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Abstract 

 
Calibrating optical sensors with common targets facilitates the efficient and convenient acquisition of the sensor's internal parameters. 

In this paper, we present a new method of camera calibration utilizing a low-cost foamy cube, in a form of dice, which is based on the 

fact that arrangement of pip and cubical die surfaces is mutually orthogonal. Initially, each face and pips are identified through the 

color information on the die’s surfaces. Subsequently, the centers of pips are corrected using a circular projection model, and radial 
distortion coefficients are estimated based on centers’ one-to-one correspondences. After that, the tangent information between pairs 

of pips on orthogonal dice faces are utilized to compute vanishing points, leading to estimation of intrinsic parameters. Experimental 

results demonstrate that our method has similar effects compared to well-known checkerboard calibration method, reaching an average 

relative error of 2.43%, simplifying the calibration process in practical applications and showcasing good practicality and robustness. 
 

 

 

1. Introduction 

Camera calibration is a crucial step in many computer vision and 

robotics applications, as it compensates internal geometric errors 

and restores camera orientations in most cases. . Serving as a 

critical prelude to advanced applications ranging from 
autonomous navigation systems to augmented reality, the process 

of calibrating a camera transcends mere adjustment of optical 

variables—it embodies the harmonization of the digital eye with 

the geometrical intricacies of the physical world.  
 

Calibration methods can be broadly classified into three 

categories: target-based methods, self-calibration methods, and 

active vision-based methods (Song et al., 2013). The target-based 
calibration, the most widely used approach, relies on known 

geometric patterns. Traditional methods utilize specific 

calibration objects, such as checkerboards (Zhang, 2000), 

Concentric circle grids (Bu et al., 2021), or deltille grids (Ha et 
al., 2017). With the gradual popularization of deep learning 

technology, self-calibration methods enable automatic estimation 

of camera parameters without the need for external calibration 

equipment, significantly enhancing system flexibility and ease of 
use (Liao et al., 2023). In other hand, these methods rely on the 

accuracy and robustness of algorithms and require diverse scene 

content and motion, potentially underperforming in texture-poor 

or dynamic environments. Active vision-based methods require 
camera execute designed actions to actively encode calibration 

information (Chen et al., 2024), achieving high accuracy but 

requiring specialized hardware and precise synchronization. 

 
Despite the advances in self-calibration and active vision-based 

methods, target-based calibration remains the most reliable and 

widely adopted approach. However, the reliance on specialized 
calibration objects poses certain limitations, including flexibility 

in calibration setup and the increased cost and effort to obtain 

precise calibration targets (Luhmann et al., 2016). To address this 

issue, researchers have explored the use of common objects as 
calibration targets, such as coplanar coins (Bergamasco et al., 

2014), spheres (Roman-Rivera et al., 2022), or even human faces 

(Nasir and Rao, 2016). These common objects offer greater 

accessibility and flexibility compared to traditional calibration 
targets. 

 

To enhance the robustness of calibration methods with common 

objects while retaining their convenience of use, building upon 
the basis of our previous research (Chan et al., 2023), we propose 

a straightforward calibration method based on a low-cost cubical 

target made of light material such as foam, a die-like object. Our 

method utilizes the unique and rich texture characteristics of dice, 
including unique distribution of pips and vibrant color 

information on the six faces, along with the mutual orthogonality 

of neighborhood dice, to increase the calibration process 

robustness. Additionally, the simplicity and ubiquity of dice 
make this method highly accessible and cost-effective, reducing 

time required for set-up and troubleshooting. Users only need to 

hold the imaging sensor and collect images around the dice, 

without the need to move calibration targets or perform specific 
movement patterns.  

 

The proposed method does not require any prior professional 

knowledge, including the radius and relative distance of the pips 
on dice surface, or preset internal parameters of the camera. The 

significance of our method lies in its potential to make camera 

calibration more accessible and adaptable to various real-world 

situations, ultimately benefiting a wide range of applications that 
rely on accurate camera parameters. The rest of this paper is 

organized as follows: Section 2 presents the mathematical model 

and calibration principles based on the geometric characteristics 

of dice. Section 3 describes the experimental design to validate 
our calibration procedure, with experimental results analyzation. 

Finally, Section 4 concludes the paper and discusses future 

research directions. 
 

2. Methodology 

Figure 1 illustrates the workflow of our proposed method: 

Initially, the system identifies the dice regions from a sequence 
of images captured by the RGB sensor, which correspond to the 

pips on each dice face. Since these pips generally appear as 

ellipses in the captured images unless the dice faces are exactly 
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parallel to the image sensor plane, a circle-to-ellipse projection 

model is performed to correct the center of circles on image, and 

a distortion estimation model is employed with nine 
corresponding points. Once the distortions are corrected, the 

intrinsic parameters are computed by exploiting the geometric 

constraints provided by the mutually orthogonal faces of the dice. 

These constraints allow for the estimation of the intrinsic 
parameters based on the known geometry of the dice. 

 

 

Figure 1. Workflow of our proposed method. 

 

The innovative aspects of this method lie in its simplicity, 

flexibility, and the ability to achieve accurate camera calibration 

using common objects. By utilizing the inherent geometric 

properties of dice, the need for specialized calibration patterns or 
precise measurements is eliminated. The use of readily available 

objects, such as dice, makes the calibration process more 

accessible and practical in various settings. Furthermore, the 

incorporation of distortion correction and the exploitation of the 
orthogonality constraints of the dice faces enhance the accuracy 

and robustness of the calibration results. 

 

Our proposed method does not require any prior knowledge of 
the intrinsic parameters. The abundant geometric features and 

correspondence information from common objects, combined 

with the availability of multiple viewpoints, allows for the 

accurate calibration of camera parameters without depending on 
prior knowledge of intrinsic parameters, as the problem is well-

constrained. The subsequent sections of the paper will provide a 

more detailed explanation of each step in the proposed method, 

including the arc-supported ellipses detection for identifying dice 
regions, the radial distortion correction models, and the intrinsic 

parameters computation using vanishing points calculated by 

orthogonality constraints of dice faces. 

 

2.1 Pip detection from dice 

The HSV color model is used to detect the dice position and 

extract the pips, as it is more efficient for tracking objects with 

clear color properties under natural lighting conditions (He et al., 
2023). The images are converted from RGB to HSV color space 

using the OpenCV library, and the red background color of the 

dice is defined by a specific range in the HSV space as follows: 
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The red regions are extracted, converted to a binary mask, and 

processed using contour detection to identify the continuous red 

regions. To improve the reliability of subsequent pip detection, 
morphological dilation and erosion operations were applied to the 

red regions to remove small holes, and regions with small area 

were filtered. After that, bounding boxes were generated for each 

valid contour to localize possible red die in the image. 
 

Within each bounding box, the circular pips, which appear as 

ellipses due to perspective projection, are detected using a fast 

ellipse detection method based on arc-support line segments 
(ASLSs) (Lu et al., 2020). The region inside the bounding box is 

converted to grayscale, and Canny edge detection is applied. 

ASLSs are extracted from the edge map, and ellipses are fitted to 

the ASLS groups. The ellipses are filtered by size and aspect ratio, 
and the red die is localized to the bounding box with the most 

ellipses, each representing a pip on the die. 

 

Figure 2 shows example intermediate results of a single red dice 
segmentation and white pips detection. By leveraging color 

information and geometrical constraints, the proposed method 

robustly extracts the die and pips. 

 

 

Figure 2. Detection progress of pips on a die. (a) original 

image; (b) red area mask; (c) dice region of interest detection; 

(d) edges of localized pips on dice. 

 

2.2 Radial Distortion Correction 

After detecting the elliptical pips on each die face, they were 

associated to different planes of the cube based on their geometric 

properties and spatial relationships. Then, a one-to-one 
correspondence could be established between the same pip 

captured in different images based on the relative position of each 

face. 

 
However, due to the principle of perspective projection, the 

center of each circular pip did not coincide with the center of its 

projected ellipse, as illustrated in Figure 3. To find the 

corresponding points for radial distortion correction, the offset 
between the projected circle center and the ellipse center was 

computed using the circular projection model proposed by 

Matsuoka and Maruyama (2016). To be more specific, let 

( ), ,c c cx y z  be the center of circle in camera coordinate system, 

and the ellipse E  with center ( ),e ex y  on image coordinate 

system satisfy  

 

 T 0=v Ev ， (2) 

 

where 
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where a, b, c, d, e, m are the parameters of ellipse (which can be 
calculated by ellipse fitting with its edge points extracted above), 

and f stands for the focal length of camera. Since we do not use 

any prior knowledge of focal length,  f is initially set to zero, and 

then replaced to computed result when it is iterative optimized. 

The offset of ( ),e ex y can be computed as 
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if ( ), ,c c cx y z is unknown, it can be solved by simultaneously 

solving a system of equations constructed by Matsuoka and 

Maruyama (2016). 

 

 
Figure 3. Circular projection and the center offset on image 

plane. 

 

The corrected pip centers from multiple die faces provided point-
to-point correspondences, which were then used to estimate the 

radial distortion coefficients following the method of Li and 

Harley (2005). We implement a one-parameter division model 

(Fitzgibbon, 2001) to describe the radial distortion: 
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where  up  = undistorted pixel coordinate 

 cp  = distorted pixel coordinate 

 k  = coefficient of distortion model 

 dr  = pixel radius from cp to image center 

 

Suppose 'up  and up  be a correspondent pair in two images, their 

relationship is 

 

 T 0'u u =p Fp ， (6) 

 

where F  represents fundamental matrix of camera. By using the 

Kronecker product   to rearrange the above equation, we get: 

 

 ( ) ( )T' vec 0.u u  =p p F  (7) 

 

Let 'u u=M p p , we can write down two nonlinear equations 

with two singularity conditions 
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where  null(·) = null-space operator 

 mat(·) = matrix operator, turning vector into matrix 

 

We can get Equation (8) after finding correspondences, solving 
them will yield numerous solutions for different values of 

coefficient k. Hence, a kernel voting scheme was employed to 

determine the coefficient with the maximum likelihood. For each 

estimate, a Gaussian kernel was applied to model its contribution 
to the final coefficient. The kernel bandwidth was set adaptively 

based on the number and consistency of the point 

correspondences. The distortion coefficient with the highest 

voted confidence were selected as result for accurate radial 
distortion correction. 

 

2.3 Camera Intrinsic Parameter Estimation 

With the radial distortion coefficients estimated from the 
previous step, the distortions in the captured images could be 

corrected. This allowed for the estimation of the camera's 

intrinsic parameters by exploiting the orthogonal geometric 
constraints provided by a die. 

 

The key idea to estimate intrinsic parameters was to utilize the 

tangent information between pairs of ellipses detected on 
orthogonal dice faces, which can be intersected at vanishing 

points. As illustrated in Figure 4, under perspective projection, 

the tangent lines of two ellipses originating from orthogonal 

circles would intersect at the vanishing point corresponding to the 
direction perpendicular to both circles. In this paper, we use 

methods from Da et al. (2012) to compute the tangent lines of 

two projected circles. By identifying multiple pairs of ellipses 

with orthogonal relationships, vanishing points in mutually 

orthogonal directions could be derived. To estimate the vanishing 

points, we use least-square method to get the intersection of 

tangent line segments. Based on the principles of perspective 

projection, the positions of the vanishing points in the image were 
directly related to the camera's focal length and the principal 

point location.  
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Figure 4. Vanishing point extraction based on geometry 
features on dice planes. 

 

Specifically, the homogeneous coordinates of the vanishing 

points could be expressed as functions of the intrinsic parameters 
(Hartley and Zisserman, 2003). To explain in detail, let’s identify 

the camera matrix in a common type 
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with focal lengths xf  and 
yf , principal point ( , )x yc c , and skew 

coefficient s . Assume that we have orthogonal vanishing points 
T

1 11( , ,1)x y=p  and T

2 2 2( , ,1)x y=p in homogeneous coordinates, 

they satisfy 

 

 -T 1
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Matrix -T 1−
K K is symmetric, we can set 
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substituting M into Equation (10), we can get the following 

linear equation by expanding it 

 

 

T

111 2

121 2 1

131

221 2

231 2

33

2

2
0

1

mx x

mx y x y

mx x

my y

my y

m

  
  

+   
  +

=  
  
  +
  

      

 (12) 

 
By stacking more than six above functions, we can solve the 

coefficients in matrix M . Then, camera matrix K  can be 

computed by Cholesky factorization and matrix inversion, and 

we can get intrinsic parameters from it. 

 
The proposed method leveraged the rich geometric information 

encoded in the dice faces to establish reliable constraints for 

intrinsic parameter estimation. By combining the estimates from 

multiple dice and images, a robust solution could be obtained 
even in the presence of noise and outliers.  

 

3. Experiment 

To validate the proposed method, experiments were conducted 

using an Azure Kinect sensor (Figure 5). The Azure Kinect is a 
high-resolution RGB-D camera developed by Microsoft, which 

provides synchronized color and depth images. It was chosen as 

the experimental device due to its obvious radial distortion in raw 

images and the availability of manufacturer-provided intrinsic 

parameters, which could serve as reference values for evaluating 

the accuracy of our estimation.  

 

 
Figure 5. The Azure Kinect sensor. 

 

In our experiment, we captured a set of images containing the 

common-used die from various viewpoints and distances using 

the Azure Kinect image sensor in 2160p (3840×2160) resolution. 

The dice were placed on a flat surface, and the camera was moved 

around to capture images from different angles. To compare the 

accuracy of our method, we select the wide-used checkerboard 

calibration method (Zhang, 2000) as a reference. Since we used 
a common object for calibration, we did not employ a 

professional calibration checkerboard; instead, we used a 

calibration checkerboard printed on A4 papers in advance, which 

is the method commonly used by most people. Moreover, this 
approach is also quite common in research areas such as SLAM 

(Simultaneous Localization and Mapping). 

 

3.1 Result of radial distortion estimation 

We used multiple photos to estimate the radial distortion value, 

and different combinations of photos can produce different 

estimates, after performing kernel density estimation on these 

estimates, we can see that the peak of the distortion estimate is 
quite pronounced. The corresponding kernel density is 0.3479, 

which can reflect the radial distortion parameter relatively 

accurately, as illustrated in Figure 6. 

 

 
 

Figure 6. Estimating distortion parameter by kernel voting 
scheme. 
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Methods Radial Distortion Parameters 

Manufacture’s 
initial value 

k1=0.479, k2=-2.685, k3=1.609, 
k4=0.357, k5=-2.505, k6=1.530 

Zhang’s method k1=0.1031, k2=-0.027 

Our method k=0.0487 

Table 1. Radial distortion parameters estimated by different 

methods 

 
Due to the use of different distortion models in various 

calibration methods, we are unable to quantitatively compare our 

results with theirs, as shown in Table 1. However, as shown in 

Figure 7, our distortion correction effect is comparable to the 
checkerboard calibration method provided by Zhang, 

demonstrating the effectiveness of our approach. 

 

 
Figure 7. Undistorted images after radial distortion removal. (a) 

Zhang’s checkerboard method; (b) our method. 

 

3.2 Result of intrinsic parameters 

The estimated intrinsic parameters, including focal lengths and 

coordinate of principal point, were compared with the 

manufacturer's initial values and those obtained by Zhang’s 
method, which are tabulated in Table 2.. 

 

Estimated 

parameters 

manufacturer's 

initial values 

Zhang’s 

method 

Our 

method 

Focal 
length 

fx 1799.6 1875.6 1825.8 

fy 1799.7 1879.5 1796.0 

Principal 
Point 

cx 1911.8 1900.4 2047.8 

cy 1100.0 1095.1 1110.5 

Table 2. intrinsic parameters (focal length, principal point) 

estimated by different methods 
 

To comprehensively evaluate the performance of our method is 

estimating intrinsic parameters, we have employed relative error 

based on manufacturer’s initial values, which is computed by the 
percentage difference relative to the initial values. Specifically, 

for the estimation of focal lengths fx and fy, our method yields 

results of 1825.8 and 1796.0 with 1.45% and 0.21% relative 

errors, respectively, which are closer to the manufacturer's initial 
values compared to Zhang's method. However, it should be noted 

that there is still a significant discrepancy for the principal point 

coordinates between our estimates and the initial values, 

particularly for the cx coordinate with 7.11% relative error. In 
terms of overall precision, namely average relative error, we get 

a very close relative error compare to Zhang’s method:2.43% for 

ours and 2.42% for Zhang’s. 

 

3.3 Discussion 

Based on the data from Table 1 and Table 2, our method has 

shown a certain level of effectiveness in estimating radial 

distortion and focal length parameters. As we did not use a high-

precision calibration board for calibration, it is likely that Zhang's 

method absorbed some of the error from feature points during the 

bundle adjustment, resulting in its calibration of focal length 
being less ideal than our method. To explain the poorer 

performance obtained in the calibration of the principal point, we 

believe this may be due to our estimation of matrix K  lacking 

more constraints, as well as the relatively large residuals of some 

extracted vanishing points. This suggests that further 

improvements may be needed to more accurately determine the 

principal point coordinates, such as providing accurate initial 

value guess or offering upper and lower limitation boundaries for 

final result. 
  

4. Conclusion 

In this study, we propose a novel and straightforward calibration 

method for digital imaging sensors using a low-cost and easily 
accessible cubical target, a foamy die. By leveraging the unique 

texture features and geometric properties of dice, our method 

demonstrates robustness and flexibility in various environments 

while maintaining user-friendliness. The proposed workflow 
effectively estimates distortion parameters and intrinsic camera 

parameters without requiring prior professional knowledge or 

specific movement patterns. Experiments validate the accuracy 

and potential of our approach, with less than 1% average 
difference compared to well-known Zhang’s checkerboard 

calibration method. 

 

In future research, we will focus on enhancing the robustness and 
applicability of the proposed calibration method by handling 

more complex scenarios, integrating deep learning techniques for 

improved accuracy and efficiency, and conducting extensive 

evaluations and comparisons with state-of-the-art methods to 
facilitate wider adoption in practical applications. 
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