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Abstract

Rooftop photovoltaic is considered as a cost-effective and environmentally friendly solution to energy challenges in urban areas. To
ensure photovoltaic efficiency, it is essential to accurately estimate rooftop solar potential and deploy solar panels wisely. During
the past few years, deep learning-based estimation methods have emerged and mainly rely on inferring rooftop orientations from
aerial imagery. However, we note that rooftops often appear diversely when images are taken at different solar azimuths, and
this can lead to orientation misclassification. To address this, we propose a robust solar potential estimation framework, mainly
composed of a rooftop orientation prediction network and a bilateral solar potential estimation module. Specifically, we first classify
rooftops into five orientations, i.e., east, west, south, north towards, and flat with a semantic segmentation network. Afterward,
opposing orientations are merged to alleviate misclassification caused by variant data acquisition time. Eventually, we compute
solar potentials based on PVGIS and a weighting scheme. Experimental results on the RID dataset demonstrate the effectiveness of
our approach in improving the accuracy of solar energy estimation.

1. Introduction

The integration of renewable energy technologies is essential
for cities to move towards a low-carbon future(Liu and Lv,
2019). In urban areas, rooftop photovoltaic systems are a vi-
able solution(Gassar and Cha, 2021) to address the growing en-
ergy demands and environmental concerns. Moreover, rooftop
photovoltaic systems can efficiently use the previously unused
space in urban areas, which helps combat land scarcity issues.
Additionally, decentralized rooftop photovoltaic systems can
potentially reduce costs associated with long-distance power
transmission and electricity consumption. Identifying the spa-
tial distribution of rooftop solar potential is crucial to optim-
izing the strategic placement of photovoltaic systems within
urban settings. This information can also aid the development
of policies about renewable energy.

Determining the geographic potential of each rooftop is cru-
cial for evaluating the feasibility of rooftop photovoltaic (PV)
systems, involving accurately calculating the total solar radi-
ation that each rooftop can receive. However, this task poses
a unique challenge with distributed rooftop PV systems due
to their scattered deployment. The most significant source of
uncertainty in this assessment is the precise depiction and cal-
culation of the building rooftops(Zhang et al., 2023). Hence,
the rooftop area is a critical parameter in the evaluation pro-
cess. Four methods are used for these assessments, including
sampling statistical-based, geographic information-based, 3D
model-based, and satellite imagery-based methods, depending
on different data types.

The sampling statistics approach usually calculate one or more
relevant variables related to the sample area and then using
appropriate strategies to determine the overall available roof
area for the entire region. Wiginton et al. use census sub-
divisions (CSDs) as research units to explore the correlation
between population size and rooftop area. A subset of CSDs

(a) (b) (c) (d)

Figure 1. (a) and (c) Google satellite images. (b) Ground truth
for the roof. (d) Misclassification examples, where a west-facing

roof is incorrectly labeled as east-facing, and vice versa.

is sampled to calculate the per capita roof area, which is then
used to estimate the total roof area based on population estim-
ates(Wiginton et al., 2010). Similarly, Byrne et al. estimate
the total number of floors by calculating the average area of
each floor using statistics from the Korea Statistical Informa-
tion Service (KOSIS). Utilizing this data, they determine the
total rooftop area of Seoul, crucial for assessing solar poten-
tial(Byrne et al., 2015). Wang et al. utilize urban developed
land and residential land area data from the China Urban Stat-
istical Yearbook 2019 to determine available rooftop area for
installing distributed photovoltaic systems(Wang et al., 2021).

Although employing readily accessible national statistical data
for indirectly determining roof area can be efficacious, the ac-
curacy of this approach is constrained by data quality lim-
itations. National statistical data are typically aggregated at
the provincial level or higher, leading to potentially signific-
ant errors in estimating results at the city level. Therefore,
more detailed geographic spatial data are imperative for estim-
ating rooftop photovoltaic potential. Relying on professional
software, geographic information-based methods can directly
use existing vectorized cadastral data in various cities to cal-
culate roof area. For example, government-provided building
data(Walch et al., 2020, Wong et al., 2016) or vectorized roof
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Figure 2. The variation of roof color when photographed at
different solar azimuth angles. The first row is the Google

satellite images, and the second row depicts the corresponding
label for roof segments. (a) morning, (b) noon and (c) afternoon.

area datasets created from imagery(Zhang et al., 2022). Plat-
forms like OpenStreetMap offer global building vectors(Buffat
et al., 2018, Ni et al., 2024) and provide information on build-
ing types(Pan et al., 2022), making them valuable datasets for
researchers. However, these datasets may become outdated or
incomplete due to unpredictable update cycles. Therefore, re-
searchers should integrate multiple data sources to ensure com-
prehensive coverage of building data across the entire study
area(Buffat et al., 2018).

In recent years, researchers have explored the use of Unmanned
Aerial Vehicles (UAVs) equipped with airborne Light Detec-
tion and Ranging (LiDAR) technology to create detailed 3D
models(Lukač et al., 2014). These methods allow for the ex-
traction of the 3D structure of rooftops and facilitate the ana-
lysis of environmental impacts on solar potential. For example,
SPAN(Özdemir et al., 2023) is an open-source plugin designed
for estimating photovoltaic potential. Users can upload 3D
building data in standard formats and access detailed informa-
tion on rooftop photovoltaic estimation, including surface areas,
azimuth, tilt angles, daily global irradiation, and total photovol-
taic output. Increasing the density of input point cloud data
typically enhances the accuracy of the final results. To re-
duce data acquisition costs, some studies utilize open-source
3D models(Buffat et al., 2018, Zhu et al., 2020, Lan et al.,
2022) for analysis of solar potential, leveraging resources like
the 3D Photo-realistic Model available for Hong Kong(Ren et
al., 2022, Ren et al., 2023). Similarly, Wong et al. utilize
the DSM with a spatial resolution of 0.5 across Hong Kong,
identifying rooftop pixels by excluding ground, obstacles, shad-
ows, and steep slope pixels(Wong et al., 2016). LOD2-level
Open 3D CityGML models have also been employed to assess
the photovoltaic potential in Ludwigsburg County in southwest
Germany(Rodrı́guez et al., 2017).

Due to legal constraints or cost concerns, many cities lack pub-
licly available or comprehensive 3D building models, hinder-
ing the practical implementation of this technology. Acquiring
DSM data for an entire city via UAVs is cost-prohibitive due
to their limited range. As an alternative, satellite imagery of-
fers a more economically feasible solution owing to its broader
coverage and consistent update cycle. With the increasing spa-
tial resolution of imagery, these images are widely employed
in urban-scale rooftop availability identification, representing a

more economical option for estimating photovoltaic potential
on a large scale. Pan et al. utilized the vectorized building out-
lines of Guangzhou city from the Tianditu street map and meas-
ured the available rooftop space for different types of buildings
using Google Maps(Pan et al., 2022). Mainzer et al. employe
traditional image recognition techniques to detect partial roof
areas, such as Canny Edge detection and Hough Transforma-
tion. They enhance publicly available aerial images of Freiburg,
Germany, using histogram equalization, followed by the extrac-
tion of ridge lines. Finally, they calculate the azimuth of each
roof as part of their analysis(Mainzer et al., 2017).

While traditional or manual image recognition methods are of-
ten cumbersome, there has been a growing adoption of deep
convolutional neural networks (CNNs) in various complex
image-processing tasks, including medical image segmentation
and object detection. Recent studies indicate a rising trend
in utilizing deep learning methods to extract building outlines
from high-resolution imagery. To illustrate, the UNet architec-
ture employs symmetric up-sampling and down-sampling path-
ways, along with skip connections to connect features from dif-
ferent hierarchical levels. This design enables U-Net to adeptly
adjust to feature extraction across different scales, enhancing
the model’s capacity to recognize objects of varied sizes and
shapes, such as buildings with diverse dimensions(Huang et al.,
2019). Similarly, DeepLabV3 enhances its capability for de-
tecting and segmenting objects at different scales by employ-
ing atrous convolutional structures and spatial pyramid pooling
modules. The atrous convolutional structures utilize varying
dilation rates to extract feature information at multiple scales,
allowing for an expanded receptive field without adding para-
meters that could increase computational overhead. Zhong et al.
optimize spatial sampling strategies using prior knowledge of
land use to select training samples for training the DeepLabV3
model, allowing them to recognize buildings of different styles
in Nanjing City(Zhong et al., 2021). Additionally, DeepLabV3
offers the flexibility to utilize different pre-trained backbones to
adapt to various application scenarios and resource constraints,
enhancing its versatility. In Yan et al.’s work, the DeepLabv3+
model is pre-trained on the Visual Object Classes Challenge
and Cityscape Dataset to acquire preliminary knowledge in geo-
graphic object segmentation.Subsequent training on aerial im-
agery annotated with roof labels further enhances both the pre-
diction accuracy and training efficiency of the model(Yan et al.,
2023).

However, these studies assume that building roofs are flat. Neg-
lecting roof structures, such as roof orientation, can result in
an overestimation of solar potential, especially in mid to high-
latitude regions, where the south rooftops receive significantly
more solar radiation than the north ones. Although 3D model
data offers richer roof structure features, we are inevitably con-
fronted with the challenge of partial regions lacking LiDAR
point cloud data. To address this, Lee et al. create a data-
set annotated with roof orientations and propose a widely used
end-to-end framework for predicting roof 3D structures. They
directly infer the geometric shape and orientation of roofs from
satellite imagery, achieving an average directional error of less
than 10° in their predictions. When comparing the median
available solar installation area estimated by the two methods,
they find that this framework differs by less than ±11% com-
pared to LiDAR-based methods(Lee et al., 2019). Li et al.
point out that existing open-source datasets contain too many
categories for roof orientation. This results in uneven sample
distributions, potentially impacting the classification accuracy
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Figure 3. The flowchart of the proposed framework

of networks. Therefore, they merge 16 roof orientation categor-
ies into four and propose a multi-task learning network called
SolarNet(Li et al., 2023). The results show a significant im-
provement in the accuracy of solar potential estimation.

We observe that rooftops often exhibit diverse appearances
when images are captured at different solar azimuths, poten-
tially leading to misclassification of orientation (as depicted in
Figure 1). Specifically, the eastern rooftops exhibit enhanced
brightness with the sun in the east (Figure 2a), while the western
rooftops become more illuminated as the sun resides in the west
(Figure 2c). Variations in rooftop color due to sun position can
impact network classification accuracy. This study proposes a
robust framework to estimate solar potential. The framework
mainly comprises two modules: a rooftop orientation prediction
network and a bilateral solar potential estimation module. To
balance the data distribution, the research categorizes rooftops
into five classes, including a flat roof class and four azimuth
classes (east, south, west, and north). Initially, rooftop geomet-
ric boundaries are extracted from satellite imagery and classi-
fied using a semantic segmentation network. Subsequently, the
two directional angle classes with a 180-degree difference are
merged to reduce misclassification resulting from differences in
data acquisition times. Finally, solar potential values are calcu-
lated based on the open-source solar energy database PVGIS
and a weighted strategy.

2. Methodology

In this section, we present the pipeline of our proposed frame-
work, as shown in Figure 3. A detailed description of the se-
mantic segmentation network structure for rooftop extraction
and classification is provided first, followed by the introduction
of the weighted strategy for estimating solar radiation.

2.1 Rooftop Orientation Prediction Network

Considering the multiple scales of rooftop and the accuracy of
boundary prediction directly influences the estimation of roof
area, our framework comprises three key components: atrous
convolution, atrous spatial pyramid pooling, and an encoder-
decoder module, as depicted in Figure 4.

2.1.1 Atrous Convolution: In the task of rooftop segment-
ation, achieving a larger receptive field is crucial for improv-
ing performance, particularly due to the relatively large size
of rooftop targets. Atrous convolution expands the conven-
tional convolutional operation by introducing a dilation rate
parameter, which governs the spacing between kernel elements.
Unlike standard convolution, where kernel elements are po-
sitioned adjacent to each other, atrous convolution introduces
gaps between kernel elements, allowing for an enlarged recept-
ive field without increasing the number of parameters or the
computational burden. Given an input feature map X and a
kernel K, the atrous convolution operation is expressed as:

(X ∗K)i =

∫
k,l

Xi+rk,j+rlKk,l (1)

where i and j represent the spatial coordinates of the output
feature map. The dilation rate r influences the sampling grid
applied to the input feature map, effectively expanding the field
of view of each layer in the network. A larger dilation rate
enables the model to capture information from a broader region,
facilitating efficient processing of multi-scale features.

2.1.2 Atrous Spatial Pyramid Pooling: As a pivotal com-
ponent in semantic segmentation models, Atrous Spatial Pyr-
amid Pooling (ASPP) is designed to enhance the model’s ability
to capture multi-scale contextual information. ASPP consists of
multiple parallel convolutional branches, each utilizing atrous
convolutions with different dilation rates. These dilation rates
determine the sampling rates applied to the input feature map,
effectively expanding the receptive field of each convolutional
branch. By aggregating features from multiple scales in paral-
lel, ASPP enables the model to capture contextual information
across a range of spatial resolutions. The output Y of the ASPP
layer is obtained by concatenating the feature maps produced
by each convolutional branch, denoted as equ2:

Y = concat(X ∗Wn) (2)

Here, X represents the input feature map, while Wn refers
to the convolutional kernels associated with each branch, each
configured with a distinct dilation rate. In this study, we utilize
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Figure 4. The structure of network

ASPP with Atrous Separable Convolution, which combines the
efficiency of depthwise separable convolution with the ability
of atrous convolution to capture contextual information across
large spatial ranges. This approach significantly reduces the
computational complexity of the model while maintaining or
even improving performance. The operation consists of two
main stages: depthwise atrous convolution, where filters are ap-
plied independently to each input channel with varying dilation
rates to expand the receptive field, and pointwise convolution,
which merges spatial features across channels.

2.1.3 Encoder-decoder Module: The encoder-decoder ar-
chitecture is a widely adopted structural design in computer
vision tasks, comprising two main components: the encoder
and the decoder. The encoder is responsible for extracting
high-level features from input images, effectively compress-
ing the information into a lower-dimensional representation.
These features capture important semantic information about
the input images, such as object shapes, textures, and pat-
terns. The decoder receives the encoded features and map the
compressed features back to the original image space while
preserving as much detail as possible. In our approach, the
high-dimensional features obtained from the encoder undergo a
fourfold up-sampling through bilinear interpolation before be-
ing concatenated with the low-level features from the backbone.
Typically, low-level features contain a large number of chan-
nels, which can pose challenges during training. Therefore,
a 1 × 1 Conv layer is employed to reduce the channel count
of the low-level features. After concatenation, the features are
refined using several 3 × 3 Conv layers, followed by another
fourfold up-sampling. Through this process, the decoder per-
forms pixel-level classification, assigning labels to individual
pixels based on the information extracted by the encoder. By
leveraging the encoder’s ability to capture high-level semantic
information and the decoder’s capability to restore fine-grained
details, this design proves beneficial in preserving both global
context and local information in the reconstructed images.

2.2 Weighted Solar Radiation for Opposing Roof Orient-
ations

In the preceding section, we utilized deep neural networks to
determine the geometric shapes and types of roofs. In this sec-
tion, we estimate the solar potential of each roof to calculate
the total solar potential of the entire area. Photovoltaic Geo-
graphical Information System (PVGIS) is an open-source solar
energy database that offers solar radiation data for any loca-
tion worldwide except polar regions(Huld et al., 2012). By
inputting relevant parameters, one can obtain the correspond-
ing annual average solar radiation per unit area, denoted as Gi

(Wh/m2/year). As shown in equ3, s signifies the slope, θ rep-
resents the azimuth angle, and Llat and Llon stand for latitude

Figure 5. The classification scheme for azimuth classes

and longitude, respectively.

Gi = (si, θi, Llat, Llon) (3)

For pitched roofs, the network tends to misclassify roofs of a
specific orientation as belonging to another category that is 180°
opposite. For instance, for the same building, a west-facing
roof might be incorrectly labeled as east-facing, and vice versa.
Pitched roofs are typically symmetrical, meaning the ratio of
the roof area facing a particular orientation to the roof area fa-
cing the opposite orientation should be close to 1:1. Further-
more, in a study investigating the distribution of solar potential
in rural areas of Northern China, the authors(Sun et al., 2022)
classified rural buildings into three categories based on their ar-
chitectural characteristics: the E-W pitched roof, N-S pitched
roof, and flat roof. Inspired by their research and our assump-
tions, we assign a weighting factor for each category of orienta-
tion, denoted as α. The weighting factor αi for the i-th category
of roof is related to the category with an orientation differing by
180°. For flat roofs, the opposing category remains itself. The
final formula for calculating the total solar potential is as fol-
lows:

Etotal = αflatGflatAflat +
∑m

j=1
αjGjAj (4)

3. Experimental Result

3.1 Experimental Environment and Dataset

The RID dataset(Krapf et al., 2022) is a collection of data used
for semantic segmentation, focusing on roof identification. The
imagery used in this dataset is sourced from Google satellite im-
ages, which is known for providing high-resolution, cloud-free
images with a precision of up to 0.15 meters in certain regions.
Due to its wide availability and global coverage, Google satel-
lite images has become a popular choice for roof identification
and segmentation. The satellite images in this dataset are col-
lected from WartenBerg, a city in Germany, comprising a total
of 1880 images annotated with roof orientation. The dataset
defines 18 categories, including 16 azimuth classes, a flat roof
class with a slope defined as 0°, and a background class. The
16 azimuth classes cover a range of 22.5° for each class. In our
study, we include a total of six categories, wherein the flat roof
class and the background class remain unchanged. Moreover,
the azimuth classes are reclassified according to rooftop orient-
ation. To achieve a more balanced data distribution, the azimuth
classes are divided into four categories (North, East, South, and
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Figure 6. Relative error comparison

Network Scheme-1 Scheme-2 Scheme-3
mIoU mAcc mIoU mAcc mIoU mAcc

DeepLabV3+ 81.44 89.15 72.72 83.68 54.33 63.18
HRNet 80.69 88.75 73.41 84.29 55.8 65.94
PSPNet 80.39 88.57 72.53 82.98 52.43 60.93
UNet 79.64 87.79 72.27 83.21 51.44 60.66

Table 1. Network performance of three classification schemes on
RID dataset.

West), each spanning a range of 90 degrees. The classification
scheme for azimuth classes is illustrated in Figure 5.

We employ the mmsegmentation framework to train four net-
works commonly used for image segmentation tasks to extract
rooftop geometric shapes and predict their categories, including
DeepLabV3+(Chen et al., 2018), PSPNet(Zhao et al., 2017),
HRNet(Sun et al., 2019) and UNet(Ronneberger et al., 2015).
Among these, the first two networks utilize ResNet18 as their
backbone architecture. The dataset is partitioned into a training
set, a testing set, and a validation set with a ratio of 7:2:1.

3.2 Rooftop Prediction

3.2.1 Metrics of Roof Classification Accuracy: To assess
the accuracy of predicted roof segments and orientations, Inter-
section over Onion (IoU) and accuracy (Acc) are computed for
each category with the following equ5 and equ6, respectively:

IoU =
TP

TP + FP + FN
(5)

Acc =
TP

TP + FP
(6)

where TP, FP, and FN indicate the numbers of true positives,
false positives, and false negatives, respectively. Afterward, the
mean IoU (mIoU) and the mean accuracy (mAcc) are computed
by averaging all classes.

Network N E S W Flat
DeepLabV3+ 86.65 82.98 86.23 80.19 55.96

HRNet 86.34 82.52 85.32 79.32 54.11
PSPNet 86.41 81.37 86.03 78.48 53.5
UNet 85.83 80.91 85.08 78.57 50.98

Table 2. Class-wise IoU Metrics for Scheme 1

Network N NE E SE S SW W NW Flat
DeepLabV3+ 77.98 71.53 69.44 76.04 74.99 69.04 67.1 75.8 48.78

HRNet 78.06 75.07 71.52 76.15 74.73 67.71 66.32 76.99 51.03
PSPNet 77.67 70.59 69.48 75.31 73.93 70.42 67.33 75.39 48.89
UNet 77.97 70.15 69.28 74.41 73.58 70.16 67.61 75.41 47.76

Table 3. Class-wise IoU Metrics for Scheme 2

3.2.2 Result of Roof Classification: We evaluate the per-
formance of different network models on the test set using three
classification schemes, as depicted in Table 1. Scheme 1 corres-
ponds to the classification scheme employed in this study, while
Scheme 3 mirrors the classification scheme of the RID dataset.
In Scheme 2, the 16 azimuth classes are consolidated into 8
classes, each spanning 45 degrees. Reducing the number of
classes significantly improves classification accuracy. After re-
ducing the number of classes, the performance of all networks
increases by at least 7%, as revealed by comparing the mIoU
of Scheme 1 and Scheme 2. DeepLabV3+ shows the largest
improvement, reaching 8.72%. Furthermore, there is a signific-
ant disparity (approximately 20%) in mIoU and mAcc between
Scheme 3 and the other two classification schemes. This indic-
ates that overly detailed azimuth classes are unnecessary.

Table 2 and Table 3 respectively present the IOU of classes
other than the background class under Scheme 1 and Scheme
2. DeepLabV3+ consistently outperforms other networks in
Table 2. Except for flat roofs, the IoU of four azimuth classes
exceeds 80%. Class N has the best classification accuracy
(86.65%), with Class S coming in second with a marginal dif-
ference of only 0.42%. It is worth noting the substantial differ-
ence in classification accuracy between Classes E and W com-
pared to Classes N and S across all models. This trend is con-
sistent with observations made under Classification Scheme 2,
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(a) (b)

Figure 7. The zoomed-in results for the experimental area. (a) the type of roof segments, (b) the solar potential distribution map.

as depicted in Table 3. Using DeepLabV3+ as an example, the
IoU of Class W is 10.88% lower than that of Class N, which
may be attributed to the limited number of samples available
for Class W.

While the class SE has the second-highest number of samples
after the flat class, its IoU is still lower than that of the class N.
This indicates that, beyond the impact of data sample quantity,
the classification accuracy of roof imagery networks is notably
affected by variations in roof color. Located in the mid-latitude
region of the Northern Hemisphere, the experimental area con-
sistently experiences shading on north-facing roofs. The dis-
tinct color changes observed on the east and west sides, result-
ing from fluctuations in solar azimuth angles, pose challenges
for networks in learning stable features associated with them.

Figure 6 presents examples of roof geometry and roof category
predictions generated by four networks on the RID dataset.
Compared to DeepLabV3+, HRNet, and UNet, the predictions
of roof geometry produced by HRNet and UNet exhibit less
precise and clear borders. PSPNet shows glaring misclassifica-
tions, incorrectly categorizing certain roofs as Class N instead
of Class S. The prediction of the flat roof by HRNet contains no-
ticeable voids. It is evident that in the presence of pronounced
architectural shadows, networks struggle to recognize complete
flat roofs. This contributes to the relatively lower IoU of the flat
class compared to the azimuth angle classes.

3.3 Solar Potential Estimation

To demonstrate the effectiveness of the proposed framework in
solar potential estimation, relative error would be computed to
assess the prediction accuracy of solar potential, it is defined as:

ε =
| Epre − Egt |

Egt
(7)

in which Epre represents the predicted total solar energy poten-
tial, and Egt represents the ground truth value.

Based on the assumptions outlined in Section2.2 and a compre-
hensive analysis of the study area, in this study, parameters for
the flat category are set with both s and θ values at 0, and α is
set to 1. For azimuth categories, s is set to 35 degrees, and θj
is defined as the central azimuth angle value for each category.

Figure 8. Comparison of relative errors

When lacking additional known geographical priors, the value
of αj is determined as follows:

αj = 0.5 +
Gjop

2Gj
(8)

where Gjop represents the roof class that differs by 180° from
the central azimuth of the j-th roof category.

The relative error between the total solar radiation values and
the ground truth for the test area is computed, as depicted in Fig-
ure 8. The weighted relative error εw for Scheme 1 is 0.1450%,
which represents a reduction of nearly 60% compared to the
unweighted error ε. To mitigate the influence of errors in the
flat category, we compute the relative error ε′ and ε′w for azi-
muth categories, resulting in a reduction to one-seventh of the
unweighted results. Similarly, in the experiments of Scheme 2,
the relative error of the orientation categories decreases by ap-
proximately 50%. These findings underscore the efficacy of
our methodology. The total solar potential value of the ex-
perimental area’s rooftops amounts to 12.49 GWh/year. The
predicted rooftop categories and solar potential distribution are
mapped, as illustrated in Figure 7.

4. Discussion

In this study, we propose a solar potential prediction framework
that considers roof orientation. Since roofs of different orienta-
tions receive varying amounts of solar radiation, finer categor-
ization of orientations is more advantageous for solar potential
estimation. However, this must be established on the basis of
sufficiently reliable network classification accuracy. Our exper-
iments indicate that an excessive number of categories can lead
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(a)

(b)

Figure 9. Examples of network prediction results for Scheme 2 and Scheme 1. (a) In Scheme 2, the azimuth angles of the two
buildings circled in yellow appear similar, but their categories differ, as do those of B1, B2, and B3. (b) Under Scheme 1, all rooftop

segments are correctly classified by four networks.

to lower classification accuracy. When the classification accur-
acy is relatively reliable (as observed in the results of Scheme
2), we observe that some roof predictions mix two categories,
and these orientations are adjacent.

In Figure 9a, the UNet model mixes categories W and NE for
the SW roof and the E roof of B3, respectively. It is observed
that the orientations of these three buildings are nearly identical.
As the azimuth angles of these roofs fall close to the threshold
value, they are classified into different categories. However,
this may prompt questions as to why they are not grouped un-
der the same orientation. Simplifying the categorization of roof
orientations into N, E, S, W not only streamlines the process but
also reduces annotation and validation complexity compared to
using 8 orientations. Therefore, we advocate for categorizing
orientations into 4 groups. Unfortunately, the detection of some
flat roofs is hindered by shadows cast by buildings. This issue
is receiving increased attention in our ongoing research efforts.

We propose a weighted strategy based on the assumption of
symmetry in pitched roofs. This strategy does not impose re-
strictions on the number of roof orientation categories. Instead,
it only requires adherence to the condition of opposing orient-
ations. We primarily focus on conventional pitched roofs and
overlook irregular buildings or mixed-use zones. For broader
applicability, we will apply our framework to other datasets
in the future. For example, the DeepRoof dataset, which fea-
tures more complex roof configurations, and urban datasets
with clustered building heights. Variations in weather condi-
tions significantly impact solar irradiance, but we directly util-
ize annual average solar radiation data obtained from PVGIS. In
future work, we plan to incorporate dynamic factors to account
for daily weather variations or seasonal effects.

5. Conclusion

In this study, we observe that rooftops exhibit diverse appear-
ances when captured from different solar azimuth angles, po-
tentially leading to misclassification of their orientation. To ad-
dress this challenge, we propose a novel solar potential estima-

tion framework that considers various roof orientations. Lever-
aging our rooftop orientation prediction network, we achieve
remarkable accuracy in determining the orientation of rooftops.
By applying a weighting scheme, we effectively mitigate re-
lative errors in the calculation of solar potential values. Ex-
perimental validation corroborates the effectiveness of our ap-
proach, demonstrating a significant enhancement in the accur-
acy of solar energy estimation.

Looking ahead, our future work will focus on expanding the
scope of our analysis to encompass irregular and composite
buildings. Additionally, we plan to integrate dynamic factors
to better account for the impact of weather changes on solar po-
tential, thereby further refining the precision and robustness of
our methodology.
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