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Abstract 

Land Surface temperature (LST) is a core parameter in the energy exchange between the surface and the atmosphere, and the use of 

thermal infrared remote sensing can realize the wide-range, fast, and accurate acquisition of surface temperature. GF5-01A is an 

important part and the final satellite of the major special project on high-resolution Earth observation system which is equipped with 

a wide-area thermal infrared imager with a resolution of 100 meters and a width of 1,500 kilometers. In this paper, based on the GF5-

01A WTI spectral response function, combined with the TIGR2000 atmospheric profiles data and the ASTER spectral library, the data 

simulation was carried out by using the atmospheric radiative transfer model MODTRAN 5.2, and then constructed the split-window 

algorithm. Then, the method proposed in this paper was validated and evaluated using Landsat 8/9 temperature products and measured 

surface temperature data from SURFRAD sites acquired on the same day. The results show that the RMSE between the GF5-01A 

retrieved LST and the Landsat8/9 retrieved LST is between 1.27-2.24K, and the Bias is between -2.08-1.12K. The RMSE is between 

0.68-2.64K and the bias is between -0.68-1.49K compared to the measured surface temperature. The split-window algorithm of GF5-

01A proposed in this paper can meet the requirements of thermal infrared remote sensing monitoring and has enormous potential and 

value. 

1. Introduction

LST is one of the key parameter in the physics of land-surface 

processes on regional and global scales (Sobrino et al., 2016). 

LST integrates surface-atmosphere interactions and energy 

exchanges between the atmosphere and land. LST can provide 

spatiotemporal information on the balance of surface energy, and 

has been widely applied in research fields such as numerical 

forecasting, global circulation models, regional climate models, 

(Li et al., 2016). According to the 2013 climate change report of 

the United Nations Intergovernmental Panel on Climate Change, 

the average temperature of the Earth's surface per decade has 

been warming steadily over the past three decades. Earth's 

climate change has become a major trend of climate change in 

the 21st century, which will lead to sea level rise and an increase 

in extreme weather, thus affecting the global ecosystem. 

Therefore, the acquisition and monitoring of surface temperature 

has been widely concerned by scholars from all over the world, 

and how to quickly and accurately acquire surface temperature 

has become a research hotspot in today's climate, ecological and 

environmental issues. The traditional way of acquiring LST not 

only consumes a lot of manpower and material resources, but also 

fails to meet the monitoring of temperature changes on a regional 

or even global scale. However, with the progress of science and 

technology, the quality and resolution of satellite remote sensing 

images have been improved by leaps and bounds, providing a 

reliable method for studying surface temperature on a regional or 

global scale and spatial and temporal variations in regions with 

long time series (Dash P et al., 2002). LST can be quickly and 

accurately obtained through thermal infrared remote sensing. 

The GF5-01A is a Chinese civilian remote sensing satellites, part 

of a major project of the China High-definition Earth Observation 

System, which was successfully launched on December 9, 2022, 
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including a 1500 km swath width thermal infrared imager(WTI), 

a 2.5 nm spectral-resolution Visible-shortwave Infrared 

Advanced Hyperspectral Imager (AHSI), and a environmental 

trace gases monitoring instrument for atmospheric trace gasses  

(EMI). The satellite is based on the SAST1000. GF-501A is 

mainly used in environmental pollution monitoring, 

environmental quality supervision, atmospheric composition 

monitoring, natural resources investigation, climate change 

research, etc. WTI is the first thermal infrared detector in the 

world that adopts the thermal infrared detection mode with a 

width of 1,500 kilometers and a spatial resolution of 100 meters, 

and has the capability of all-day imaging during daytime and 

night time. WTI has 4 bands with spectral range 8.01μm~8.39μm, 

8.42μm  ~8.83μm , 10.3μm  ~11.3μm , 11.5μm~12.5μm. The 

spectral response function is shown as Figure 1. Compared with 

the Landsat8/9 TIRS which has the same spatial resolution, the 

observation width has been increased by a factor of 7, and the 

number of thermal infrared observation channels (4) has been 

increased by a factor of 1, so that global-scale high-precision 

surface temperature information can be obtained inversely. 

Figure 1. Spectral response function 
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Since the last century, scholars at home and abroad have 

conducted a large number of scientific studies using thermal 

infrared data, proposed a variety of surface temperature inversion 

algorithms based on the characteristics of different sensors, and 

then improved the algorithms on the basis of this, to reduce the 

interference caused by the atmospheric and surface emissivity, 

and to enhance the inversion accuracy. The methods for surface 

temperature can be roughly divided into single-channel 

algorithms, multi-channel algorithms, and multi- angle 

algorithms. The split-window algorithm is a type of multi-

channel algorithm, which has been widely used due to its 

advantages of fewer input parameters, simple algorithm, and low 

sensitivity to atmospheric parameters. The objective of this study 

is to develop a split-window algorithm to retrieve LST from GF5-

01A. 

 

2. Studay Area 

 

2.1 Cross-validation  test area 

In order to verify the availability of the GF5-01A split-window 

algorithm, this study selected 5 areas in Jiangsu (Taihu Lake , 

Hongze Lake), Shandong(Qingdao), Qinghai(Qinghai Lake), 

Inner Mongolia(The Badain Jaran Desert) in China as cross 

validation test areas according to the acquisition of synchronous 

remote sensing image data and land cover types. Taihu Lake , 

Hongze Lake , Qinghai Lake were selected as the water 

validation area. The Badain Jaran Desert was selected as the sand 

validation area. Qingdao was selected as the vegetation 

validation area. The cross-validation region is shown in Figure 2. 

 

Figure 2. Cross-validation  test area 

 

2.2 SURFRAD 

A surface radiation budget observing network (SURFRAD) has 

been established for the United States in 1993 to support climate 

research with accurate, continuous, long-term measurements of 

the surface radiation budget. Currently seven SURFRAD stations 

are operating in climatologically diverse regions: Montana, 

Colorado, Illinois, Mississippi, Pennsylvania, Nevada and South 

Dakota as shown in Table 1. The primary measurements are the 

downwelling and upwelling components of broadband solar and 

thermal infrared irradiance(Augustine et al.,2020). The main 

parameters of the site are measured every three minutes before 

2019, and the measurement of once every minute after 2019. 

 

Code Name Latitude Longitude Land Cover Type Elevation Installed 

BND Bondville, Illinois 40.05°N 88.37°W Croplands 230m April 1994 

TBL 
Table Mountain, 

Boulder, Colorado 
40.13°N 105.24°W Grassland 1689m July 1995 

FPK Fort Peck, Montana 48.31°N 105.10°W Grassland 634m 
November 

1994 

SXF 
Sioux Falls, South 

Dakota 
43.73°N 96.62°W Cropland 473m June 2003 

PSU 
Penn. State Univ., 

Pennsylvania 
40.72°N 77.93°W 

Cropland/natural 

vegetation mosaic 
376m June 1998 

GWN 
Goodwin Creek, 

Mississippi 
34.25°N 89.87°W 

Woody 

Savannas 
98m December 1994 

DRA  Desert Rock, Nevada 36.63°N 116.02°W Open shrublands 1007m March 1998 

Table 1.  SURFRAD Network 
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Figure 3. Observation instruments and surrounding environment in SURFRAD study sites 

(Image Source: NOAA Earth System Research Laboratory) 

 

3. Method 

3.1 Split-Window Algorithm Principle   

Assuming a cloud-free atmosphere under local thermodynamic 

equilibrium, radiance received by satellite sensors can be 

described using the Radiative Transfer Equation (Li, et al.,2016). 

 

𝐿λ
𝑠𝑒𝑛𝑠𝑜𝑟 = [𝜀λ𝐵(𝑇𝑠) + (1 − 𝜀λ)𝐿λ

𝑎𝑡𝑚↓]𝜏λ + 𝐿λ
𝑎𝑡𝑚↑ (1) 

𝑇𝑠 =
𝐾2

ln (
𝐾1

𝐵(𝑇𝑠)
+ 1)

(2)
 

𝐾1 =
ℎ𝑐2

𝜆5
(3)  

𝐾2 =
ℎ𝑐

𝑘𝜆
(4) 

 

Where  𝐿λ
𝑠𝑒𝑛𝑠𝑜𝑟 is the top of the atmosphere(TOA) radiance, 𝜀λ is 

the surface emissivity, 𝑇𝑠  is the LST, 𝐿λ
𝑎𝑡𝑚↓  is the atmospheric 

downwelling radiances,   𝐿λ
𝑎𝑡𝑚↑  is the atmospheric upwelling 

radiances, 𝜏λ is the atmospheric transmittance, B is the Planck 

function, k is the Boltzmann's constant, λ is the central 

wavelength, c is the constant. 

 

The split-window algorithm takes advantage of the difference in 

atmospheric absorption between two adjacent thermal infrared 

channels centered at about 11 and 12 µm, and performs nonlinear 

analysis of the radiation transfer equation based on brightness 

temperatures (Sobrino et al.,1994; Sun D et al., 2003,2005,2007) 

to remove the influence of the atmosphere (McMillin et al.,1975), 

and then the surface temperature is inverted. 

 

𝑇𝑠 = 𝑎0 + 𝑎1𝑇𝑖 + 𝑎2(𝑇𝑖 − 𝑇𝑗) + 𝑎3(𝑇𝑖 − 𝑇𝑗)
2

(5) 

 

where 𝑇𝑖 and 𝑇𝑗 are the TOA brightness temperatures measured 

in channels i (~11.0 μm) and j (~12.0 µm). 𝑎i (i=0,1,2,3) are the 

algorithm coefficients derived in the following simulated dataset. 

 

3.2 Algorithm Development for GF5-01A 

In order to fit 𝑎i, we used TIGR2000 atmospheric profiles for 

data simulation and constructed the dataset. One of the assumed 

conditions for the transfer of thermal infrared radiation is clear 

skies and no clouds. So the profiles with a relative humidity 

greater than 90% or two consecutive layers of relative humidity 

greater than 85% are discarded. As a result, a total of 946 

atmospheric profile data were used for this simulation. 

Observation zenith angle setting range from 0 ° to 20 °in a 10 ° 

step. The LST range from T0 − 10 K to T0 + 25 K in a 5 K step 

where the T0 is atmospheric bottom temperature. In addition, the 

surface emissivity is obtained by convolving the spectral 

response function of the thermal infrared channel with the 

spectral curves from 101 spectrogram libraries which are comes 

from the ASTER Spectral Library. According to the simulation 

dataset, 𝐿λ
𝑎𝑡𝑚↑ ,  𝐿λ

𝑎𝑡𝑚↓ ,  𝜏λ  in Equation(1) are calculated by the 

MODTRAN 5.2 atmospheric transmittance/radiance code. 

Finally, according to Equation (1) and Equation (5), the 

brightness temperatures 𝑇𝑖 and 𝑇𝑗  are obtained. 𝑎i  is calculated 

using the least squares method, and the results are shown in the 

Table2. LST from GF5-01A inversion was shown in Figure 4. 

 

𝑎0 𝑎1 𝑎2 𝑎3 

-11.8806 1.05547 -0.0398976 0.453618 

Table 2. The results of 𝑎i 

 

Figure 4. LST from GF5-01A inversion 

 

4. Rsult and Aalysis 

4.1 Evaluation indicators 

Root mean square error (RMSE) and Bias were selected to 

analyze and evaluate the accuracy of the GF5-01A split-window 

algorithm in this paper. RMSE evaluates the closeness between 

surface temperature inversion and actual land surface 

temperature. Bias evaluates the average difference between the 

surface temperature inversion and the actual surface temperature, 

reflecting the systematic bias of the inversion results.  
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RMSE = √∑(𝑇𝑖𝑛𝑣 − 𝑇𝑟𝑒𝑓)
2

𝑛 − 1
(6) 

Bias =
∑𝑇𝑖𝑛𝑣 − 𝑇𝑟𝑒𝑓

𝑛
(7) 

Where 𝑇𝑖𝑛𝑣  is the LST inverted from thermal infrared remote 

sensing image, 𝑇𝑟𝑒𝑓 is the reference or measured LST, and n is 

the is the number of pixels. 

4.2 Cross-validation method 

Cross-validation is the comparison of surface temperature 

inversion results with other surface temperature products that 

have been validated with high accuracy(Jiménez et al.,2012; 

Trigo et al.,2008).Under different surface cover conditions, such 

as water bodies, sand, vegetation, etc., manually and randomly 

selected feature points, such as Figure 5, were statistically 

analyzed and compared with Landsat 8/9 temperature products 

obtained on the same day which has the same the same spatial 

resolution and similar spectral response functions to verify the 

accuracy of surface temperature inversion using the split-window 

algorithm. Firstly, register Landsat temperature products with 

GF5-01A to reduce errors caused by geometric factors. Then, 

select relatively uniform surface cover such as water, vegetation, 

and sands, randomly select several validation points, and conduct 

analysis and evaluation. The results were shown as Figure 6 and 

Figure 7. 

 

  

  
Figure 5.  The distribution of verification point  

 

As a whole, the RMSE of the difference between the GF5-01A 

retrieved LST and the Landsat8/9 retrieved LST is 1.72, and the 

Bias is 0.41. The inversion accuracy of water bodies is the highest. 

The relative accuracy of water is the highest, which the RMSE is 

1.27 and the Bias is 1.12. The relative accuracy of sands is the 

worst, which the RMSE is 2.24 and the Bias is -2.08, because of 

the surface of the sands is uneven and affected by radiation 

directionality. The preliminary results indicate that the split-

window algorithm of GF5-01A can meet the application needs 

and has enormous potential and value. 

 

 

Figure 6. The results of validation 

 

   

Figure 7. The results of validation 

 

4.3 Temperature-based method 

In order to evaluate the availability of the GF5-01A split-window 

algorithm in this paper, the inverted surface temperatures of the 

clear-sky GF5-01A WTI data since March 2023 were used to 

analyze the inverted surface temperatures with the measured by  

SURFRAD sites.  

 

In-situ longwave radiation measurements by the SURFRAD 

network were converted to LST values based on Stefan-

Boltzmann law as follows ( Li et al.,2014): 

 

𝑇𝑠 = (
𝐿λ

𝑎𝑡𝑚↑ − (1 − 𝜀𝑏𝑏)𝐿λ
𝑎𝑡𝑚↓

𝜎𝜀𝑏𝑏
)

1
4

(8) 
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Where 𝑇𝑠 is the LST,  𝐿λ
𝑎𝑡𝑚↑ is the measured surface upwelling 

longwave radiation,  𝜀𝑏𝑏 is the surface broadband emissivity, 𝜎  

is the Stefan-Boltzmann constant(5.67×10-8Wm-2K-4), and 𝐿λ
𝑎𝑡𝑚↓ 

is the measured surface downwelling longwave radiation. The 

 𝜀𝑏𝑏  was calculated from the Aster GED product using the 

following linear equation (Duan et al.,2019; Cheng et al.,2012; 

Cheng et al.,2012): 

 
𝜀bb = 0.197 + 0.025𝜀10 + 0.057𝜀11 + 0.237𝜀12

+0.333𝜀13 + 0.146𝜀14
(9) 

 

Where The 𝜀10–𝜀14 are the narrow-band surface emissivities of 

the ASTER bands 10–14, respectively. The surface broadband 

emissivities are 0.968, 0.972, 0.967, 0.973, 0.971, 0.970, and 

0.970 for BND, TBL, DRA, FPK, GWN, PSU, and SXF, 

respectively. 

 

A total of 9 pairs of data were collected for this validation, 

covering 4 sites which were DRA, BND, TBL & PSU. The 

results are shown in Table 3. The scatterplot between the 

measured temperature and the retrieved temperature is shown in 

Figure 8. 

 

Sites Numbers RMSE  Bias 

DRA 4 2.64 0.72 

BND 2 1.74 1.49 

TBL 2 1.68 0.45 

PSU 1 0.68 -0.68 

Total 10 2.11 0.68 

Table 3. RMSE and Bias between LST retrieved by GF5-01A 

and  measured by  SURFRAD sites 

 

 

Figure 8. Compared with the measured temperature and 

retrieved temperature 

 

In the process of validating the results, this paper refers to the 

method of Sobrino et al. for rejecting outliers(Sobrino et al.,2019). 

Overall, Compared with the measured temperature and retrieved 

temperature, the RMSE for each site ranged from 0.68-2.56 K, 

and total RMSE is 2.11 K. Validation results for BND, TBL, and 

PSU sites RMSE values are higher than DRA.This may be related 

to the site subsurface, where the DRA site is collocated with the 

Desert Rock, the surface is rough and more affected by the 

directionality of the radiation. Bias values are less than 1K at all 

sites except the BND. From another point of view, the validation 

results of surface temperature for the 3 sets of nighttime data are 

better than those of the daytime data.  This may be related to the 

poor isothermal properties of heterogeneous surface pixels 

during the daytime, and the large temperature differences in the 

light and shadow areas within the pixels due to the relationship 

between solar irradiation and the angle of remote sensing 

observations (Coll et al.,2019; Li et al.,2014; Guillevic et al.,2014; 

Hale al.,2011). 

 

5. Conclusions 

a key physical parameter for various studies, including hydrology, 

climatology, the environment, and ecology (Duan et al.,2008; 

Anderson et al.,2008; Sobrino et al.,2014). In this study, we 

proposed a split-window algorithm for LST retrieval from GF5-

01A thermal infrared channel. Completed relative accuracy 

verification with Landsat surface temperature products on water, 

vegetation and sands that the overall RMSE is1.72 and Bias is 

0.41. Meanwhile, comparisons were made with measured data 

from the SURFRAD sites, where the RMSE was 2.11K and the 

bias was 0.68K. The results show that the proposed algorithm can 

be used to retrieve LST. However, the evaluation of the accuracy 

of the split-window algorithm still needs to be carried out in 

depth due to the small amount of measured data. Furthermore, to 

better evaluate the accuracies of the method, more LST validation 

works need to be performed under various atmospheric 

conditions and land-cover types. 
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