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Abstract 
 
With the rapid development of artificial intelligence, significant progress has been made in land cover classification using deep 
learning methods. However, in existing research, most studies focus more on improving classification accuracy by optimizing the 
model structure and less on mining the value of the data itself. In this paper, experiments on remote sensing multi-class land cover 
classification were conducted based on Worldview3 data, and strategies to improve classification accuracy were proposed in terms of 
sampling methods, band combination, loss function, and model optimization. Experiment results show that the proposed 
improvement strategies are effective for multi-class land cover classification, with recall, F1, and IoU improved by 29%, 17%, and 
19%, respectively. The significant improvement in classification accuracy for less-represented targets confirms that enhancing data 
richness and balance leads to greater improvement than just optimizing the model. 
 

1. Introduction 

High-resolution remote sensing images can provide rich spatial 
information, which is of great significance for remote sensing 
classification, precision agriculture, and natural resource 
supervision. In recent years, with the rapid development of 
artificial intelligence, machine learning methods represented by 
deep learning have made significant progress in the field of 
remote sensing classification (Zhou et al., 2019). Benefiting 
from the powerful learning abilities of a convolutional neural 
network (CNN), efficiency has an advantage over traditional 
methods in the case of sufficient samples (Yann et al., 2015). 
Since the first end-to-end semantic segmentation model, FCN, 
was proposed in 2015, semantic segmentation models have been 
rapidly developed in recent years. UNet (Olaf et al., 2015), 
Deeplabv3+, SegFormer, etc. have propelled the field of 
semantic segmentation into a new era of development. 
 
Leveraging the powerful learning capabilities of CNNs, it is 
possible to effectively capture contextual information and 
achieve recognition of land cover features within complex 
scenes [23]. Despite these successes, challenges remain in 
applying deep learning to multi-class target identification in 
remote sensing. First, there are large differences in scale and 
texture among different land cover types in high-resolution 
imagery (Deng et al., 2018). Second, unlike natural images, the 
background in remotely sensed images is more complex and 
tends to account for a larger proportion, leading to an imbalance 
between background and foreground information (He et al., 
2016). Third, the imbalance of inter-class samples in multi-
classification scenarios can lead to a reduction in the overall 
classification accuracy (Zheng et al., 2020). At present, in the 
research on multi-class land cover classification based on high-
resolution remote sensing data, many researchers try to solve 
the problems of scale and morphological differences through 
multi-scale feature fusion and attention mechanisms (Chen et al., 
2020). However, there is relatively less emphasis on addressing 
the issue of imbalance problems. In addition, a trend can be 
observed where most studies focus more on improving 

classification accuracy by optimizing the model structure and 
less on mining the value of the data itself. 
 
In this paper, experiments on remote sensing multi-class land 
cover classification were conducted based on Worldview3 data, 
and strategies to improve classification accuracy were proposed 
in terms of sampling methods, band combination, loss function, 
and model optimization. The purpose of our study is to verify 
that a reasonable optimization approach for training data is 
more important for remote sensing multi-classification than 
model optimization alone. 
 

 
 
Figure 1. Composition of multispectral bands and classification 

labels. 
 

2. Data 

The Worldview3 data used in this study consists of a total of 15 
scenes, each with a coverage of 1km × 1km. Each scene was 
divided into two groups according to different band 
combinations: one group consisted of three bands for true color, 
while the other group consisted of seven bands (Figure 1), 
including yellow, red edge, and two near-infrared bands in 
addition to true color, covering a wider spectral range. Five land 
cover types were manually interpreted and labeled: buildings, 
roads, trees, cultivated land, and water bodies. In this study, 14 
scenes were selected for model training and accuracy evaluation. 
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The remaining data was reserved for visual evaluation. All the 
data was cropped into slices of size 256 × 256, and the 4400 
slices of data obtained were divided into training samples. All 
data has been normalized and divided into two groups, with 70% 
and 30% used for training and validation, respectively. 
 

3. Methods 

3.1 The Baseline Model 

The UNet was proposed in 2015, and the network consists of an 
encoder and a decoder (Figure 2). The encoder includes several 
convolutional and pooling layers for fea-ture extraction. In 

order to improve computational efficiency and expand the re-
ceptive field, four downsampling operations were performed on 
the encoder part. On the other hand, the decoder is composed of 
several convolutional and up-sampling layers, which are used to 
restore the downsampled features and fuse them with same-
scale features in the encoder to extract high-level semantic fea-
tures, ultimately forming an end-to-end semantic segmentation 
network. The UNet's encoder is identical to VGG16 network, 
with the basic convolutional unit consisting of a 3 × 3 
convolutional layer and an activation layer. The specific 
architecture of UNet is as shown in Figure 2. 

 

 
 

Figure 2. The architecture of Unet 
 

3.2 The Optimized UNet 

The UNet model has the advantages of fewer parameters and a 
simpler structure, which has been widely used in computer 
vision, medicine and other fields. However, there are still many 
aspects to be improved in the resolution of land cover 
classification based on high-resolution remote sensing. 
Therefore, we propose OUnet, which has made improvements 
in the following five aspects based on UNet: First, while 
retaining more shallow spatial information, the downsampling 
operation is reduced to improve the edge accuracy of remote 
sensing land classification results. Second, depthwise separable 

convolution is used to replace ordinary convolution to further 
reduce model parameters with-out significantly reducing model 
performance. Third, an attention mechanism is introduced in the 
decoder to better integrate features at different scales. Finally, a 
Dropout layer is added to prevent overfitting of the model. 
While increasing the number of convolutions in the encoder 
effectively improves model performance, this article did not 
optimize OUnet in this aspect to facilitate better comparison 
with the baseline model. The baseline model is optimized using 
the above method to obtain OUnet, and its architecture is shown 
in Figure 3. 

 

 
 

Figure 3.  The architecture of OUNet. 
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Therefore, we propose OUnet, which has made improvements 
in the following five aspects based on UNet: First, while 
retaining more shallow spatial information, the downsampling 
operation is reduced to improve the edge accuracy of remote 
sensing land classification results. Second, depthwise separable 
convolution is used instead of common convolution to further 
degrade model parameters without significantly reducing model 
performance. Third, an attention mechanism is introduced in the 
decoder to better integrate features at different scales. Finally, a 
dropout layer is added to prevent overfitting of the model. The 
structure of the optimized OUnet model is shown in Figure 1. 
 

3.3 Evaluation Metrics 

In this paper, we use Intersection over Union (IoU), Mean 
Intersection over Union (mIoU) and F1 score as comprehensive 
evaluation indexes, while referring to precision and recall for 
evaluating classification results. The calculation formulas of 
each parameter are as follows: 
 

 IoU = tp
fp + fn + tp

                                                 (1) 
 

mIoU = 1
k+1

∑ tp
fp + fn + tp

k
i=0                                        (2) 

 
F1 = 2 / （ 1

recall
 + 1

precision
）                             (3) 

 
precision = tp

tp + fp
                                    (4) 

 
recall = tp

tp + pn
                               (5) 

 
where  k = feature class 
 tp = positive sample predicted to be positive 
 fn = positive sample predicted to be negative  
 fp = negative sample predicted to be positive 
 tn = negative sample predicted to be negative 
 
In this study, overall accuracy, recall, F1-score , and Intersection 
over Union (IoU) are employed as evaluation metrics. Two 
different loss functions—multiclass cross entropy 𝐽𝐽𝑐𝑐𝑐𝑐 and 
weighted multiclass cross entropy 𝐽𝐽𝑤𝑤𝑐𝑐𝑐𝑐  —were used for 
comparison. The formulas for these losses are as follows: 

          
𝐽𝐽𝑐𝑐𝑐𝑐 = − 1

𝑛𝑛
∑ ∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦

^
𝑖𝑖𝑖𝑖                         (6) 

 
where  n = the number of samples 
 m = number of classes 

 𝑦𝑦𝑖𝑖𝑖𝑖 = true label indicating if the i-th sample belongs to 
the j-th class 
 𝑦𝑦
^
𝑖𝑖𝑖𝑖 = the predicted probability of the i-th sample 

belonging to the j-th class 
 

𝐽𝐽𝑤𝑤𝑐𝑐𝑐𝑐 = − 1
𝑛𝑛
∑ ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦

^
𝑖𝑖𝑖𝑖                    (7) 

        
where  𝑤𝑤𝑖𝑖  = the weight of the j-th class 
  

4. Experiment and Results 

4.1 Experimental Setup 

Different data combinations, sampling methods, models, and 
loss choices may affect the classification results, and the goal of 
this study is to quantify such differences experimentally. We set 

up five experiments, as shown in Table 1. Two combinations of 
three-band true-color data and seven-band multispectral data 
were provided in the experiments. The two sampling methods 
are sequential sampling, where slices are croped along the 
image length and width in fixed steps, and balanced sampling, 
where slices are randomly generated within the image and the 
sampling balance is adjusted by limiting the proportion of each 
class in the labels. The loss function is compared using multi-
class cross-entropy (CE) or weighted multi-class cross-entropy 
(WCE).  
 

Name Model Data 

 

Sampling 

 

Loss 

 Baseline UNet Three-band sequential CE 
Opt_1 OUNet Three-band sequential CE 
Opt_2 UNet Seven-band balanced CE 
Opt_3 UNet Seven-band balanced WCE 
Opt_4 OUNet Seven-band balanced WCE 

Table 1. Experimental setup 
 

The experiment was conducted in a Windows 10 environment 
with a CPU of Gold 5218@2.3GHz (×2), 256GB of memory, 
and an NVIDIA Tesla A100 GPU. The deep learning 
framework used was TensorFlow (2.6.0). During the training 
process, the adaptive learning rate optimization algorithm was 
used as the optimizer, with an initial learning rate of 0.0001 for 
optimization. All models were trained for 80 epochs, and the 
best model among them was selected for comparison. 
 
4.2 Results of the Baseline Experiments 

In the baseline experiments, the UNet model is trained on a 
three-band dataset that was obtained using sequential sampling 
methods. Cross-entropy is used as the loss function during 
training. The validation results of the test dataset (Table 2) show 
that the classification accuracy is not high, with an mIoU of 
0.52. There are significant differences in the classification 
accuracy of various land cover types. The accuracy for farmland 
and buildings is relatively high, with IoUs both reaching above 
0.75 and F1 scores both reaching above 0.85, while the 
accuracy for roads and water bodies is poor at 0.256 and 0.218, 
respectively. From the above data, it can be inferred that the 
strategy used in the baseline experiment has limited ability to 
extract multi-class land features.  
 

Types Accuracy Recall  F1 IoU 
Buildings 0.850 0.895 0.872 0.773 

Roads 0.716 0.285 0.408 0.256 
Trees 0.755 0.685 0.718 0.560 

Farmland 0.863 0.904 0.883 0.791 
Water 0.466 0.291 0.358 0.218 

Average 0.730 0.612 0.648 0.520 
Table 2. Performance of the baseline experiments 

 
Analysis of the proportion of each land type in the samples 
shows that there is a serious imbalance in the number of samples 
in each category. The water and road samples were the least 
represented (Figure 4), which is one of the main reasons for the 
overall low classification accuracy. 
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Figure 4. The distribution of various land cover types in the 
training data. 

 

4.3 Optimization Experiments and Result Analysis  

 
Two optimizations were implemented to address the issue of 
sample im-balance. First, random sampling was used to obtain 
image slices for training, and the proportion of each class in the 
labels was adjusted to control the overall sample size. Second, a 
weighted multi-class cross-entropy loss function was used. This 
function gives samples with lower proportions of each category 
high-er loss penalties based on their actual proportions. This 
forces the model to learn more features from these types of 
samples. 
 

 
 

Figure 5. Classification results of different models. 
 

To verify the effectiveness of the proposed optimization strategy, 
five sets of comparative experiments were performed for 
validation (Table 1). Figure 5 shows the prediction results of 
different experiments. It can be seen that in the prediction results 
of the baseline experiment, water, trees, and roads, which 
account for a relatively small proportion of the data, have more 
obvious misidentifications. However, with other optimized 
solutions, this situation has improved. Figure 5 (b, c) shows that 
switching the input data to seven-band multispectral data made 
the Opt_2 group much better at classifying trees, water, and 
roads, but it was still had a significant gap with the ground truth. 

The Opt_3 group added a sample balance sampling strategy and 
a weighted information entropy loss function based on Opt_2, 
which further improved the recognition accuracy of small 
sample categories such as water and roads. This indicates that 
enhancing the richness of the input data and sample balance are 
very effective in improving the multi-class classification 
accuracy of remote sensing. The overall prediction results of 
three experimental groups, Opt_3, Opt_1, and Opt_4, are 
relatively close to the ground truth. Among them, the Opt_4 
group, which adopted all optimizing methods, performed the 
best.  
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Figure 6. Performance of baseline and improved experimental results on test data. (a) RGB, (b) Opt_4, (c) baseline, (d) GT. 
 

As shown in Table 3, the accuracy of the optimal experimental 
group is significantly better than the baseline group. The recall 
of roads and water is improved by 66% and 70%, respectively, 
and the IoU is improved by 30% and 58%, respectively. Tests on 
the whole scene image (Figure 6) also confirm the previous 
conclusions that the improved method is closer to the ground 
truth, while the baseline method has obvious misclassification 
and omission. The quantitative analysis results in Table 4 also 
confirm that the proposed improvement strategies are effective 
for multi-class classification applications, with recall, F1, and 
IoU improved by 29%, 17%, and 19%, respectively. 
 

Types Accuracy Recall F1 IoU 
Buildings 0.966 0.773 0.858 0.752 

Roads 0.569 0.947 0.710 0.551 
Trees 0.645 0.909 0.755 0.606 

Farmland 0.910 0.918 0.914 0.842 
Water 0.797 0.996 0.885 0.794 

Average 0.777 0.909 0.825 0.709 
Table 3. Performance of the Opt_4 experiment. 

 
In order to observe the impact of data imbalance on the 
classification accuracy in multi-class classification scenarios 
more carefully, we analyzed the recall rate, F1-score, and IoU 
index of the prediction results for the two least represented land 
cover types (roads and water bodies) in five sets of experiments. 
From Figure 7, it can be seen that all metrics in the baseline 
experimental group are the lowest values, while the Opt_3 
experi-mental group has better results relative to Opt_2, 
suggesting that the WCE loss function is very effective for the 
data imbalance case for multiple landcover classification. By 
observ-ing all the experimental data, it can be found that 
although the sample size of the water body category is small, its 

features are more distinguishable from the background com-
pared to roads. Roads, as a typical linear shallow feature, spatial 
information is very im-portant to improve the recognition 
accuracy, which is taken into account in the design of OUNet. 
Therefore, the road accuracy improvement in the Opt_1 group is 
very obvious. When compared with Opt_3, it has limited room 
for improvement in sample conditions compared to data 
optimization. 
 

 
 

Figure 7. Comparison table of accuracy for roads and water in 
all experiments. 

 
Name Precision Recall F1-score IoU 

Baseline 0.730 0.612 0.648 0.520 
Opt_1 0.843 0.763 0.797 0.675 
Opt_2 0.851 0.770 0.793 0.685 
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Name Precision Recall F1-score IoU 
Opt_3 0.767 0.889 0.814 0.692 
Opt_4 0.777 0.909 0.825 0.709 
Table 4. Quantitative comparison results of all groups 

 
5. Conclusion 

In this paper, the optimization method for multi-class land cover 
classification of high-resolution remote sensing imagery is 
investigated from different perspectives, such as sampling 
strategy, band combination, loss function, and model 
optimization. We propose OUnet by optimizing it in four aspects 
to effectively improve its classification ability. In a multi-
classification scenario, the balance of data and the effective 
number of samples are crucial to the classification results. The 
proposed optimization strategies for data combination, sampling 
strategy, and loss function have greater improvement in multi-
classification accuracy compared to model optimization. 
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