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Abstract 

Light Detection and Ranging (LIDAR) is widely acknowledged as a robust tool for monitoring forest structure, dynamics, and changes. 

To achieve a high-complete forest structural model, LiDAR data acquisition from both aerial (above-canopy) and terrestrial (below-

canopy) platforms is commonplace. Consequently, in such multi-modal LiDAR cases, robust data registration is required for accurate 

forest analysis, such as biomass and canopy growth. Yet, multi-modal LiDAR registration remains a significant challenge due to 

differences in observation perspectives, deficient data overlap, and often inhomogeneity in point distributions and densities. The 

challenge increases in complex forest environments due to the abundance of unstable features (e.g., leaves) and occlusions. Thus, the 

dynamic nature of forest scenes needs to be considered when applying registration methods on forest point clouds. In this paper, we 

overview the latest advancements in registering forest point clouds from multi-modal data acquisitions, aiming to discuss the strengths 

and weaknesses of the most used LiDAR registration methods for forest applications. To support our investigations, we benchmark 

two multi-modal registration methods especially designed for forest mapping against traditional global and feature-based approaches. 

Experiment assessments were conducted using two point clouds acquired from a permanent laser scanning and airborne laser scanning 

systems at a boreal forest plot. 

 

1. Introduction 

Point cloud registration is widely known as a method of applying 

a rigid transformation to align two or more point clouds acquired 

from different positions, platforms or times (Vosselman and 

Maas, 2010), particularly when direct georeferencing is either not 

possible or unsuccessful. As an essential step in many LiDAR 

applications, the photogrammetry and computer vision 

communities have a long tradition of developing methods for 

point cloud registration that do not require artificial reference 

targets (e.g., spheres) placed on the mapped area. These include 

LiDAR data registration between point clouds acquired from 

multiple perspectives, multi-temporal instances, and/or varied 

modalities or platforms, such as airborne laser scanning (ALS) 

combined with terrestrial laser scanning (TLS) or ground-based 

mobile laser scanning (MLS). 

Over the last five years, significant efforts have been made to 

review and benchmark LiDAR point cloud registration methods 

(Cheng et al., 2018; Dong et al., 2020; Zhang et al., 2020; Huang 

et al., 2021; Si et al., 2022; Monji-Azad et al., 2023; Huang et al., 

2023), particularly with the rapid development in learning 

approaches. For instance, Cheng et al. (2018) reviewed the main 

feature-based coarse and fine registration methods applied for 

LiDAR point clouds. These authors emphasised the need to 

assess the sensitivity, robustness, and accuracy of these methods 

across diverse and complex data environments. In this direction, 

Dong et al. (2020) provided a TLS benchmark dataset from 11 

different environments, including complex scenarios such as 

forests. These authors highlighted the improved performance of 

learning-based methods for solving TLS point cloud registration 

problems, especially in small-scale indoor point cloud 

registration (Dong et al., 2020). However, as future direction, 

they also point out the need for further developments regarding 

outdoor and irregular LiDAR point clouds. Still according to 

Dong et al. (2020), the dynamics of the scene and changes over 

time need to be considered when applying registration methods, 

which significantly intensifies the challenge of aligning two point 

cloud datasets. Zhang et al. (2020) and Monji-Azad et al. (2023) 

conducted reviews of learning-based 3D point cloud registration 

methods, highlighting that feature extraction and matching 

remain challenging in scenes lacking stable features and prior 

information, such as in GNSS-denied environments. Thus, a 

common remark among these reviews is that developing 

generalized registration methods for complex environments (e.g. 

dynamic objects, unstructured, GNSS-denied) still poses a 

significant challenge (Si et al., 2022).  

Most LiDAR point cloud registration methods were not 

developed or assessed in complex environments with unstable 

features. For instance, forest and agricultural areas pose greater 

challenges for point cloud registration due to the intricacy and 

unstable nature of their features (Castanheiro et al., 2023) and the 

lack of external information. Most forest point clouds have 

multiple pulse echoes returned from leaves and underground 

vegetation. As a result, LiDAR point clouds obtained from 

forests often exhibit increased noise level. External information, 

such as sensor pose from GNSS positioning solutions, can 

significantly assist in feature selection and outlier removal. 

However, under canopy, GNSS signal is typically weak or even 

absent over substantial periods of time, hampering 

implementation of automated tools. For instance, TLS and MLS 

forest point clouds are typically acquired in a local coordinate 

system to avoid disparities resulting from poor GNSS 

circumstances. Transforming such data into a georeferenced 

system requires additional effort. 

The challenge becomes more pronounced when conducting 

multi-modal point cloud registration, as the scene is scanned from 

different perspectives and often with inhomogeneous point 

distributions (Lin et al., 2022). Wide-baseline observations often 

suffer from deficient overlap between observations and self-

similar structures, such as tree stems. These factors can lead to 

matching ambiguities during registration. Therefore, current 

multi-modal point cloud registration usually necessitates 

substantial interactive effort.  

Here, we aim to provide a better understanding of the strengths 

and weaknesses of the most used LiDAR registration methods for 

forest point cloud registration to decrease uncertainties in 

modelling tree structure. Laser scanning technology is well 
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acknowledged as a robust tool for monitoring forests. LiDAR 

datasets enable 3D data collection and representation of tree 

structures due to the penetrability of the laser beam through the 

canopy. A high-complexity forest structural model requires 

LiDAR data acquisitions from aerial (above-canopy) and 

terrestrial (below-canopy) platforms. Such integration of 

multiple data acquisition geometries can be beneficial for 

complex forest analyses, such as aboveground biomass 

estimation and canopy space occupation. Therefore, we focus 

particularly on the registration of forest point clouds at plot level 

acquired with multi-modal means (e.g., ALS-TLS and ALS-

MLS).  

We review the latest advancements in registering multi-modal 

forest point clouds (Hauglin et al., 2014; Polewski et al., 2016; 

Polewski et al., 2019; Guan et al., 2020; Dai et al., 2019; Liu et 

al., 2021; Hyyppä et al., 2021; Shao et al., 2022; Dai et al., 2022; 

Pohjavirta et al., 2022; Huang et al., 2023; Chen et al.,2024; 

Ghorbani et al., 2024), with an aim of investigate the future 

directions of global, feature-based or deep-learning registration 

methods for forest applications. To support our discussion, we 

benchmark multi-modal registration methods, especially design 

for forest mapping (Hyyppä et al., 2021; Pohjavirta et al., 2022) 

against traditional global (iterative closest point - ICP, normal 

distribution transform - NDT, coherent point drift - CPD) and 

feature-based (signature of histogram of orientations - SHOT and 

fast point feature histogram - FPFH) registration approaches, 

using two point clouds acquired with permanent laser scanning 

(PLS) and ALS-helicopter systems.  

2. Multi-modal Forest Point Cloud Registration: Review 

Overall, the majority of registration methods utilize a coarse-to-

fine strategy. Coarse registration algorithms, such as feature-

based or global methods, aim to estimate the three orientations 

and three translation parameters (6 degrees of freedom - DoF) 

between one point cloud and another (Cheng et al., 2018). This 

is accomplished, for instance, by identifying common features 

(e.g., points, lines, planes) or point-to-point distance between 

nearest neighbours (e.g. ICP method) in the point clouds, which 

are then used to estimate the 6 DoF parameter transformation 

(Mikhail, 1976). In this review, we focus specifically on 

describing extracted features, matching approaches, and 

registration accuracy achieved by particular point cloud 

registration methods designed specifically for forest applications. 

Multi-modal point cloud feature detection and matching, 

especially for forest applications, need to be robust against 

rotation, scale, point cloud density, partial occlusions and 

unstable features (outliers). As previously mentioned, due to the 

abundance of unstable features in complex forest environments, 

automatic point-level registration based on 3D keypoints often 

fails (Castanheiro et al., 2023). As a potential solution to address 

this challenge, previous works suggested the removal of dynamic 

objects (e.g. leaves), focusing on aligning two or more LiDAR 

datasets based on elementary forest structures, such as tree stem 

location (Liang and Hyyppä, 2013; Hyyppä, 2021, Ghorbani et 

al., 2024), ground points and canopy height (Liu et al., 2017) and 

shape (Dai et al., 2019; Shao et al., 2022).  

Stems location is the most explored feature for forest point cloud 

registration. Tree stems as features for feature-based matching 

and forest point cloud registration were initially introduced to 

register LiDAR point clouds obtained from the same platform but 

at different locations and times (Liang and Hyyppä 2013). 

Approaches utilizing stem locations as features for multi-modal 

feature-based matching and registration were proposed by 

Hauglin et al. (2014), Polewski et al. (2016), Polewski et al. 

(2019), Guan et al.(2020), Hyyppä et al. (2021) and Ghorbani et 

al. (2024). 

Hauglin et al. (2014) proposed a TLS-ALS point cloud co-

registration by using individual tree positions (planimetric 

coordinates) and tree relative size (e.g. using diameter at the 

breast height - DBH and height) detected on both ALS and TLS 

data. In this study, both ALS and TLS datasets were 

georeferenced, or rather, external GNSS information was 

expected as an initial input. Considering a stem position detected 

in a TLS point cloud, a circular search area is defined to find the 

best match in a corresponding ALS-derived tree map. The search 

space are defined according to the expected error in the initial 

estimated position. The best match is obtained considering the 

minimum distance between stems and the closest match with 

estimated relative tree size. Tree size proved important as TLS 

detects small trees frequently occluded in ALS point clouds. 

Hence, the smallest TLS-detected trees can be discarded, as 

finding a match among ALS-detected trees for these small trees 

is unlikely. After TLS-ALS stem detection and matching, a least-

squares method to estimate the optimal translation and rotation 

matrix between two equally sized 2D stem datasets was applied. 

The method was evaluated in a boreal forest, achieving co-

registered positioning accuracy between 0.5 and 1 m. These 

authors highlight the need for robust methods to identify and 

handle erroneous stem matches. 

Aiming to improve stem matching, Polewski et al. (2016) 

introduced a similarity stem descriptor designed based on the 

planimetric and vertical distances between the target stem and 

other stem centres. This approach requires the ALS point cloud 

in a georeferenced coordinate system and the terrestrial point 

cloud in a local coordinate system, both with preserved object 

scale, as inputs. Considering that planimetric and vertical 

distances between trees are used as stem descriptors, TLS and 

ALS point clouds required same Z orientation. Tree stem 

orientations (principal axis) in TLS point clouds were computed 

to ensure alignment with the ALS reference plane. The 

similarities between all pairs of descriptors from the terrestrial-

aerial point clouds are computed. Subsequently standard graph 

maximum matching technique is then employed to determine 

corresponding stem pairs. Finally, the matched stem positions are 

used to estimate the rigid transformation parameters that map the 

terrestrial point cloud to the ALS georeference. This method was 

evaluated by registering terrestrial photogrammetric and ALS 

point clouds acquired in the silvicultural stands of Douglas-fir 

and vine maple. An average 2D position accuracy of 66 cm was 

achieved, in which, according to the authors, ALS tree center 

estimation was the main source of error affecting the registration 

results. The registration average accuracy obtained by Polewski 

et al. (2016) aligns with the results reported by Hauglin et al. 

(2014). However, this method represents an advancement from 

Hauglin et al. (2014) as it does not require initial external 

information for the terrestrial point cloud or additional tree 

attributes, such as tree height or DBH). Previous registration 

methods between terrestrial and aerial datasets, which also rely 

on georeferenced tree locations, for instance, obtained from 

GNSS positioning, were presented by Lindberg et al. (2012) and 

Paris et al. (2017). Recent works have also explored combining 

tree location and parameters, such as DBH, as features for MLS-

ALS stem matches, as demonstrated by Olofsson and Holmgren 

(2022). 

Polewski et al. (2019) enhanced the approach originally 

presented by Polewski et al. (2016) by introducing a scale term 

into the 2D registration transformation and employing a weighted 

bipartite graph for stem descriptor matching. This method was 

evaluated by registering a terrestrial MLS point cloud acquired 
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with a backpack system with an unmanned aerial vehicle (UAV) 

point cloud. The dataset was collected in planted temperate forest 

plots (Jiangsu, China), featuring both coniferous and broadleaf 

trees. These authors discuss that predominant broadleaf plots can 

be more challenging than coniferous ones. For instance, more 

matched trees were obtained in coniferous plots, resulting in 

higher registration position accuracy (27–36 cm) compared to 

that achieved in broadleaf plots (54–67 cm).  

Hyyppä et al. (2021) proposed a 2D coarse registration method 

for forest point clouds using translation- and rotation-invariant 

local descriptors computed based on tree locations. The feature 

descriptors for each of the trees describe the relative locations of 

the neighbouring objects. The descriptors are constructed as 

follows: first, by detecting the closest neighbouring tree within 

the same point cloud. Subsequently, the tree's neighbourhood (xy 

plane around the tree) within a certain radius (e.g. 10 m) is 

divided into four quadrants. The descriptor comprises the closest 

neighbouring tree in each quadrant and the angle between them. 

Utilizing the distances and angles between the closest trees in 

each quadrant, the rotation- and translation-invariant feature 

descriptor is generated. Note that in this method, it is also 

expected that the Z axes of both point clouds (e.g. TLS and ALS) 

are approximately in the same direction. Feature descriptors from 

both terrestrial and aerial point clouds are compared using the 

Euclidean distance in the feature space as the similarity criterion. 

Once matched, an optimal rigid-body 2D transformation between 

the two point clouds is estimated. The authors aim to enhance the 

approach presented by Polewski et al. (2019) in terms of 

computational time (quadratic time complexity). Therefore, the 

proposed feature descriptor vector relies only on the immediate 

local neighbourhood of each tree, rather than the entire plot as 

designed by Polewski et al. (2019). The method was evaluated 

using simulated and real datasets acquired in a boreal forest 

scenario. Tree stems and crown tops were utilized as objects to 

construct the descriptors, and the matching was assessed between 

stems (TLSstem-to-ALSstems) and between stems and tops 

(TLSstem-to-ALStop). It is important to highlight that despite the 

method being evaluated using tree locations as objects, it is not 

limited to only those features. Additional tree attributes can be 

incorporated into the proposed feature descriptor. An overall root 

means square error (RMSE) of 28.6 cm was achieved for the 

matching tree pairs using the stem-to-top method, while the 

corresponding RMSE for the stem-to-stem method was below 10 

cm post-registration. The simulated dataset study demonstrates 

that the method reliably performs in the presence of moderate tree 

location errors but exhibits sensitivity to tree omission. Results 

deteriorate when more than 10% of the trees are missing. The 

authors also emphasize the need for additional tests to evaluate 

the effectiveness of the proposed registration method in more 

complex forests. These may include scenarios involving a large 

number of young trees, often occluded in ALS data acquisition, 

or a significant proportion of broadleaved trees that may intensify 

the challenge of tree matching, as reported by Polewski et al. 

(2019).  

The mentioned previous works assume equal Z axes orientation 

in both coordinate systems, focusing on calculating in-plane 

rotation angle and 2D translation based on feature descriptors 

generated from tree position information and its surrounds. 

Therefore, oblique TLS point clouds (e.g., Campos et al., 2021) 

or terrestrial photogrammetric point clouds require prior Z 

orientation estimation based, for example, on the stem direction 

and a digital terrain model (DTM). Additionally, these works also 

assume that individual tree locations were identified using 

previously developed stem detection algorithms. Thus a key 

assumption is that both captured scenes contain sufficiently 

common trees, and that the densities of both point clouds are high 

enough to reliably extract tree stems or crown tops.  

Guan et al. (2020) and Ghorbani et al. (2024) proposed a TLS-

ALS registration based on 3D tree location (X, Y, Z), in which 

initial Z orientation estimation is not needed (3D rigid 

transformation). Guan et al. (2020) introduced a triangulated 

irregular network (TIN) matching approach, in which the 

framework's input is the pre-extracting individual tree positions. 

Subsequently, a TIN is generated for each tree, considering its 

position and the locations of the neighbouring trees. The 

neighbouring tree locations, found using the k-nearest neighbour 

search method, are then input for a Delaunay triangulation. As 

performed by Polewski et al. (2019) and Hyyppä et al. (2021), 

the goal was to identify a spatial pattern of tree distributions for 

each tree. The TIN matching is conducted using a voting strategy, 

which counts the number of similar triangles between two TINs 

and iteratively finds the best match. The individual TIN pattern 

of each tree is highly sensitive to tree neighbourhood omissions, 

which can result in insufficient number of matches or false 

positives. Thus, robust tree detection is needed. To minimize the 

false positives, matched tree pairs are further filtered and 

optimized by the RANSAC algorithm. The selected matched tree 

locations are used to estimate 3D rigid body transformation 

parameters. Further improvements are achieved by applying the 

ICP algorithm in a fine-registration step. The method is assessed 

in three plots acquired at a coniferous dominant planted forest 

achieving an average MLS (backpack system)-UAV point cloud 

registration accuracy of 30 cm in planimetry and 20 cm in 

altimetry 

Similarly, Ghorbani et al. (2024) introduced a method for 

registering TLS and ALS forest point clouds, also relying on 3D 

individual tree location correspondence and a 3D body rigid 

transformation. However, the authors aim to advance by reducing 

the reliance on the accuracy and completeness of individual tree 

locations during point cloud registration, addressing a limitation 

highlighted by Polewski et al. (2016), Guan et al. (2020) and 

Hyyppä et al. (2021). In this regard, a filtering approach is 

introduced to remove positions unlikely to have corresponding 

matches between TLS and ALS datasets (e.g. suppressed trees). 

Locations of small tree detected in the TLS data are removed 

from the dataset according to DBH information, specially 

targeting larger trees in the TLS data. The filtered tree locations 

from both TLS and ALS datasets serve as input for the proposed 

algorithm. As an initial step, a search space in the ALS data is 

defined by using a local neighbourhood triangulation (TIN), 

similar to that proposed by Guan et al. (2020). The matching 

between TLS-ALS stem locations is performed by correlating a 

set of three distances between stems in the ALS data with the 

distance constraints observed in the TLS data. The matching 

process is iterative, in which the accuracy of the registration 

performed with the selected set of matches is used as criteria. The 

method was assessed using six plots collected in Vienna Austria. 

A registration accuracy of 55 cm was obtained in the best 

scenario, not exceeding 1 m in all other plots. Comparative 

analysis with Hyyppä et al. (2021), showed improved registration 

accuracy at the expense of increased computational time and 

additional tree information (DBH). 

As UAV technology advances, high-density above-canopy point 

clouds with visible tree stems are increasingly common. Those 

methods based on stem location have proved to be a consistent 

solution for a combination of ground (TLS or MLS) and aerial 

(UAV, ALS) data acquisition on temperate and boreal forests, 

especially coniferous dominant ones. However, none of these 

methods have been evaluated in complex forest scenarios where 

stems are frequently omitted. As highlighted by Castanheiro et 
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al. (2023), tree stems may not always be visible in dense forest 

areas or specific agricultural environments (e.g. orange fields). 

Consequently, there is a need for further advancements in 

feature-based and learning methods to address this limitation. 

Recent studies propose also to explore the use of additional 

features, such as ground points (Pohjavirta et al., 2022), canopy 

attributes (Liu et al., 2021; Shao et al. 2022; Zhou et al., 2023) or 

3D keypoints (Dai et al., 2022; Zhang et al., 2021 and Chen et 

al., 2024) 

Pohjavirta et al. (2022) integrated three types of features: stem 

positions, stem points, and ground points, in aiming to improve 

wide-baseline registration using a two-step registration approach. 

The objective of the study was to address the challenge of limited 

overlap between point clouds, which is a common problem, for 

instance, in the registration of terrestrial and aerial point clouds. 

The extracted feature points from tree stem and ground are used 

as input in a planar registration (2D). The shift in the Z direction 

was further determined by aligning target and reference DTMs. 

Subsequently, tree stem and ground point detection is redone and 

matches are refined for a fine-segmentation step using ICP 

algorithm. The method was assessed in boreal forest plots located 

at Evo, Finland. The proposed method achieved a 3D registration 

accuracy between TLS-UAV ranging between 7.2 and 13.6 cm, 

according to the plot complexity. 

Exploring canopy attributes, Liu et al. (2021) propose a TLS-

UAV point-cloud registration method utilizing crown centre 

position and height derived from a canopy height model (CHM). 

Point correspondences are established by considering the 

distance between two tree tops detected in the CHM and their 

height similarities. Rotation and translation between TLS-UAV 

point-clouds are then calculated through singular value 

decomposition. The point cloud registration is further refined 

using the ICP algorithm. This method was applied to alpine forest 

land, achieving a reported average accuracy of 43 cm.  

Tree crown and canopy gap shapes are used for registering TLS 

and ALS point clouds by Shao et al. (2022) and Zhou et al. 

(2023), respectively. Shao et al. (2022) propose a method for 

registering TLS and ALS forest point clouds by detecting 

keypoints in canopy shape edges for subsequent image matching. 

Initially, tree canopies are projected onto the 2D plane, followed 

by an image-processing pipeline that includes canopy alignment 

(with Z parallel to the XY plane), canopy binary image 

generation, edge detection, keypoint extraction using an 

adaptation of Harris approach (Harris and Stephens, 1988), and 

keypoint matching. The method was evaluated in a subtropical 

forest, achieving a coarse alignment accuracy of 20 cm. A final 

TLS-ALS registration accuracy of 15 cm was obtained after 

applying a fine-segmentation using the ICP algorithm. Similarly, 

Zhou et al. (2023) evaluated a TLS-ALS point clouds registration 

method utilizing canopy gap shapes. First, canopy gap 

boundaries are extracted from CHM, followed by obtaining 

feature points from the canopy gap vectors using the weighted 

effective area algorithm. Coarse registration transformation 

parameters were obtained using the CPD algorithm. The ICP 

algorithm was applied for fine registration. Meter level accuracy 

was obtained on coarse registration, which was subsequently 

significantly improved by ICP algorithm (~ 15 cm). These 

methods are stem-independent and computationally efficient, as 

they reduce 3D point clouds to 2D space. However, TLS-ALS 

different perspective and image processing threshold, such as 

binarization can affect the shape of tree crown and canopy gaps. 

As most registration methods rely on initial point cloud 

segmentation into stems and canopy, the question that remains is 

whether those features are the only viable option? Traditional 

feature-based matching, such as FPFH and BSC (Binary Shape 

Context), were explored by Zhang et al. (2021), Chen et al. 

(2024) and Dai et al. (2022). 

As an innovative combination of stem detection and classical 3D 

feature-based matching, Dai et al. (2022) proposed a TLS-UAV 

coarse registration method by semantically guiding keypoint 

detection based on previously classified point clouds of wood and 

leaves. In this approach, points classified as wood material in 

both TLS and UAV point clouds are utilized for keypoint 

detection and feature-based matching using BSC (Dong et al., 

2017). Subsequently, outliers from the initial correspondence are 

eliminated using RANSAC. The reported accuracy of 29 cm was 

achieved for UAV-TLS datasets collected in a coniferous 

dominant forest with understory vegetation in Guangxi, China.  

Zhang et al. (2021) employed FPFH method for the initial 

alignment of TLS plots and a UAV point cloud, followed by fine-

registration using the ICP algorithm and a graph-based global 

adjustment method. The initial Coarse registration using FPFH 

provided registration accuracy at the meter level (< 2 m). 

However, subsequent fine-registration and global adjustment 

steps resulted in a reported relative accuracy between TLS-UAV 

clouds around 5 cm. 

Chen et al. (2024) introduced a novel approach that combines 

hierarchical clustering and the FPFH algorithm. Initially, point 

clouds are normalized for height. Multi-layer tree maps for both 

ULS and TLS data were established by segmenting the point 

cloud into height segments and employing hierarchical clustering 

(DBSCAN). Clusters were defined based on two predetermined 

parameters: radius and minimum cluster size. Subsequently, 

FPFH features were extracted for each cluster obtained at 

different layers (height). Feature matching and transformation 

estimation were conducted using nearest-neighbour search and 

least-squares method. A transformation matrix for each cluster 

was estimated. The matrix with the best matching score is 

selected for coarse registration. ICP algorithm is subsequently 

applied for fine segmentation. Similar to Shao et al. (2022), the 

method was assessed in a subtropical humid forest ecoregion in 

southern China, achieving a RMSE in the registration accuracy 

of 15 cm. 

As final remarks, the coarse registration accuracy between aerial 

and terrestrial point clouds typically falls within the range of 10 

to 50 cm. Regarding feature-based methods, coarse registration 

approaches relying on stem locations as features have 

demonstrated robust performance in boreal forests (RMSE < 15 

cm). However, they are typically sensitive to the accuracy of tree 

position estimation and particularly susceptible to errors due to 

tree omissions. Automatically detecting young tree stems or 

partial-occluded stems due to understory vegetation is still a 

challenge. Alternatively, approaches that integrate established 

3D keypoint detection and feature descriptors (e.g., Harris, 

FPFH, and BSC) within a specified search space, such as canopy 

edges, hierarchical clusters, or wood-leaf classifications, 

achieved in overall coarse registration accuracies exceeding 20 

cm during the coarse registration step. However, those methods 

were also evaluated in more complex forest scenarios, proving to 

be a promising alternative for areas where stem information is 

not available. Regarding global-based methods, CPD and ICP 

emerge as the most applied approaches, particularly for fine-

registration. The reported results indicate the current robustness 

of global implementations, especially in ALS-TLS forest datasets 

with high overlap, highlighting the possibility of further 

exploring the use of global based registration methods in forest 

scenarios. Regarding learning methods, no specific approach 

designed for the registration of aerial and terrestrial forest point 

clouds was identified by the authors during this overview. 

According to Monji-Azad et al. (2023), deep learning-based 
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registration methods still struggle to achieve acceptable results in 

real datasets, especially in forest environments. However, deep-

learning methods have the potential to bring new perspectives 

and future advancements in point cloud registration. For 

example, they could explore more complex characteristics of 

forest components, like stems or leaves. In Section 3, we 

benchmarked feature-based and global methods, aiming to 

enhance the discussion towards these different directions.  

3. Multi-modal Forest Point Cloud Registration: 

Benchmark 

3.1 Datasets 

The benchmarking was performed using PLS and ALS point 

clouds obtained from a coniferous-dominant boreal forest 

situated at the Hyytiälä forestry field station in southern Finland 

(61°51’N, 24°17’E). The terrestrial LiDAR data was acquired by 

a PLS station, named Lidar Phenology station (LiPhe) (Campos 

et al., 2021). LiPhe was specifically designed for continuous 

monitoring of a fixed forest scene by using a time-of-flight Riegl 

VZ-2000i scanner (RIEGL Measurement Systems, Horn, 

Austria) installed at 30-meter height in an observation tower 

(Figure 1.a). The forest scene was scanned by a 1550 nm laser 

wavelength with a fine angular resolution of 0.006 degrees and a 

scan frequency of 1200 kHz. More technical details about LiPhe 

can be found at Campos et al. (2021). LiPhe point clouds were 

collected in a local coordinate system, with the scanner position 

as the origin. Since most of the methods assume equal Z axes 

orientation in both TLS and ALS coordinate systems. These point 

clouds pose a particular challenge due to their oblique point of 

view and non-uniform density across the scanned area. PLS point 

clouds were previously rectified to the ground in the same ALS 

reference plane. A 3D passive rotation (Rωφκ) was performed to 

normalize the full point cloud to the ground, in which a right-

hand system was defined with origin at the scanner and Z to up. 

Rotation parameters were ω=0°; φ= -60°and κ= -90° and 

translation parameters were (0, 0, 0) for X, Y, Z respectively. 

The ALS point cloud was acquired using the FGI HeliALS-TW 

system. The HeliALS-TW system consists of a RIEGL 

miniVUX-1UAV scanner (RIEGL Laser Measurement Systems 

GmbH, Austria) and an inertial navigation system integrated onto 

a helicopter platform (Figure 1.b). The scanner also operated at a 

wavelength of 1550 nm. The flight altitude was set at 100 m 

above the ground, with a flight speed of 50 km/h. The estimated 

ALS point cloud density is 500 pts/m2, at least 200 times less 

than LiPhe point clouds. The ALS point cloud is georeferenced 

at ETRS89/ TM35FIN. PLS and ALS point clouds were both 

acquired on April 6th, 2020, around 10 A.M. 

To estimate the registration accuracy of the benchmarked 

methods, the PLS and ALS point clouds were initially registered 

and georeferenced using control features (e.g. points and lines), 

such as spheres and building corners. Eight control features were 

manually identified in the local point cloud and measured in situ 

using RTK-GNSS positioning. The transformation parameters 

were computed in the least square adjustment. A Helmert 3D 

transformation was performed to georeference the LiPhe point 

cloud to ETRS89/ TM35FIN. The estimated transformation 

parameters and distances between LiPhe point clouds (reference 

vs. after applying each benchmarked method estimated 

transformation) were compared to evaluate the performance of 

the benchmarked methods. Figure 1 shows the top view of the 

PLS (local coordinate system) and ALS (ETRS89/ TM35FIN) 

point clouds in panels (c) and (d) respectively. The visualizations 

are colorized based on normalized LiDAR reflectance, ranging 

from 0 to 2, expressed in decibels (DB). 

 
Figure 1. (a) Permanent laser scanner system at Lidar Phenology station 
(LiPhe), (b) FGI HeliALS-TW system, (c) top view (x,y) of LiPhe point 

cloud (sample) in local coordinates and colorized normalized LiDAR 

reflectance [0,2], (d) top view (x,y) of HeliALS-TW point cloud (sample) 
in georeferenced coordinates (ETRS89/ TM35FIN) and colorized 

normalized LiDAR reflectance [0,2]. 

3.2 Methods 

Many proposed multi-modal registration methods for forest point 

clouds rely on segmenting forest features such as stems and 

canopy. To represent these registration approaches, we selected 

for this benchmark the methods developed by Hyyppä et al. 

(2021) and Pohjavirta et al. (2022) with reported registration 

accuracy superior to 20 cm. Additionally, common algorithms 

such as CPD, FPFH, and ICP were also explored in previous 

related works. Therefore, we benchmarked the multi-modal 

feature-based registration method, especially designed for forest 

(Hyyppä et al., 2021; Pohjavirta et al., 2022), against traditional 

global (ICP, NDT, CPD) and feature-based (SHOT and FPFH). 

ICP, NDT and CPD are the most used and adapted approaches in 

the literature for point cloud registration. Classified as global 

registration methods, these techniques do not rely on feature 

descriptors. ICP method (Best and McKay, 1992) is based on a 

point-to-point distance between nearest neighbours, in which the 

rotation and translation were parameterised in terms of the unit 

quaternion. This function minimizes the sum of squares of 

Euclidean distances between a set of points, leading to the 

estimation of transformation parameters between point clouds 

based on convergence criteria. Several variants of ICP, including 

plane-to-plane, have been proposed in previous works, which is 

also explored in this paper. NDT (Biber et al., 2003) consists of 

converting the point clouds into a 3D grid, represented as a 

continuously differentiable probability distribution function. 

Point cloud registration is achieved by optimizing the probability 

distributions of two point cloud datasets using the Hessian Matrix 

method. Achieving optimal results with ICP and NDT original 

algorithms typically requires an initial approximate registration 

of point clouds. Consequently, they are commonly utilized in the 

fine-registration step. CPD (Myronenko and Song, 2010) 

consider point cloud registration as a probability density 

estimation task. In this framework, one point cloud represents the 

centroids of a Gaussian Mixture Model (GMM), while the other 

represents the data points. Correspondences are determined by 

maximizing the GMM posterior probability for each data point. 

Consequently, CPD ensures that GMM centroids move 
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collectively as a group, maintaining the topological structure of 

the point cloud. 

SHOT (Salti et al., 2014) and FPFH (Rusu et al., 2009) are 3D 

feature-based methods. We chose FPFH for its reported 

performance in real-time systems with a small number of points, 

while SHOT proved to be more effective for larger datasets, 

which is often the case of PLS data. FPFH is an optimized version 

of point feature histograms (PFH) to reduce the computation 

times (Rusu et al., 2008). FPFH computes a feature vector for 

each point in the point cloud based on the geometric properties 

of its local neighborhood, which are expressed into histograms. 

The histograms computed for each point are concatenated into a 

single feature vector for feature-based matching. Besides that, 

there are methods based on signature, which describe the 3D 

surface neighborhood of a given point by defining an invariant 

local reference frame. SHOT combines both signatures and 

histogram features. First, a local reference frame is established 

for a keypoint and its neighborhood. A spherical grid centered at 

this point is divided along the radial, azimuth and elevation axes. 

Subsequently, a locally weighted histogram is computed in each 

grid according to the normal at the keypoint and the angles 

between the normal at the neighboring points. In this work, we 

utilized uniform sampling from the Point Cloud Library (PCL) to 

downsample the point clouds and extract keypoints. Keypoint 

features were then obtained using FPFH and SHOT. 

3.3 Benchmark results  

Figure 3 provides a visual assessment of the transformed PLS 

point cloud generated by the benchmarked methods, colorized 

based on the distance to the PLS point cloud obtained using 

control points (named as PLS reference). Panel (a) shows the 

overlay of the PLS reference (blue) and ALS point clouds 

(yellow). Panel (b) to (g) displays the PLS point cloud results 

produced by Hyyppä et al. (2021), Pohjavirta et al. (2022), ICP 

(plane to plane), NDT, CPD, SHOT and FPFH, respectively. In 

each panel, the coordinate component (E, N, or h) with the 

highest estimated RMSE is indicated in the upper-left corner. 

Additionally, the proportion of the RMSE corresponding to the E 

(green), N (orange), and h (blue) coordinates components is 

displayed in the bottom-right corner of each panel. The estimated 

planimetric and altimetric RMSE for each benchmarked method 

are presented in Table 2, in which the errors were obtained from 

the discrepancies between the estimated point cloud coordinates 

and PLS reference coordinates. 

Table 1 presents the average point-to-point distance between the 

PLS reference and the PLS point cloud after coarse registration 

by the benchmarked methods. The corresponding standard 

deviation between those distances are also shown. This 

comparison is feasible because both point clouds remain 

consistent the same, with identical numbers of points and order, 

with the only distinction being the transformation method applied 

and the resulting coordinates. Subsequently, we check the point-

to-point distance from the registered PLS to ALS point clouds. 

Figure 2 shows in detail the distribution of point-to-point PLS-

ALS distances in a histogram for the methods that achieved an 

average point-to-point distance smaller than 15 cm, regarding 

PLS reference. The results obtained by Hyyppä et al. (2021), ICP 

(plane to plane), and NDT meet this criterion, as indicated in 

Table 1. 

Method Distance between PC (m) 

 Average Std 

Hyyppä et al. (2021) 0.175 0.058 

Pohjavirta et al. (2022) 0.207 0.103 

ICP (plane to plane) 0.159 0.093 

NDT 0.157 0.084 

CPD  0.756 0.165 

SHOT 0.346 0.133 

FPFH 0.766 0.060 

Table 1. Average point-to-point distance between the LiPhe 

reference point cloud and LiPhe point clouds registered by the 

benchmarked methods and standard deviation (Std) between the 

estimated distances. 

Method RMSE (m) 

 Planimetry Altimetry 

Hyyppä et al. (2021) 0.119 0.142 

Pohjavirta et al. (2022) 0.192 0.130 

ICP (plane to plane) 0.176 0.055 

ICP (point to point) 8.907 0.608 

NDT 0.169 0.057 

CPD  0.289 0.718 

SHOT 0.289 0.232 

FPFH 0.507 0.578 

Table 2. RMSE of the differences between the estimated point 

cloud coordinates obtained from the benchmark methods and the 

PLS reference, expressed in terms of planimetry and altimetry. 

 

Figure 2. Point-to-point PLS-ALS distance distribution: (a) PLS 

reference, (b) Hyyppä et al. (2021), (c) ICP (plane to plane) and 

(d) NDT. 
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Figure 3. Benchmark results: (a) PLS-reference point cloud obtained by a 3D transformation estimated with control features (blue) 

against ALS point cloud (yellow). And, point-to-point distance between PLS-reference and the benchmarked methods: (b) Hyyppä et 

al. (2021), (c) Pohjavirta et al. (2022), (d) ICP (plane to plane), (e) NDT, (f) CPD, (g) SHOT and (h)FPFH. 

4. Conclusions

Here, we analysed the results concerning the coarse registration 

step. The majority of the methods achieved a coarse registration 

accuracy at cm-level, ranging from 12 to 50 cm in planimetry and 

from 5 to 57 cm in altimetry. These results may be further refined 

in a fine-segmentation step, which will not be considered in the 

assessments conducted here.  

Overall, the benchmarked methods that were particularly 

designed for forest and the global methods, ICP (plane-to-plane) 

and NDT, exhibited similar performance in terms of RMSE, 

achieving results better than 20 cm in both planimetric and 

altimetric alignment. The achieved coarse registration accuracy 

closely aligns with the state-of-the-art methods reported in the 

review. Stem-based methods demonstrate stability across boreal 

and temperate forest datasets. For instance, Hyyppä et al. (2021) 

achieved an RMSE of 12 cm in planimetry against PLS reference, 

consistent with the accuracy reported by the author for boreal 

forest applications. Despite of its robustness, this method only 

provides 2D transformation. Altimetric alignment can 

accumulate errors due to the absence of 3D transformation 

estimation. An RMSE of 14 cm in altimetry was obtained. When 

comparing the transformed PLS point cloud directly to the ALS 

point cloud, over 67.5% of the points were within a 15 cm 

distance of the ALS point cloud (Figure 2.b). When comparing 

with the PLS reference (transformation obtained with control 

features), 71.3% of the points were within 15 cm distance of the 

ALS point cloud (Figure 2.a). Generally, distances greater than 

15 cm may be also attributed to differing PLS-ALS perspectives, 

as some tree canopies were not fully visible to the LiPhe scanner. 

The main drawback of stem-based methods is their sensitivity to 

the required pre-processing steps, including point cloud 

rectification, stem detection, and stem position estimation. 

Therefore their applicability in more complex forest 

environments can encounter challenges. 

ICP and NDT are feature-independent, which can be 

advantageous in scenarios where feature extraction is 

challenging. Among the benchmarked global methods, we found 

that ICP (plane-to-plane) exhibited the most favourable 

performance in terms of usability and achieved RMSE. NDT 

achieved comparable planimetric and altimetric accuracy, 

however, it required initial values. We attribute ICP (plane-to-

plane) performance to the high overlap between the ALS and PLS 

datasets and the constant developments of ICP variations. When 

compared to the ALS, the PLS point cloud registered with ICP 

(plane-to-plane) had 74.3% of its points within a distance of 15 

cm from the ALS point clouds (Figure 2.c). These findings 

suggest that there is still potential for exploring variations of 

global registration methods as alternative solutions to complex 

forest environments. On the other hand, global methods demand 

high computational resources and they are sensitive to variations 

in point cloud overlaps, particularly due to the absence of one-to-

one correspondence between LiDAR point sets from different 

platforms. For example, CPD and ICP (point-to-point) failed to 

produce satisfactory results with high planimetric (0.289 m and 

8.907 m, respectively) and altimetric (0.7 m and 0.6 m, 

respectively) RMSE values. Zhou et al. (2023) achieved 

comparable outcomes by integrating CPD into a coarse-

registration methodology, resulting in an average distance of 

194.83 cm between ALS and TLS point clouds. 

Less accurate results were obtained using traditional feature-

based methods. As proposed by Dai et al. (2022) and Chen et al. 

(2024), keypoint matching in forest environments needs to be 

accompanied by strategies for reducing the search space and 
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filtering outliers. Consistent results for SHOT and FPFH were 

only achieved when reducing the search space and applying 

outlier filtering. Both SHOT and FPFH resulted in RMSE values 

larger than 20 cm in both planimetric and altimetric coordinates. 

SHOT outperformed FPFH in both the planimetry (28.9 < 50.7 

cm) and the altimetry (23.2 < 57.8 cm) alignment. Chen et al.

(2024) presented better results using FPFH with an RMSE of

18.2 cm after TLS-UAV coarse segmentation. These results are

likely attributed to the feature detection steps, which provided

insufficient and non-optimal correspondences between the point

clouds, especially in the FPFH approach. More studies focusing

on the multi-modal registration requirements and accuracy for

advancing forest applications are still needed. Additionally,

benchmark initiatives targeting more complex forests and the

future of deep-learning methods are recommended.
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