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ABSTRACT: 

Urban lakes serve an indispensable role in maintaining the ecological balance of cities, ensuring flood safety, and providing recreational 

spaces for tourism. With the development of human activities and economic, the extent of urban lakes are inevitably influenced. 

Currently, the ability to detect detailed temporal changes in urban lake areas using high resolution data still has limitations. This study 

proposed a novel method by combining time series Gaofen-1 (GF-1) remote sensing data and random forest machine learning algorithm 

to explore the urban lakes change Zhushan Lake located in Wuhan. The research conducted the extraction of surface water for Zhushan 

Lake and its surrounding pit-ponds from 2013 to 2020. And then, a quantitative analysis of the characteristics and driving factors of 

lake changes is conducted. We find that (1) the accuracy of surface water extraction using the random forest classification method 

consistently exceeded 96%. The Kappa coefficient ranges from a minimum of 0.86 to a maximum of 0.99. (2) A noticeable decline 

was observed in the water areas of Zhushan Lake and its surrounding pit-ponds, predominantly along the northwestern shoreline and 

in the eastern pond regions. This decline is primarily attributed to pressures from building construction. The methodology proposed in 

this study is suitable for the area management of lakes in urban areas. 

1. INTRODUCTION

Urban lakes play a pivotal role in the regional natural and 

human environments, which only supply water for living and 

production but also exhibit multiple functions, including flood 

control (Hayashi et al., 2008), urban heat island regulation(Yang 

et al., 2015), water storage(Song et al., 2013), tourism(Gossling 

et al., 2012), and climate regulation(Yan et al., 2013). These 

functions offer significant impetus for the sustainable 

development of cities. However, urban lakes have faced severe 

threats due to the urbanization in recent years (Zhang et al., 

2018), such as water pollution(Brock et al., 2006) and Lake area 

shrinks (Kai et al., 2010).Therefore, investigating the changes  of 

urban lake area is of great significance for urban environment 

sustainable development. 

Objectively and accurately observing and understanding the 

changes in the area of urban lakes is a key indicator of urban land 

use mapping and ecosystem assessment. Remote sensing, with 

its high spatial and temporal resolution, wide coverage, long 

time-series data, diversity, and real-time observation capabilities, 

has significant advantages in observing changes in urban lakes, 

making it a crucial tool for exploring the change pattern of urban 

lakes. 

The surface water extent of urban lakes is an important 

indicator to measure change pattern. Previous study have 

developed different water extraction methods (He et al., 2018). 

These methods are mainly categorized into two types: threshold 

segmentation methods and classifier model methods. The 

threshold segmentation method can be further divided into 

single-band method, spectral relationship method, and water 

body index method. For example, Liu employed the single-band 

method and multi-source remote sensing data to extract the water 

area of Lake Chad in Africa (Liu et al., 2013); Jiang combined 

the spectral features of vegetation red edge and shortwave 

infrared bands in Sentinel-2 satellite imagery, proposing a new 

water index termed surface water index (SWI)(Jiang et al., 
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2021);Zhang employed Landsat imagery and Gaofen data to 

extract and analyze the spatiotemporal variations in the surface 

area of Poyang Lake using the surface water index 

method.(Zhang et al., 2019). 

The threshold method requires the manual setting of 

segmentation thresholds according to prior knowledge, which 

can cause errors when extracting water bodies in a complex 

urban environment area (Zhou et al., 2020). The classifier model 

method treats the water body as a category of land cover and 

applies classifier algorithm rules to extract water body from 

remote sensing imagery. The popular methods include object-

oriented, decision tree, support vector machine, neural network 

and random forest(Jiang et al., 2018). For example, Shen’s study 

proposed a mountainous water body decision tree extraction 

model based on GF-5 image data and extracted the water body 

in the Dongchuan District of Kunming City(Shen et al., 2021). 

Dong’s research employed Landsat 7 ETM data and a support 

vector machine to determine the surface water area of Guiyang 

City, then analyzed its spatiotemporal change characteristics and 

driving factors(Dong et al., 2022). A multilayer perceptron 

(MLP) neural network was proposed to identify surface water 

with Landsat 8 satellite images, which was compared the 

extraction accuracy with water indices and support vector 

machines. The results found that the MLP method can achieve 

better performance compared with water indices and support 

vector machine(Jiang et al., 2018). 

Random forest is a widely used classification algorithm for 

remote sensing imagery. Previous studies indicate that random 

forest exhibits significant advantages in classification accuracy, 

training time, and classifier stability across varying training 

samples and study areas(Pal et al., 2010). Currently, the 

extraction of detailed temporal changes in urban lakes is 

challenging for high spatial resolution remote sensing imagery 

due to the small size of urban lakes and the complexity of the 

urban environment. To explore the change pattern of urban lakes 

using remote sensing data, this study aims to propose a new 

method by combining time series Gaofen-1 satellite remote 
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sensing data from 2013 to 2020 and random forest machine 

learning algorithm. And then, the Zhushan Lake, located in 

Wuhan city is taken as an experimental area to conduct the 

quantitative analysis of the water areas change pattern. 

 

2. STUDY AREA AND MATERIALS 

2.1 Study Area 

Wuhan is characterized by its intricate network of rivers, 

ports, and a myriad of lakes and ponds, earning it the moniker 

"City of Hundred Lakes" with a record of having 166 lakes. One 

such lake is Zhushan Lake (Figure 1), which is located in the 

eastern part of Caidian District, and is among the 43 urban lakes 

in Wuhan. Zhushan Lake, a crucial water source for Wuhan, not 

only supplies drinking water to its residents but also plays an 

indispensable role in agricultural irrigation and in industrial 

water usage. Moreover, the lake holds significant ecological and 

tourist value. The surrounding ecosystem offers recreational and 

natural sightseeing opportunities for local residents, thereby 

contributing to the city’s ecological balance. However, in recent 

years, the rapid urbanization process and human activity have 

impacted the extent of Zhushan Lake. 

 

Figure 1. The location of study area 

 

2.2 Data collection and preprocessing  

This study collected time series Gaofen-1(GF-1) remote 

sensing data from 2013 to 2020 (Table 1). To ensure the 

comparability of lake extraction results across different periods, 

remote sensing images were preferably selected during the wet 

season (May to September), with the temporal phase of the 

remote sensing data kept as consistent as possible. For certain 

data sets, cloud cover can impact the precision of water body 

information extraction, which prompted the selection of data 

from adjacent months. Furthermore, the remote sensing image 

data underwent preprocessing steps, which included geometric 

correction, image fusion and image clip, thus achieving an 

experiment data with 2m spatial resolution.

Year Sensor Model Date of Acquisition Scene Sequence ID 

2013 GF-1_PMS2 2013/5/1 5354 

2014 GF-1_PMS1 2014/7/22 399402 

2015 GF-1_PMS1 2015/3/25 1035471 

2016 GF-1_PMS1 2016/7/25 2641048 

2017 GF-1_PMS1 2017/2/19 3350254 

2018 GF-1_PMS1 2018/5/16 5031736 

2019 GF-1_PMS2 2019/12/3 7154181 

2020 GF-1_PMS2 2020/8/1 7995236 

Table 1. The metadata of the time series GF-1 remote sensing data 

 

3. METHODOLOGY 

3.1 Research method flow 

The flowchart of this study is shown in Figure 2, this 

flowchart contains four steps. The first part involves the 

collection of time series GF-1 image data and the subsequent 

preprocessing of these data. In the second part, training samples 

and feature bands are selected to construct a random forest model 

for extracting of lake water areas. The third part is dedicated to 

the verification of the accuracy of the lake water area extraction 

results. In the final part, indicators for evaluating lake changes 

are proposed to explore the change pattern and factors of urban 

lakes. 
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Figure 2. Flow chart of research method 

3.2 Random Forest Classification Algorithm 

Random forest is an ensemble learning method, composed 

of multiple decision trees. Each decision tree is trained on a 

random subset to achieve optimal classification results(Amit et 

al., 2001). The classification principles are as follows: 

For the training sample set 𝑋 , which contains n samples, 

each sample has 𝑀 features. Each sample corresponds to a target 

set 𝑌 ,which is divided into 𝑘  classes. In the random forest 

classification algorithm, it is usually divided into two 

classes.Therefore, we have the training sample set 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛}, and the target set 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛}. From the 

training sample set 𝑋, 𝑛’ training samples are randomly drawn 

using the bootstrap sampling method (where 𝑛’ < 𝑛) to form a 

new training subset. For each new training subset, m features are 

randomly selected (𝑚 < 𝑀), and the optimal feature is selected 

from these m features for splitting. The mth feature xm in the 

training subset 𝐷  is sorted in ascending order, denoted as 
{𝐴1, 𝐴2, … , 𝐴𝑚}, to obtain the set T of m − 1 split points of the 

feature 𝑥𝑚, where {𝐴1, 𝐴2, … , 𝐴𝑚} 

𝑇𝑖 = {
𝐴𝑖 + 𝐴𝑖+1

2
|1 ≤ 𝑖 ≤ 𝑚 − 1} (1) 

where  𝐴𝑖  = 𝑖  th training sample in ascending order feature 

value 

 𝑇𝑖 =  𝑖 th split point of the feature 𝑥𝑚 

Select the m  th feature 𝑥𝑚  and the i  th split point 𝑇𝑖 , 

resulting in two feature space subsets in the training subset 𝐷 

that are divided: 

𝐷1(𝑚, 𝑡) = {𝑥|𝑥𝑚 ≤ 𝑇𝑖}, 𝐷2(𝑚, 𝑡) = {𝑥|𝑥𝑚 > 𝑇𝑖} (2) 

Traverse all the features in the training subset 𝐷, and use the 

calculation of the Gini coefficient to find the optimal split feature 

𝑥𝑚 and the optimal split point T to construct the decision tree: 

𝐺𝑖𝑛𝑖(𝐷, 𝑚) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2) (3) 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑘
2

2

𝑘=1

 (4) 

𝑃𝑘 =
|𝐶𝑘|

|𝐷|
 (5) 

 

where  |𝐷1|, |𝐷2|= number of samples corresponding to the 

feature space subsets 𝐷1 and 𝐷2. 
|𝐷|= number of samples in the training sample subset 

𝐷. 

𝐺𝑖𝑛𝑖(𝐷1) , 𝐺𝑖𝑛𝑖(𝐷2)  are the Gini coefficient of the 

feature space subsets 𝐷1 and 𝐷2 respectively. 

𝑝𝑘 = proportion of samples in the dataset that belong 

to category 𝑘. 

𝐶𝑘  = subset of samples in the training subset 𝐷 that 

belong to the 𝑘 class. 

Repeat the above steps until the predetermined number of 

decision trees are constructed. When the numerous decision trees 

of the random forest are constructed, the input to be classified is 

given, and all the decision trees in the random forest will give a 

classification result (water body and non-water body) 

respectively, and vote. The classification result with the most 

votes will be output as the final classification result 

 

3.3 Accuracy Assessment 

In order to validate the precision of the water body extraction 

performed by the random forest classifier, this study employed a 

confusion matrix to compute accuracy evaluation indicators. 

These indicators included the Overall Accuracy (OA) and the 

Kappa Coefficient are served to assess the accuracy of the 

extracted water body result. 

(1) Overall accuracy (OA) 

𝑂𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (6) 

where  𝑇𝑃 = number of pixels that are actually water body 

pixels and are also detected as water body pixels. 

 𝑇𝑁  = number of pixels that are actually non-water 

body pixels and are also detected as non-water body pixels. 

 𝐹𝑃  = number of pixels that are actually non-water 

body pixels but are detected as water body pixels. 

 𝐹𝑁 = number of pixels that are actually water body 

pixels but are detected as non-water body pixels. 

(2) Kappa coefficient 

 
 

𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑜 − 𝑝𝑒

1 − 𝑝𝑒
 

(7) 

𝑝𝑒 =
(𝑇𝑃 + 𝐹𝑁) × (𝑇𝑃 + 𝐹𝑃) + (𝑇𝑁 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃)

𝑛2
 (8) 

where  𝑝𝑜  = overall accuracy 𝑂𝐴 

 𝑛 = total number of samples 

This study annually selected 500 random sample pixels 

from the GF-1 imagery from 2013 to 2020. Then, the confusion 

matrix was established by manual visual interpretation to 

compute accuracy evaluation indicators. 

3.4 Urban lake change index 

Four key indicators were selected including lake area, 

shoreline length, lake shape index and lake fragmentation(Xie et 

al., 2018). These indicators were utilized to quantitatively 

analyze the change pattern in this study. 

(1) Lake Shape Index (LSI) 
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𝐿𝑆𝐼 =
𝐿

4√𝑆
 (9) 

where  𝐿 = shoreline length 

 𝑆 = lake area 

The Lake shape index serves as a quantitative measure for 

evaluating the influence of human activities on lake landscapes. 

A lower LSI value signifies a lake with a relatively simplistic 

geometric configuration, indicating a heightened susceptibility 

to the impacts of external activities. Conversely, a higher LSI 

value represents a lake with a more complex geometric 

configuration, suggesting a reduced level of human interference. 

(2) Lake Fragmentation (LF) 

𝐿𝐹 =
𝑁

𝑆
 (10) 

where 𝑁 = Lake number 

Lake fragmentation quantifies the degree of fragmentation 

in a lake, encapsulating the complexity of the lake’s spatial 

structure.  

 

4. RESULTS  

4.1 Extraction result and accuracy assessment 

Figure 3 shows the results of lake surface water extraction 

performance using the random forest classifier and time series 

GF-1 imagery. Figure 4 employed manual visual interpretation 

of samples to compute the Overall Accuracy (OA) and Kappa 

Coefficient. These indictors served to validate the precision of 

the water body extraction conducted by the random forest 

algorithm. 

Figure 4 reveal that the accuracy of water body extraction 

using the random forest classification method consistently 

exceeded 96%. The Kappa coefficient ranged from a minimum 

of 0.86 to a maximum of 0.99. A comprehensive assessment of 

these two accuracy evaluation indictors indicated that the 

random forest method demonstrates good performance in water 

body extraction of urban lakes. 

Figure 3. Zhushan Lake surface water extraction ((a),(b),(c),(d),(e),(f),(j) and (h) represent the annual extraction result from 2013 to 

2020,respectively). 
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Figure 4. Accuracy verification of surface water extraction  

 

4.2 Urban lake change analysis  

Table 2 presents the values of four indicators of change-

shoreline length, lake area, lake shape index, and lake 

fragmentation-for Zhushan Lake from 2013 to 2020. These 

results reveal a noticeable decline in both shoreline length and 

lake area since 2013. By 2020, the water area of Zhushan Lake 

and its surrounding pit-ponds has decreased by 1.11 km ² 

compared to 2013, and the shoreline length of the ponds had 

shortened by 7.63 km. This corresponds to a shrinkage rate of 

28.73% for the water area and a shortening rate of 16.4% for the 

shoreline. The lake shape index is higher in 2020 than that of in 

2013, suggesting that the lake was more severely impacted by 

external activities in 2020. Conversely, the lake fragmentation 

was greater in 2013 than in 2020, indicating a relatively better 

biodiversity in 2013. 

Observations of water extraction results from 2013 to 2020 

reveal a significant reduction in the area of lakes along the 

northwestern shores and ponds in the eastern part of the study 

area. In the northwestern region, lake infilling began from 2014. 

Starting in 2018, construction of a factory commenced, and by 

2019, the construction of this factory was completed. In the 

eastern region, infilling of pit-ponds started from 2013. From 

2015 to 2018, construction began on the infilled the lake area, 

and this project was essentially completed until 2018. 

Consequently, it can be concluded that the water area changes of 

Zhushan Lake and its surrounding pit-ponds are primarily due to 

anthropogenic infilling of lakes and ponds. The infilled areas are 

mainly used for building construction. 

Year Shoreline Length (km)  Lake Area (km²) Lake Shape Index Lake Fragmentation 

2013 46.53 3.87 5.91 23.75 

2014 36.34 3.66 4.75 11.21 

2015 38.87 3.42 5.25 15.78 

2016 38.47 3.66 5.02 16.10 

2017 38.84 3.13 5.48 27.11 

2018 34.79 3.76 4.49 12.77 

2019 33.99 3.12 4.81 12.82 

2020 38.90 2.76 5.85 22.82 

Table 2. Urban lake change index 

 

5. CONCLUSION 

This study, focusing on Zhushan Lake and the surrounding 

pit-ponds in Wuhan City, utilized time series GF-1 remote 

sensing imagery and random forest algorithm to extract water 

bodies of Zhushan Lake. The following conclusions are obtained: 

(1) The application of the random forest algorithm for water 

body extraction achieved high extraction precision. The OA 

exceeded 96% and the overall Kappa coefficient was 0.95. 

(2) From 2013 to 2020, the water body area of Zhushan Lake 

and its surrounding ponds decrease by 1.11 km ² , and the 

shoreline length reduced by 7.63 km. The shrinkage rate of the 

water body area is 28.73%, and the shortening rate of the pond 

shoreline is 16.4%. 

(3) Through the study of key changing areas, it was found 

that Zhushan Lake and its surrounding pit-ponds are mainly 

impact by building construction.  

These results of this study demonstrated the feasibility and 

accuracy of using the random forest algorithm for water body 

extraction, providing a methodological reference for exploring 

the factors influencing changes in river and lake water 

environments.  
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