud obtained during the loc-
alization process to perform supervoxel segmentation, achiev-
ing a preliminary separation of vegetation and streetlight point

clouds. Subsequently, clustering of the supervoxel point cloud
is conducted using constraints such as Euclidean distance and
the angle between normal vectors of point clouds to mitigate the
interference of supervoxel oversegmentation on the local geo-
metric characteristics of the point clouds.

The algorithmic procedure for supervoxel clustering is as fol-
lows: (1) Select the supervoxel with the smallest distance to the

Figure 3. Flowchart of super-voxel clustering.

centroid of the cylindrical point cloud as the seed supervoxel
SVseed. (2) Search for the k nearest supervoxels to SVseed,
denoted as SV1, ..., SVk. (3) For each candidate supervoxel
SVi, i = 1, ..., k, calculate the angle with SVseed based on their
normal vectors, referred to as Anglenormal. If the angle meets
the criteria, merge SVi into the target cluster Tp, which consists
of supervoxels with similar orientation. (4) Repeat the process
until all supervoxels have been processed.

The Chinese text provided discusses the use of Principal Com-
ponent Analysis (PCA) for vertical judgment in the context of
point cloud data processing for streetlight poles. Here’s the aca-
demically styled translation in English:

Vertical Judgment Based on Principal Component Ana-
lysis: Due to the fact that the pole point clouds obtained from
the localization are typically derived from slice point clouds and
are not completely intact, it is necessary to further extract from
the clustered supervoxels.

Initially, Principal Component Analysis is employed to calcu-
late the eigenvalues of all clustered supervoxels. Each clustered
supervoxel’s linearity, planarity, and volumetric features are de-
termined based on eigenvalues according to Formula 7,8,9. The
most prominent feature corresponding to the maximum eigen-
value is then selected to represent the spatial geometric charac-
teristic of that supervoxel.Then, for all linear supervoxels, cal-
culate the distance between their centroids and the centroid of
the pole point cloud obtained from the localization on the XY
plane. If this distance is less than 0.3, and the angle between the
principal direction vector of the supervoxel and the principal
direction vector of the pole point cloud obtained from localiz-
ation is less than 15 degrees or greater than 85 degrees, then
merge it with the pole point cloud obtained from the localiza-
tion to acquire a complete point cloud of the streetlight pole.

qL =
√

λ1 −
√

λ2/
√

λ1 (7)

qP =
√

λ2 −
√

λ3/
√

λ1 (8)

qV =
√

λ3/
√

λ1 (9)

Non-discreteness Filtering Based on Principal Component
Analysis: Following the extraction of the streetlight pole, it is
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necessary to extract the non-pole parts of the streetlight point
cloud. Compared to the non-pole parts of streetlights, veget-
ation point clouds typically exhibit a random and dispersed
nature. Therefore, as shown in Figure 4, this paper employs the
non-discreteness filtering method proposed by Li et al. (Li et
al., 2022)to remove tree crowns present in the remaining planar
and volumetric supervoxels. The non-discreteness feature value
of each planar or volumetric supervoxel is calculated according
to Formula 10. If it is less than a specified threshold, the su-
pervoxel is considered to be part of the vegetation point cloud.

Figure 4. Flowchart of non-discrete filtering.

Psc(P ) = 1− 1/3
√

λ1 ∗ λ2 ∗ λ3 (10)

To further enhance the extraction precision and to mitigate the
impact of residual tree crowns remaining after non-discreteness
filtering on the final results, the supervoxel point cloud post-
filtering is subjected to stretching of the minimum bounding
rectangle, with increases in length and width by DL and DW
respectively. If the stretched bounding rectangle encompasses
the centroid of the complete pole point cloud, then the super-
voxel is considered to be part of the non-pole section of the
streetlight. Merging all supervoxels that meet the above criteria
yields the point cloud of the non-pole sections of the streetlight.

3. EXPERIMENT

3.1 Data preparation and accuracy evaluation

To validate the effectiveness of the method proposed in this pa-
per, as illustrated in Figure 5, this study employs the aforemen-
tioned MLS point cloud dataset to conduct both qualitative and
quantitative assessments of the introduced technique.

This dataset was collected using a backpack-mounted laser
scanner and represents a portion of the Shenzhen University
campus roads. It is characterized by the presence of numer-
ous streetlights entangled with surrounding vegetation within
the dataset. Consequently, this dataset effectively validates the
method’s ability to individually extract entangled man-made
pole-like objects. Table 1 displays the basic information of the
dataset.

Figure 5. Visulization of the dataset.

Count Density/m3 Road lengthm Lamp number
91,237,947 2358 403 20

Table 1. Description of datasets

In terms of quantitative analysis, this paper uses recall (Recall)
and precision (Precision) as detection evaluation metrics.
Their calculation methods are shown in Formula 11 and 12,
where TP represents true positives, FP represents false pos-
itives, and FN represents false negatives. Recall measures
completeness or quantity, while precision measures accuracy
or quality.

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

3.2 Experimental Results and Accuracy Analysis

The overall experimental process begins with preprocessing the
experimental dataset using statistical filtering and cloth filter-
ing. Subsequently, lamp post localization is achieved through
elevation-normalized spatial segmentation, voxel region grow-
ing, and spatial orientation coverage analysis. Finally, lamp
post point cloud individualization is accomplished based on the
localization information, utilizing super-voxel clustering, ver-
tical determination, and non-discrete filtering. The specific ex-
perimental results on this dataset are illustrated in Figure 6. Re-
garding algorithm parameters, the following values were used:
a neighborhood size of 30 for calculating the standard devi-
ation in statistical filtering, a standard deviation multiple of 1.0,
an interpolation grid resolution of 0.05m for DEM generation,
distance threshold for spatial segmentation, cylinder filtering
radius for spatial orientation coverage analysis, normal vector
angle threshold for super-voxel clustering, non-discrete filter-
ing threshold, and stretching length of the minimum bound-
ing rectangle. In Figure 6, the red border represents the pos-
itions of the lamp posts in this dataset, while the black dashed
border indicates lamp post extraction errors and omissions due
to localization errors. To further analyze the superiority of

Figure 6. Experimental results of lamp post individualization in
the dataset.

our method, we also selected two different and representative
lamp post individualization methods, the Rand La Net(Hu et
al., 2020) method and the method based on dual-cylinder mod-
els(Kang et al., 2018), to extract and compare the lamp posts
that overlap with the surrounding vegetation in the experimental
dataset. Figure 7 and Tables 2 present the results of lamp post
individualization for our method and the two comparative meth-
ods, along with their corresponding precision and recall rates.

As shown in Figure 7 and Tables 2, when dealing with heavily
adhesive and overlapping scenes, our method often produces
the best extraction results among the three methods, with pre-
cision and recall rates generally above 90%. When considering
missed detections, our method achieves an average precision
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Figure 7. Experimental results of lamp post individualization in the dataset.

Metrics method Index Average
1 2 3 4 5 6 7 8 9 10

3*Pr proposed 97.84 91.29 97.79 99.59 0.0 93.21 94.77 99.84 93.08 95.45 90.32
dual-cylinder 93.57 73.25 82.60 0.00 0.00 70.86 58.21 90.17 82.99 75.26 62.69

randlanet 91.36 73.28 70.96 0.00 0.00 0.00 46.22 98.40 66.79 89.14 53.62
3*Re proposed 98.94 92.24 83.71 87.75 0.00 98.70 96.35 97.80 94.39 83.51 82.95

dual-cylinder 94.85 92.02 88.03 0.00 0.00 98.64 89.69 99.82 78.89 79.00 72.10
randlanet 97.51 81.25 66.35 0.00 0.00 0.00 87.53 98.58 71.41 90.9 59.33

Table 2. The quantitative comparison of lamp post individualization results (Red indicates the best performance).
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and recall rate of over 80%. In comparison, the dual-cylinder
method and Rand La Net method both have average precision
and recall rates of around or below 70%. Therefore, it can be
concluded that the method proposed in this paper achieves su-
perior lamp post individualization results in scenarios with ex-
tensive adhesion compared to existing mainstream methods.

4. CONCLUSIONS

This paper proposes a precise segmentation method for street-
lights based on MLS point clouds. The method begins with pre-
processing the original point cloud using statistical filtering and
cloth filtering. It then proceeds to perform streetlight localiza-
tion through elevation-based spatial segmentation, voxel region
growth, and spatial coverage analysis. Finally, using the loc-
alization information, it achieves precise individualization of
streetlight point clouds through super-voxel clustering, vertical
determination based on principal component analysis, and non-
discretization filtering.

To validate the effectiveness of the proposed method, the paper
utilizes an MLS point cloud dataset containing extensive scen-
arios with heavy adhesion for experimental verification and pre-
cision analysis. The experimental results demonstrate that this
method is capable of effectively extracting streetlight targets in
scenarios with extensive adhesion. Furthermore, when com-
pared to other existing methods, the proposed method consist-
ently achieves superior results in streetlight individualization.
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