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Abstract  

 

Globalisation has contributed to rapid economic growth but has also exposed vulnerabilities such as the spread of pests in agriculture. 

An example is the Popillia Japonica Newman beetle, introduced to Italy in 2014, which has caused significant economic losses, mainly 

affecting vine cultures. Reliable identification of pests is essential for its management, but it is time-consuming and laborious. This 

has prompted growing interest in image-based methods, supported by computer vision (CV), which can significantly improve 

efficiency in insect detection. This study aims to evaluate a CV algorithm's effectiveness in identifying adult specimens of Popillia 

using Near-Infrared sensors on Uncrewed Aerial Systems (UAS). The project, conducted in two vineyards in northern Italy, intends to 

establish a replicable and standardised data acquisition protocol for future monitoring activities. Insects detected by the CV-based 

method are validated by manual counting performed by entomologists. In a GIS environment, prescription maps are generated in near 

real-time to identify where the vineyard is most affected and to guide the drone spraying treatment only on the areas in which the 

threshold is exceeded.  The study demonstrates effective semi-automated monitoring, with a clear correlation between CV-based and 

manual insect measurements, as indicated by the Pearson correlation coefficients ranging from 0.89 to 0.96. Although the CV-based 

method may overestimate insect numbers, it provides valuable insights for targeted pest management interventions and damage 

assessment. The project outcomes offer a promising approach to safeguarding agriculture against invasive species, enhancing regional 

economic resilience while minimising the spread of insecticide, the required time, and human interaction with harmful substances. 

 

 

1. Introduction 

Globalisation supports and speeds up the exchange of goods, 

services and the movement of people, factors that have allowed 

rapid economic growth in the last century, but it has also exposed 

new risks. The spread of pests and parasites is one of them: 

facilitated by climate change, it poses a significant challenge to 

global food security and a threat to the economic system, 

especially for small-scale farmers. This is mostly evident in the 

case of Popillia Japonica Newman, a beetle native to Japan, 

accidentally introduced to Europe, the USA and Canada. This 

insect of the Coleoptera order causes substantial economic losses 

and requires high containment costs, representing a serious threat 

to the local agricultural system, which is not able to fight and 

eliminate this exotic pest.  

Popillia Japonica has a holometabolous life cycle. As larvae, they 

damage the roots of several grasses, living beneath the soil. As 

adults, these beetles are extremely polyphagous and can attack a 

wide range of plant species, estimated at around 300 wild and 

cultivated varieties. Among the most susceptible plants are apple, 

bramble, elm, grapevine, linden, maise, maple, rose, peach, and 

soybean. These insects start feeding on the aerial part of the plant, 

where they consume leaves by skeletonising them, chewing away 

the tissue between the veins. They may also feed on flowers and 

fruit. Additionally, adult beetles tend to gather in groups on a 

single plant, often leading to complete defoliation of individual 

plants or trees. Consequently, the plant's photosynthetic capacity 

decreases, leading to reduced production or even death (Ebbenga 

et al., 2022; EPPO, 2018). 

Popillia was first found in the north of Italy in the summer of 

2014, spreading in a large area of the Ticino Park between the 

Piedmont and Lombardy regions. Grapevines are the primary 

cultivations affected so far. Of particular relevance is the impact 

that the insect has on plants such as the vine, which requires 

several years from planting before the production of fruits and 

significant revenues. The situation has become severe enough 

that the Italian government has provided financial aid to affected 

farmers. 

 

 
 

Figure 1. An adult insect of Popillia Japonica on a vine plant. 

 

In this urgent scenario, improving monitoring is needed for early 

pest identification and effective pesticide intervention. There is 

growing interest in developing automated systems for rapid and 

reliable insect identification to replace much of the human labour 

traditionally required. Image-based systems (Martineau et al., 

2017), audio sensor-based systems (Chen et al., 2014; Noda et 

al., 2019; Phung et al., 2017), and E-noses/olfactory devices (Cui 

et al., 2018) are some of the successful techniques used to 

identify insects. Among these methods, image-based systems are 

extensively used by entomologists to distinguish insect species, 

as visual evidence is the primary means of identifying insect 

species. Moreover, visual morphological differences can be 

captured using image sensors. Therefore, images can be used to 
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classify a wide range of insect species, while acoustic and 

olfactory devices are limited to only a set of species. 

Additionally, compared to other techniques, images can be easily 

processed and stored for future reference. Automatic image 

identification technologies based on computer vision are 

promising in insect detection, as documented in the literature 

(Ahmad et al., 2022; Júnior and Rieder, 2020; Zacarés et al., 

2018). They have been implemented in numerous applications in 

managing insect disease vectors and controlling pests, such as 

agricultural and forest pests (Domingues et al., 2022; Duarte et 

al., 2022; Mendoza et al., 2023), in the classification of 

parasitised fruit fly pupae (Marinho et al., 2023), the detection of 

pine pests (Ye et al., 2022), the segmentation of ecological 

images featuring (Filali et al., 2022), the identification of whitefly 

(Kamei, 2023), and the automated counting of mosquito eggs 

(Javed et al., 2023). 

 

CV allows machines to extract significant information from 

digital images, enabling detection, identification, and automation 

by integrating inputs from the physical world (Wiley and Lucas, 

2018). It involves different concepts including digital image 

processing, machine learning and pattern recognition. CV 

technologies are non-invasive, non-destructive, can be 

completely automated, and can provide data on species’ 

occurrences, abundances, morphology, biomass, and movement 

(Bruijning et al., 2018; Schneider et al., 2022), along with 

insights into behaviour and interactions (Bjerge et al., 2022). 

Object detection and segmentation are important tasks of CV 

(Matrone et al., 2022) to perform automated extraction and 

counting of insects from pre-processed image data. 

 

Image acquisition methods for insect detection can be several, 

and from the review of the research published in the last decade 

(Gao et al., 2024; Nawoya et al., 2024), they include various 

devices like handheld cameras (digital cameras, smartphones), 

and mobile or fixed smart trap systems, but also datasets such as 

IP102, as well as photographs downloaded from search engines 

like Bing and Google.  Uncrewed Aerial Systems (UAS) can play 

an important role in getting on-site images, since they can move 

and navigate automatically, support various sensors, and provide 

safe access to difficult locations. On-site images are more useful 

for practical applications than laboratory images. However, 

locating insects within the frame can be challenging due to the 

cluttered backgrounds caused by leaves and other objects. This 

makes it more difficult compared to lab-based images, which 

have a blank background. Moreover, these beetles have a highly 

reflective green dorsal plate with a spectral signature similar to 

the surrounding vegetation. In response to this challenge, using a 

Near-Infrared (NIR) camera can help amplify the contrast 

between the Popillia and the vine plants. In fact, in an RGB 

image, the insect results green as the leaves, while in the NIR 

band, the vegetation exhibits a peak in reflectivity and the insect 

appears dark (low reflectivity) (Brusco et al., 2023). 

 

This contribution lays its foundation in this complex scenario, 

exposing a field trial for multitemporal monitoring of Popillia 

through a computer vision algorithm on two vineyards in the 

towns of Ghemme and Briona (in the province of Novara, in the 

north of Italy). It is framed in the DANTE project (experimental 

investigative survey to evaluate the effectiveness of drones for 

monitoring and defence of vineyards from the priority quarantine 

insect Popillia Japonica Newman), which has the objective of 

identifying areas and timings for precise treatment by UAS, 

minimising the use of pesticides to the specific locations where it 

is actually needed within the vineyard.  

 

Figure 2. An example of an NIR image of Popillia insects in the 

studied vineyards. 

 

The project is funded by Regione Piemonte and involves the 

following partners: the Department of Environmental and Land 

Engineering (DIATI) of Polytechnic of Turin, the Department of 

Agricultural, Forestry and Food Sciences (DiSAFA) of the 

University of Turin, ARPA Piemonte (Regional Agency for the 

Protection of the Environment), Regione Piemonte and 

Consorzio di Tutela Nebbioli dell’Alto Piemonte. The project 

involved the development of a CV-based method for insect 

detection, the monitoring and the treatment of Popillia both by 

drone and manually, the estimation of insect-driven damages and, 

finally, the assessment of environmental impacts of the 

treatments. 

In this work only the methodology of insect detection and the 

monitoring phase are exposed: the aim is to evaluate the 

effectiveness of the computer vision algorithm to identify adult 

specimens of Popillia using NIR optical sensors mounted on 

UAS, intending to establish a replicable and standardised data 

acquisition protocol for future monitoring activities.  

Specifically, this paper will analyse: i) the  

CV-based detection algorithm from NIR image data, ii) the 

spatialisation of the detected insects on a georeferenced 3D 

model of the vineyards, and iii) the effectiveness of the detection 

method for monitoring. 

 

2. The Study Area 

 
 

Figure 3. The study area: in the bottom right picture, Ghemme 

and Briona towns are highlighted by red circles.  

(Images acquired from OpenStreetMap) 
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Two vineyards were selected as study areas in two towns in the 

north of Italy, Ghemme and Briona, in the province of Novara in 

the Piedmont region (Figure 3). This area is acknowledged for 

the quality of its wines, and its vineyards have been affected by 

Popillia since the summer of 2014. Hence, this work selected this 

area for its urgency in fighting the pest, its easy accessibility for 

field surveys and its importance in local wine production. At the 

beginning of the project, two areas of comparable sizes for each 

vineyard were chosen and classified based on the type of 

treatment they would receive. The first one, called 

"Conventional" (C), involves manual treatment by specialised 

operators, while the second, called "Drones" (D), involves 

insecticide being spread by a DJI Agras MG-1P RTK drone. The 

two areas have similar surfaces (about 2000 m2 in Briona and 

about 3000 m2 in Ghemme) and were defined based on a 3D 

model generated by aerial photogrammetry at the beginning of 

the project (time 0 [T0] acquisition). The vineyard in Briona is 

located on flat ground, while the one in Ghemme is on a slope, a 

feature to consider when planning a UAV survey. 

 

3. The methodology 

 
 

Figure 4. Methodological workflow. 

 

3.1 Time zero acquisition 

At the beginning of the project, a high-resolution 3D model of 

the two areas was generated as a result of the T0 acquisition for 

a better comprehension of the vineyards geometry. Hence, aerial 

photogrammetry technique was applied using the drone DJI 

Matrice 300 with the Zenmuse P1 sensor (Table 1). Reference 

stable points were established by positioning markers firmly on 

the ground, or materialised on the heads of the rows delimiting 

the areas. Their coordinates were measured using the Stonex 

S990A and Leica GS18 GNSS receivers (Table 2).  

By a Structure from Motion (SfM) approach performed in the 

commercial software Agisoft Metashape, and by collimating the 

stable points with known coordinates, the following products are 

obtained: an orthomosaic with a resolution of 1 cm, and elevation 

models, specifically a Digital Surface Model (DSM) and a Digital 

Terrain Model (DTM), with a resolution of 20 cm. These 

products were used for the preliminary analysis of the structure 

of the vineyards, performed in a GIS environment. The aim was 

to understand the geometry of the vineyards, select the two areas 

of study, C and D, count their number of rows, and define the 

sampling unit for the insect counting: the interbranch, which can 

be defined as the row section delimited by two poles (Figure 5). 

The DTM was also used as input in the CV algorithm, as detailed 

in the following paragraphs.  

 

 
 

Figure 5. The T0 orthomosaic of Briona displayed in GIS and 

representation of the interbranches.  

 

3.2 NIR data acquisition 

The data acquisition step is done through aerial surveys using the 

DJI Mavic 2 Pro, with a Sentera NIR (Near-Infrared) single 

sensor (Table 1). The designed survey protocol involves flying 

with an oblique inclination of the camera (approximately 45°), 

with a direction orthogonal to the rows, a flight height ranging 

between 2-3 m above the head of the rows and a flight speed of 

about 2 m/s. As the Popillia remains steady in the early morning 

and typically starts flying when the sun is higher, all the flights 

were performed between 6 and 8 a.m. With these flight 

characteristics, having high-resolution and close-range pest 

images  was possible (Brusco et al., 2023). 

 

UAS DJI Matrice 300 DJI Mavic 2 Pro 

Sensor Zenmuse P1 - RGB Sentera Single - NIR 

Resolution 8192 × 5460 1248 × 950 

Focal 

Length 
35 mm 4.14 mm 

Pixel Size 4.39 × 4.39 µm 3.75 × 3.75 µm 

Flying 

altitude 
26.7 m 7.3 m 

GSD 4.06 mm/pix 6.49 mm/pix 

Table 1. Main specifications of sensors and UAS. 
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Receiver Stonex S990a  Leica GS18 

Dimensions 

and Weight 
151 x 151 x 95.4 mm;  

1.4 kg 

173 x 173 x 109 mm 

1,23 kg/3,53 kg  

Sensors E-Bubble, IMU Tilt sensor, IMU 

RTK 

Accuracy 

5 mm ± 0.5 ppm RMS 

(Horizontal) 

10 mm ± 0.5 ppm 

RMS (Vertical) 

8 mm + 0,5 ppm 

(Horizontal) 

15 mm + 0,5 ppm 

(Vertical) 

Satellite 

Signals 

GPS: L1 C/A, L1C, 

L1P, L2C, L2P, L5 

GLONASS: L1 C/A, 

L1P, L2 C/A, L2P, L3 

BEIDOU: B1, B2, 

B3, ACEBOC 

GALILEO: E1, E5a, 

E5b, ALTBOC, E6 

QZSS: L1 C/A, L1C, 

L2C, L5, L6 

IRNSS: L5 

SBAS: L1, L5 

GPS: L1, L2, L2C, L5  

GLONASS: L1, L2, 

L2C, L3 

Galileo: E1, E5a, E5b, 

AltBOC, E6 

BeiDou: B1I, B1C, 

B2I, B2a, B3I 

QZSS: L1, L2C, L5, 

L62; NavIC: L53 

SBAS: WAAS, 

EGNOS, MSAS, 

GAGAN TerraStar: 

L-Band, IP 

Table 2. Main specifications of Stonex S990A and Leica GS18 

GNSS receivers. 

 

3.3 The CV algorithm 

The NIR imagery collected during the field surveys is processed 

to detect and count the insects on the leaves of the vines. The 

detection method has three main steps: i) the application of the 

detection and counting algorithm, ii) the recalculation of the 

camera exterior orientation, and iii) the spatialisation of the 

detected insects on the vineyards, removing possible double 

counting. 

 

 
 

Figure 6. Example of NIR image processed by the CV 

algorithm: the green circles in the top left image are all the 

possible targets detected by the method; in the top right image, 

two Popillia are detected, and the bottom photo shows the final 

counting of the estimated insects on the image. 

 

The first step is implemented in Matlab software using a 

computer vision algorithm developed by the authors, which 

exploits an object extraction approach over the collected NIR 

images (Figure 6). It performs recognition and localisation tasks 

to detect the insects based on a fixed cutoff score on extraction 

parameters previously calibrated and weighted using many 

training images. The extraction parameters include geometric 

and radiometric features such as area, eccentricity, circularity, 

mean, maximum, minimum and standard deviation of intensity.  

 

The second step is calculating the camera exterior orientation 

using Agisoft Metashape. Starting from the NIR images 

collected, a sparse point cloud is generated, and through the 

collimation of at least three of the stable points defined in T0, it 

is possible to obtain more accurately the NIR camera exterior 

orientation parameters, since the drone mounting the Sentera 

sensor was not equipped with accurate navigation sensors (GNSS 

receiver with Real Time Kinematic corrections and accurate 

Inertial measurement Unit) (Cortesi et al., 2023, Teppati Losè et 

al., 2023).  

 

Figure 7. Example of Agisoft Metashape processing result of 

Ghemme vineyard, using 1711 NIR images, 15 markers, and 

1.78 million tie points. 

 
 

Figure 8. Representation of the reprojection of the detected 

insects on an image on the interbranch. 

 

The third and last step of the CV-based method is the 

spatialisation of the detected insects based on the reprojection of 

their estimated locations in the vineyards. This step is 

implemented in Matlab and exploits the T0 DTM of the 

vineyards, the locations of insects, estimated in the first step, and 

the exterior orientation of the NIR poses, estimated in the second 

step. The algorithm performs a projection of the images and of 
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the detected and labelled insects on the volume of the vineyard 

for each interbranch (Figure 8). Afterwards, the algorithm 

performs a coincidence check with a sphere of 5 cm radius: 

insects extracted from different images but located within a 

sphere of 5 cm radius are merged and considered the same insect. 

3.4 Results visualization on maps and validation 

Finally, the estimated measurements of Popillia onto the 

vineyards are represented in a GIS project, as shown in Figure 9, 

using a traffic light symbology from green to red applied to the 

interbranches vector file, where green indicates the presence of 

less than 10 insects on the interbranch, and red indicates when 

the number overcomes 50. The estimated number and position of 

the insects are compared and validated by a manual count made 

simultaneously by agrarian entomologists (ground truth), 

represented in a light blue-purple colour scale on the rows with 

the same counting ranges. This representation provides an easy 

way to understand the level of infestation in the vineyards and 

allows to compare the counting estimated by the algorithm to the 

ground truth. 

 

4. Results and validation 

The monitoring activity was performed according to the 

Methodology detailed above, with surveys starting in mid-June 

2023 and concluding at the end of July 2023, the peak activity 

period for adult Popillia specimens.  The monitoring was carried 

out about every three days, to assess the possible need for 

treatment. At the end of the monitoring activities, 13 surveys 

were collected for the vineyard in Briona and 14 for Ghemme.  

For each survey, NIR images were collected and processed, and 

the estimation of the number and position of Popillia was 

obtained in near real-time. These data were represented in a GIS 

environment and compared to the ground truth of the manual 

counting. Figure 9 shows an example of a thematic map 

developed in ArcGIS Pro for one of the surveys performed in the 

Ghemme vineyard. The two surfaces delimited by orange and 

blue polygons are the study areas C and D, respectively. The CV-

based counting is represented by the traffic light symbology and 

shows that most of the C area has less than 10 insects per 

interbranch. This is also confirmed by the ground truth data, 

represented by the light blue-purple colour scale on the rows. 

Instead, area D shows several spots where the infestation 

overcomes the threshold of 30 insects per interbranch, both in the 

CV-based and the manual counting. Therefore, Figure 9 shows a 

clear correspondence between the CV-based and the manual 

measurements of insects. 

 

Figure 10 shows the number of Popillia detected in each survey 

for each study area, comparing the two types of counting methods 

in different colours: manual (blue) and CV-based (orange). The 

trends of the two methods are similar, as can be confirmed by the 

Pearson correlation coefficient computed between them, which 

ranges between 0.89 and 0.96, with 1 being the value for perfect 

correlation. 

 

Table 3 provides the basic statistics of the difference between 

CV-based and manual counting, computed per interbranch unit:  

- Averages are always positive: this means that the CV 

method is affected by a mean systematic error, which 

makes the algorithm overestimate the number of insects. 

The error, computed on the number of insects detected 

over the entire study area at each survey, is about 40% 

(with a minimum of about 10%, and maximum of about 

80%).  

- The maxima may be due to limitations in the quality of 

acquired images (low resolution) and navigation sensors 

(poor quality). Further experimentation and testing of 

new sensors could help improve this issue. 

- The minima could be caused by acquisition holes. 

Specifically, in some cases, the SfM approach applied to 

NIR images encountered problems resulting in 

insufficient information or incorrect external orientation 

parameters that affected the final results of insect 

recognition.  

- The standard deviation indicates the precision of the 

method and ranges from 1.89 to 6.29 insects per 

interbranch, with an average of 4-5 insects. This enables 

accurate spatialisation of insects detected in vineyards, 

laying the foundation for phytosanitary intervention 

maps.  

Overall, the CV-based monitoring method is effective, with an 

overestimation that provides a safety measure. However, the 

overestimation may be reduced by fine-tuning the detection 

algorithm, for example, using adaptive cut-off scores instead of 

fixed ones over the extraction features. Finally, it has sufficient 

precision to discriminate areas that do not require treatment from 

those that need it. 

Statistics 
Briona 

Area C 

Briona 

Area D 

Ghemme 

Area C 

Ghemme 

Area D 

Average  2.25 2.16 4.68 1.73 

Max 40 33 21 34 

Min -16 -30 -43 -29 

Std 6.29 3.86 1.89 5.18 

 

Table 3. Statistics of the difference between CV-based and 

manual counting. 

 

 
 

Figure 9. An example of a representation of CV-based and 

manual insect counting is in ArcGIS Pro for monitoring in 

Ghemme. CV-based counting is represented by the green-red 

traffic light symbology over the areas of interest, while manual 

counting (ground truth) is represented by a blue-purple colour 

scale over the row lines. The values in the legend refer to the 

number of insects per interbranch. Each interbranch measures 3-

5 m. 
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Figure 10. The number of Popillia detected by the two methods, manual and CV counting, during each survey. The vertical dotted 

lines indicate when pesticides were spread over the vineyards, which justifies the following decrease in the number of insects. 

 

5. Conclusions 

In conclusion, drones with appropriate sensors and specific 

acquisition procedures offer a rapid and reliable solution for 

temporal monitoring of Popillia Japonica invasion in vineyards. 

Computer vision algorithms, together with near-infrared 

imagery, have shown great potential in insect detection and 

counting, as evidenced by previous studies. The proposed CV-

based method for monitoring Popillia in vineyards, employing 

NIR sensors mounted on UAS for data acquisition, builds upon 

this foundation. The methodology involved three main steps: 

insect detection and counting using a CV algorithm, recalibration 

of exterior camera orientation, and spatialisation of detected 

insects on georeferenced 3D models of vineyards. The results 

demonstrate a clear correspondence between CV-based and 

manual insect measurements, with Pearson correlation 

coefficients indicating strong agreement between the two 

methods, ranging from 0.89 to 0.96. Although the proposed CV-

based method may overestimate insect numbers, it still provides 

valuable insights for targeted pest management interventions and 

damage assessment. Future refinements to the detection 

algorithm, such as adaptive cut-off scores, could further improve 

accuracy and reduce overestimation. Overall, the study lays the 

foundations for a standardised and replicable protocol for 

monitoring Popillia infestations in vineyards, offering a 

promising approach to mitigate the economic and environmental 

impacts of this invasive pest. 
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