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Abstract 

 

Urban green spaces (UGS), integral to modern urban life, play a pivotal role in shaping ecological, low-carbon, resilient, and livable 

cities. Understanding the microstructure and macro patterns of UGS is necessary but limited. In this context, we investigated the 

spatial patterns in the 36 major cities in China using Ziyuan-3 remote sensing images. We used a method for extracting UGS suitable 

for complex urban environments, and then selected 5 landscape pattern indices such as percent of landscape and patch density to 

analyse the spatial pattern of UGS in the 36 cities. The results show that: (1) The overall accuracy, recall, F1 value, and intersection 

over union of the extraction results of UGS were 94.62%, 94.11%, 94.36%, and 89.33% respectively; (2) Overall, the green space 

rate of the 36 cities exhibited a spatial distribution pattern of “high in the east and low in the west, low in the north and high in the 

south”; (3) Variations among cities were weak in terms of patch shape, but significant in patch density. The findings of this study 

cater to the escalating demands of urban planning and management. 

 

 

 

1. Introduction 

Urban green space (UGS), characterized by natural and artificial 

vegetation, constitutes indispensable landcovers in urban areas. 

UGSs play a crucial role in improving urban ecological 

environment, due to their ability to reduce air pollution, mitigate 

dust, and alleviate the urban heat island effect. Moreover, UGSs 

have a positive impact on mental well-being and physical health, 

providing relief from stress and promoting overall wellness 

among residents (Chen et al. 2022). Simultaneously, UGSs 

enhance the quality of urban living by serving as recreational, 

exercise, and social spaces, thereby contributing to residents' 

happiness (Richards and Belcher 2019). UGSs are an 

indispensable component of cities, and accurately and 

efficiently monitoring their extent is of paramount importance 

for evaluating urban ecological environment and optimizing 

urban structures. 

 

Traditionally, acquiring the spatial distribution of UGSs relied 

on manual field measurements, resulting in high data accuracy. 

However, due to the extensive and fragmented coverage of 

UGSs, manual surveys are inefficient and resource-intensive 

(Liao et al. 2021). Meeting the demands for frequent updates of 

UGS spatial distributions using manual field measurements is 

challenging. Advancements in Earth observation satellites have 

led to the widespread use of medium-resolution and low-

resolution remote sensing images for UGS extraction (Yin et al. 

2022; Kuang and Dou 2020). However, medium-resolution and 

low-resolution remote sensing images were limited to extracting 

large patches of UGS or estimated the proportion of green 

spaces with a pixel. High-resolution remote sensing images 

enabled the extraction of small green patches in street blocks 

and green belts, facilitating large-scale monitoring of fine 

distributions of UGSs (Zhang et al. 2023). 

 

The utilization of remote sensing images has gained popularity 

in studying the patterns and dynamics of UGSs. Through the 

analysis of medium-resolution images from satellites such as 

Landsat, researchers can map and monitor the changes of UGSs 

over time. Researchers had been conducted in several cities in 

China, including Beijing, Wuhan, Shenzhen, Guangzhou, and 

Shanghai, aiming to explore the quantity, quality, and spatial 

distribution of UGSs (Huang et al. 2017, 2021; Yin et al. 2022). 

These investigations have revealed a decline in UGSs across 

multiple cities due to urbanization, economic development, and 

population growth. However, there had also been instances of 

an expansion in UGSs, especially in central urban areas. 

Furthermore, the relationship between green spaces and urban 

heat island effect had been examined, with results showing that 

green spaces can help mitigate the effects of urbanization on 

temperature (An et al. 2022; Qiao et al. 2020). In summary, the 

use of remote sensing images had provided valuable insights 

into the patterns and dynamics of UISs, contributing to the 

planning and management of sustainable cities. However, our 

understanding of the fine-scale distribution of UGSs remains 

limited. 

 

The objective of this study was to was to efficiently acquire 

large-scale spatial data on urban green spaces (UGSs) in 

China’s 36 major cities using ZY-3 satellite images. We 

extracted green spaces both inside and outside of building 

shadows using different features. Subsequently, we selected five 

landscape pattern indices to analyse the spatial distribution of 

urban green spaces across 36 cities. The findings from this 
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analysis contribute to urban planning, ecological environment 

conservation, and the well-being of residents. 

 

2. Study area and data 

2.1 Study area 

The study was conducted in the urban areas of China’s 36 major 

cities, including four municipalities, 27 provincial capitals, and 

five municipalities with independent planning status. The 36 

cities located in different regions of China (Figure 1) were 

grouped into three levels according to the urban population: 

level I (greater than 10 million, 7 cities), level II (5 million to 10 

million, 12 cities), and level III (<5 million, 17 cities). 

 

 

Figure 1. Map of study area 

 

2.2 Data sources 

The high-resolution remote sensing images acquired from 

China's Ziyuan-3 satellite were employed to produce digital 

ortho-photo maps (DOMs) through a series of preprocessing 

steps, including orthorectification, geometric correction, and 

mosaicking. The produced DOMs had a spatial resolution of 2.1 

meters and consisted of 4 bands: blue, green, red, and near 

infrared. Despite variations in the acquisition dates of remote 

sensing images, all utilized images were obtained in 2023. After 

producing the DOMs, the maps were utilized to extract UISs in 

the study area. 

 

Auxiliary data included urban and administrative boundaries in 

this study. The global urban boundary and prefecture-level 

administrative unit were employed to limit extraction areas. The 

urban extent data of the 36 cities was obtained from the multi-

temporal dataset of global urban boundaries (GUB, Li et al. 

2020). We removed the patches that were smaller than 1 km2 in 

the GUB dataset. The global administrative area was utilized for 

mapping extraction results. 

 

Data usage Data name Data type 

Remote sensing 

image 

ZY-3 satellite 

images 
Raster, 2.1m 

Auxiliary data 

Global urban 

boundary 
Vector 

Prefecture-level 

administrative unit 
Vector 

Global 

administrative area 
Vector 

Table 1. Data details 

 

3. Method 

The flowchart of this study is shown in Figure 2, which is 

divided into 2 parts: (1) using different features to extract UGSs 

in non-shadow and shadow areas, and (2) calculating landscape 

pattern indices to analyse the spatial distribution characteristics 

of UGSs. 

 

 

Figure 2. Extraction and analysis process of urban green spaces 

 

3.1 Extraction of UGS 

3.1.1 Feature for extracting shadows 

First, the SAM (Segment Anything Model) was used to segment 

a remote sensing image, and then the image was converted to 

the HSI color space to calculate the features for extracting 

shadows. These features were then statistically analysed to 

generate object-level shadow extraction features. Figure 3 

shows the flowchart of calculating the object-level feature for 

extracting shadows. 

 

 

Figure 3. Flowchart of calculating the object-level features for 

extracting shadows 

 

The images of study areas were cropped using a window of 

256x256 pixels with a 20% overlap between adjacent windows. 

The tones of the used remote sensing images were overall dark, 

so the percentage linear stretch was applied to the cropped 

images, which significantly enhanced the brightness and 

improved the distinguishability of shadow areas. 
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In the HSI color space, shadow areas were characterized by 

higher hue and saturation, but lower brightness. Based on this, 

the shadow extraction feature FS in the HSI color space was 

calculated as follows: 

S
H S

F
I

+
=                              （1） 

 

where H = hue 

 S = saturation 

 I = brightness 

 

Using the segmented objects from the SAM model as statistical 

units, the average values of the feature FS were calculated to 

generate object-level features for shadow extraction. 

 

3.1.2 Feature for extracting greens 

 

In order to enhance the distinction between vegetation and 

water, we improved NDVI according the spectral characteristics 

of green spaces and water bodies in ZY-3 satellite images. The 

green space extraction feature FG that was resistant to the 

interference of low-brightness pixels was constructed by 

increasing the ratio of the numerator to the denominator as 

follows: 

( )( )

( )
G

NIR R NIR R
F

NIR R

− −
=

+
           （2） 

 

where  NIR = value of near infrared band 

              R = value of red band 

 

3.1.3 Extraction process 

The entire process of extracting UGSs proceeded as follows: 

first, we extracted building shadows; next, we identified green 

spaces both outside and inside these shadows; and finally, we 

merged the green spaces from both areas. The thresholds for the 

UGS extraction of each image were determined through manual 

interpretation. The extraction was carried out for each city, 

generating extraction results for the 36 cities. 

 

3.2 Analysis of UGS 

In terms of area, number, density, isolation, and shape, the total 

of 5 landscape metrics were calculated separately to evaluate 

landscape structure of UGSs for each city. First, the percentage 

of landscape (PLAND) were calculated to measure the regional 

divergence of the area of UGSs. Then, the patch density (PD), 

the number of patches per unit area of urban areas, was 

calculated. The largest patch index (LPI) was used to measure 

the dominance of a single largest patch within UGSs. 

Furthermore, the Average Nearest Neighbour (ANN) was 

adapted to quantify distribution of UGS patches. Cities with 

lower ANN means that UGSs patches were more clustering. In 

order to measure the complexity of patch shapes of UGSs, the 

area landscape shape index (LSI) was used. Cities with higher 

LSI values have more irregular patch shapes of UGSs. 

 

4. Results 

4.1 Overall accuracy 

The overall accuracy, recall, and F1 value of the extraction 

results of UGS were 94.62%, 94.11%, 94.36%, and 89.33% 

respectively. The mean intersection over union was 89.33%. 

The mean overall accuracy of classification met the suggested 

accuracy for land cover analysis, i.e., 85%. Figure 4 is the 

extraction result of UGS in Shenzhen, with good extraction 

performance for both large and small green spaces. 

 
（a）overall result 

 
（b）local result 

Figure 4. Urban green spaces of Shenzhen. 

 

4.2 Analysis of PLAND 

The top 10 cities, with the highest PLAND of UGS at the city 

level, were derived and ranked (Table 2).  Among these cities, 

the highest PLAND of UGS was in Shenzhen. The PLAND of 

Lhasa was the lowest, with 8.40%. The PLAND of Shenzhen 

was 5.54 times that of Lhasa. Meanwhile，among the top 10 

cities，8 cities were in the east zones, and only Wuhan and 

Zhengzhou were in the central zones. 

 

City 
Urban area 

（km2） 

Green space 

（km2） 
PLAND 

Shenzhen 1350.53 658.17 48.73% 

Beijing 1892.55 826.55 43.67% 

Xiamen 629.01 263.51 41.89% 

Zhengzhou 758.05 312.17 41.18% 

Jinan 1008.31 409.05 40.57% 

Shanghai 1532.69 588.54 38.40% 

Hangzhou 1012.92 379.76 37.49% 

Shenyang 731.35 273.28 37.37% 

Ningbo 712.99 265.59 37.25% 

Wuhan 1162.79 424.96 36.55% 

Table 2. Top 10 cities with highest PLAND 
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Ranking PLAND in descending order, the cities with large 

differences in overall PLAND and block-level PLAND are 

listed in Table 3. Although Guangzhou and Nanchang ranked 

lower in overall PLAND, the block-level PLAND of the two 

cities were high. Especially, Guangzhou ranked first in block-

level PLAND and 18th in overall PLAND. In contrast, 

Shenzhen ranked first in overall PLAND of UGS, but 12th in 

block-level PLAND of UGS. 

 

City Rank 
Rank of green 

spaces in blocks 
Change 

Guangzhou 18 1 17 

Haikou 29 16 13 

Chengdu 19 11 8 

Nanchang 16 9 7 

Shijiazhuang 30 26 4 

Nanjing 12 20 -8 

Jinan 5 15 -10 

Xiamen 3 13 -10 

Guiyang 21 32 -11 

Shenzhen 1 12 -11 

Table 3. Rank of green spaces in blocks 

 

Certain cities, such as Xining, Guiyang, and Dalian, had a lower 

overall PLAND of UGS, but a higher PLAND of urban park 

green space (Table 4). Citizen in these cities could enjoy good 

green environment by going to parks. On the other hand, there 

were also cities (Shanghai and Wuhan) where the PLAND of 

urban park green space ranked lower, but the block-level 

PLAND of UGSs ranked higher, indicating that citizen can 

enjoy good green environment in their living blocks. 

 

City Rank  
Rank of green 

spaces in parks 
Change 

Shanghai 6 26 -20 

Wuhan 10 29 -19 

Nanchang 16 33 -17 

Ningbo 9 25 -16 

Shenyang 8 22 -14 

Changsha 11 24 -13 

Dalian 17 4 13 

Huhehaote 33 18 15 

Guiyang 21 6 15 

Xining 32 13 19 

Table 4. Rank of green spaces in parks 

 

Figure 5 shows the spatial distribution of PLAND values of 

UGS for the 36 Chinese cities. Overall, the cities in the 

northwest side of the Aihui-Tengchong Line had a lower 

PLAND of UGS. The five cities with lowest PLAND (Lhasa, 

Urumqi, Lanzhou, Hohhot, and Xining) were all located in the 

western region of China. Among the cities in the southeast side 

of the Aihui-Tengchong Line, there was no clear correlation 

between latitude and PLAND of UGS. Shenzhen has the highest 

PLAND, while Beijing and Jinan in North China had a higher 

PLAND than Xiamen, Guangzhou, and Fuzhou in South China. 

However, there was a large difference in PLAND of China 

among northern cities, with both high PLAND in Beijing and 

low PLAND in Shijiazhuang and Qingdao. The difference in 

PLAND of UGS among the 4 cities in Northeast China was 

small. 

 

 
Figure 5. Overall PLAND of UGS 

 

Figure 6 shows the spatial distribution of PLAND values of 

UGS in blocks for the 36 Chinese cities. Only considering the 

green space in urban blocks, the PLANDs of in western cities of 

China remained lower. Yinchuan, Chengdu, and Xi'an were the 

cities with relatively high block-level PLAND in the western 

region, and only Yinchuan was far away from the Aihui-

Tengchong Line. Among the cities in the southeast side of the 

Aihui-Tengchong Line, UGS showed a certain latitudinal 

zonality. The cities along the Yangtze River (Shanghai, Nanjing) 

and the cities in South China (Xiamen, Fuzhou, Shenzhen, 

Guangzhou) had relatively high PLAND of urban blocks, while 

cities in Northeast China (Harbin, Shenyang, Changchun) and 

cities in North China (Dalian, Shijiazhuang, Tianjin) had lower 

green space ratios in blocks. 

 

 
Figure 6. PLAND of UGSs in blocks 

 

Figure 7 shows the spatial distribution of PLAND values of 

urban park green spaces for the 36 Chinese cities. The cities 

with the highest proportion of urban park green spaces were 

Beijing, Dalian, Jinan, Guangzhou, Shenzhen, and Guiyang, 

with both northern and southern cities represented. At the same 
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time, Yinchuan, Hohhot, and Xining in the western region had a 

high PLAND of urban park green spaces.  

 

 

Figure 7. PLAND of urban park green spaces 

 

4.3 Analysis of landscape 

Landscape metrics of UGSs for the 36 Chinese cities were 

shown in Figure 8. The mean LPI was 4.34% (SD = 1.12%), 

ranging from 0.24% to 4.77%. The values suggested that the 

dominance of the largest UGS patches is weak in most cities 

and variation is high among these cities. The mean PD was 

325.55 count/km2 (SD = 188.46 count/km2), ranging from 

111.89 to 1545.96 count/km2. This wide range of PD values 

indicated that levels of fragmentation of UGS varied greatly in 

studied cities. The mean LSI of UGSs in blocks of was 1.37 

(SD = 0.01), ranging from 1.54 to 1.22. The shape complexity 

of UGS did not vary much across cities. The ANN values of 

UGSs in blocks varied from 0.59 to 0.87, averaging (0.06), 

which showed clustering distribution of UGS patches in these 

cities. 

 

 
（a） 

 
（b） 

 
（c） 

 
（d） 

Figure 8. Summary statistics of landscape metrics of urban 

green spaces, (a) largest shape index, (b) patch density, (c) 

landscape shape index, and (d) average nearest neighbour. 

 

5. Conclusion 

In this study, we employed ZY-3 satellite images to investigate 

the spatial patterns of UGSs in the 36 major cities. The overall 

accuracy, recall, F1 value, and intersection over union of the 

extraction results of UGS were 94.62%, 94.11%, 94.36%, and 

89.33% respectively. We found that the Aihui-Tengchong Line 

divided the western cities of fewer UGSs and the eastern cities 

of more UGSs. While variations in patch shape were minimal 

among cities, significant differences existed in patch density 

and area proportions. The findings of this study addressed to the 

increasing demands of urban planning and management. In our 

feature study, we plan to conduct UGS mapping in all cities of 

China using ZY-3 satellite images.  
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