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Abstract 
 
The polar ice sheets serve as natural thermostats, regulating Earth’s temperatures. The Greenland Ice Sheet (GrIS), the second-largest 
ice sheet, is a critical indicator of climate change and global warming. Estimating the volume of supraglacial lakes on the GrIS, which 
is directly linked to the extent of melting in the Arctic ice sheet, requires information on both lake area and water depth. Conventional 
bathymetric methods (i.e., airborne bathymetric LiDAR, shipborne echo-sounder) are commonly used for accurate water depth 
measurement. However, polar supraglacial lakes face challenging conditions, leading to uncertainties in their spatial and temporal 
distribution. To overcome the limitations, this study combines Sentinel-2 and ICESat-2 (Ice, Cloud, and Land Elevation Satellite-2) to 
estimate bathymetry and detect changes in lake volume on the GrIS from 2019 to 2023. Firstly, Sentinel-2 images were pre-processed, 
and ICESat-2 single-photon LiDAR points were extracted using the DBSCAN (Density-Based Spatial Clustering of Applications with 
Noise) method, followed by the bathymetric corrections as the training data. Subsequently, three bathymetry models (i.e., log-linear, 
log-ratio, and BP (Back Propagation) neural network) were constructed using Sentinel-2 images and ICESat-2 data. Lastly, the high-
resolution ArcticDEM (Arctic Digital Elevation Model) was used as the validation data to assess the satellite-derived bathymetry 
accuracy. In this study, the log-ratio model yielded the best results with the R2, RMSE, and MAE of 0.92, 0.79 m (lower than 10% of 
the maximum depth), and 0.62 m. The results demonstrate the feasibility of the integrated active and passive remote sensing approach 
for bathymetry in Arctic supraglacial lakes.  
 
 

1. Introduction 

The melting of glaciers in the Arctic has significant implications 
for global climate change and is a key manifestation of global 
warming. Arctic glaciers are considered natural thermostats, and 
changes in the volume of Arctic supraglacial lakes can provide a 
direct indication of the extent of Arctic glacier melting (Box et 
al., 2022). Estimating water depth is crucial for detecting the 
volume of Arctic lakes. Conventional bathymetry methods, such 
as airborne LiDAR and shipborne echo-sounder are well-
developed and can obtain accurate water depth data (ZHAO et al., 
2001). However, they have limitations in remote or sensitive 
areas in terms of time and space (Li et al., 2022). Arctic lakes are 
often located in inland areas with harsh climates, making it 
difficult for ship-based platforms to access them. Additionally, 
for some sensitive areas, airborne bathymetric methods (e. g. 
LiDAR) are restricted. In general, these conventional methods 
have limitations in remote and harsh regions, and are both time-
consuming and costly.  
 
Satellite-derived Bathymetry (SDB) is emerging as a pivotal 
technology for large-scale shallow water bathymetry, leveraging 
ocean optics to estimate coastal water depth. (Albright., et 
al.2020; Duplančić Leder., 2019; Thomas et al. 2021). It 
addresses the temporal and spatial limitations of conventional 
bathymetry methods by using high-temporal-resolution satellite 
data. In 2018, NASA launched ICESat-2 (Ice, Cloud, and Land 
Elevation Satellite-2), intending to provide a global distribution 
of elevation measurements. To ensure the accuracy of 
bathymetric inversion, the detected underwater photons of 
ICESat-2 were used as in-situ measurement data in many studies 
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(Zhang et al., 2022; Li et al., 2023). Therefore, using both passive 
and active remote sensing datasets is feasible for SDB. 
 
Ma et al. (Ma et al., 2021) used Sentinel-2 and ICESat-2 to 
estimate bathymetry in the Xisha Islands of the South China Sea 
and the south-eastern islands of the Bahamas. Le Quilleuc et al. 
(Le Quilleuc et al., 2021) used very high-resolution Pleiades-1 
imagery and ICESat-2 data for bathymetric inversion and 
generation of benthic habitats maps using maximum likelihood 
supervised classification. Moreover, machine learning models 
have been integrated into SDB. Guo et al. (Guo et al., 2022) used 
a BP (Back Propagation) neural network within the SDB 
framework to derive water depths in the Virgin Islands of the 
eastern Caribbean Sea and the West of Oahu Island, achieving 
higher accuracy than the conventional bathymetric models. He et 
al. (He et al., 2024) analyzed water depth changes before and 
after earthquakes in Huohua Lake which is located at Jiuzhai 
Valley nature reserve with WorldView-2 (WV-2) and three 
machine learning models (i.e., random forest (RF), support vector 
machine (SVM), and multilayer perceptron (MLP) models). 
Furthermore, there are many studies for bathymetric inversion 
research in polar regions. Zheng et al. (Zheng et al., 2012) used 
Landsat-5 and multibeam bathymetric data to estimate the water 
depths of polar lakes in the northern coastal ice fields of Alaska. 
Fitzpatrick et al., (Fitzpatrick et al., 2014) used MODIS imagery 
and the field-measured bathymetric data to detect the volume 
changes of the Greenland Ice Sheet (GrIS) lakes over a decade. 
Moussavi et al. (Moussavi et al. 2016) used stereoscopic 
measurement techniques with WV-2 imagery to acquire Digital 
Depth Models (DDMs) of GrIS supraglacial lakes. Fricker et al., 
(Fricker et al., 2021) combined ICESat-2 data with Sentinel-2 
and Landsat-8 imagery to estimate water depths in polar melt 
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regions. These studies demonstrate that remote sensing datasets 
can be utilized to derive bathymetry in polar areas, enabling cost-
effective detection of water depth and quantification of stored 
meltwater volumes in the extreme climate of the Arctic region. 
  
However, utilizing airborne bathymetric LiDAR, shipborne 
sonar, or GNSS-RTK (Global Navigation Satellite System- Real-
Time Kinematic) as in-situ data for bathymetry inversion in polar 
regions needs huge costs and labour. The water depth derived 
through conventional methods is subject has various limitations 
and is difficult for long-term water depth detection requirements. 
Therefore, this study used both passive and active remote sensing 
datasets (i.e., Sentinel-2 and ICESat-2) to derive bathymetry on 
the southwest region of the GrIS and detect lake volume changes 
over five years from 2019 to 2023. Initially, ICESat-2 signal 
photons were extracted using the DBSCAN (Density-Based 
Spatial Clustering of Applications with Noise) method and then 
processed with refraction correction to obtain water depth. 
Sentinel-2 imagery was pre-processed with radiometric 
correction and atmospheric correction, then the supraglacial 
lakes were extracted from the images. Secondly, underwater 
signal photons extracted from ICESat-2 were geographically 
matched with remote sensing reflectance data from the Sentinel-
2. In this study, three different models: the log-linear model 
(Lyzenga, 1978; Lyzenga, 1985), the log-ratio model (Stumpf et 
al., 2003), and the BP neural network model were used to derive 
bathymetry in southwest GrIS supraglacial lakes. The accuracy 
of bathymetry was validated using high-resolution ArcticDEM 
(Arctic Digital Elevation Model) data. Finally, the bathymetric 
maps were produced based on the model with the best accuracy 
and efficiency for long-term bathymetry in this study. The 
proposed method enables the detection of changes in the volume 
of supraglacial lakes in the Arctic, which reflects the extent of 
melting in the GrIS. This method can also provide a valuable 
reference for detecting Arctic climate changes. 
 

2. Study Area and Data 

2.1 Study Area  

The largest ice sheet in the Arctic is located on Greenland Island, 
with 80% of its area covered by ice sheets. It is the world's 
second-largest ice sheet, surpassed only by the Antarctic ice sheet. 
However, the GrIS is more vulnerable than the Antarctic ice sheet 
and highly sensitive to climate warming. Consequently, the 
melting of the GrIS serves as a significant indicator of global 
climate change. This study focuses on the southwest region of the 
GrIS, where there are a large number of supraglacial lakes 
(Figure 1). The water quality of the supraglacial lakes is clear, 
making it feasible to extract ICESat-2 underwater photons and 
providing favorable conditions for SDB. The ArcticDEM offers 
a high spatial resolution and numerous empty lake basins that can 
be utilized to validate the precision of the bathymetry results. 

 

Figure 1. The study area is a part of the southwest of GrIS, 
which has a relatively dense distribution of supraglacial lakes 

compared to other regions. The base map is a Sentinel-2 
imagery on 2022/07/17 and Earthstar Geographics via ESRI. 

The red line corresponds to the ICESat-2 track on 2019/07/16, 
the green lines correspond to the ICESat-2 track on 2020/07/17, 
the pink lines correspond to the ICESat-2 track on 2021/07/15, 
the blue lines correspond to the ICESat-2 track on 2022/07/14, 

the yellow lines correspond to the ICESat-2 track on 
2023/07/12. 

 

2.2 Sentinel-2 Satellite Imagery 

The Sentinel-2 imagery is available for free from the European 
Space Agency's (ESA) Copernicus Data hub, consisting of 
Sentinel-2A and Sentinel-2B. Each satellite is equipped with the 
same Multi-Spectral Instrument (MSI), capable of capturing 
imagery in 13 spectral bands, including visible, NIR (Near-
infrared), and SWIR (Shortwave infrared). The Copernicus Data 
Hub provides two levels of data products: L1C (Level-1C) and 
L2A (Level-2A). L1C products are atmospheric reflectance 
products that have been ortho-rectified and geometrically 
corrected at the sub-pixel level, while L2A products primarily 
contain atmospherically corrected bottom-of-atmosphere 
reflectance data. Both L1C and L2A data were used in this study. 
L1C was corrected with atmospheric correction using the 
Sen2Cor (version 2.11) into L2A. This study used Band 2 (Blue), 
Band 3 (Green), Band 4 (Red), and Band 8 (Near infrared) with 
a spatial resolution of 10 m. The SNAP software was used to 
process the Sentinel-2 data in this study. The information on the 
selected images for the study areas is listed in Table 1. 
 

Year Dataset Date 

2019 
Sentinel-2 
ICESat-2 

2019/07/16 
2019/07/16 

2020 
Sentinel-2 
ICESat-2 

2020/07/17 
2020/07/17 

2021 
Sentinel-2 
ICESat-2 

2021/07/17 
2021/07/15 

2022 
Sentinel-2 
ICESat-2 

2022/07/17 
2022/07/14 

2023 
Sentinel-2 
ICESat-2 

2023/07/12 
2023/07/12 

Table 1. Details information on the acquisition dates of 
Sentinel-2 and ICESat-2 data for bathymetric mapping. 

 
2.3 ICESat-2 LiDAR Data 

ICESat-2 satellite, equipped with the Advanced Topographic 
Laser Altimeter System (ATLAS), was launched by NASA on 
September 15, 2018, marking the inception of a new generation 
of global altimetry satellites. Its mission is to provide high-
precision elevation measurements for polar ice sheets, sea ice, 
and forest vegetation, playing an irreplaceable role in polar ice 
and snow remote sensing applications (Xie et al., 2020). ICESat-
2 introduces single photon detection technology for the first time, 
significantly improving the data acquisition rate for terrain 
detection (Liu et al., 2022). The data is referenced to the WGS84 
ellipsoid, and the payload is designed with 6 beams. These beams 
have a laser repetition rate of up to 10 kHz, a footprint size of 17 
m, and a footprint spacing of 0.7 m. This configuration allows for 
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the continuous detection of six tracks under the satellite. Among 
the six beams of ATLAS, three beams have stronger energy, 
while the other three beams have weaker energy. This enables the 
measurement target to have different reflections and reduces 
problems caused by excessive photon counts in surface 
reflectance inversion. In this study, ICESat-2 Level-2 ATL03 
data were used to construct the bathymetric inversion model, 
which includes height, latitude, longitude, and time information 
of each photon transmitted by the ATLAS instrument on board 
the satellite. The raw ATL03 data contains a large number of 
noise photons. Although the ATL03 product provides a method 
to label noise photons based on confidence parameters, it suffers 
from a serious misclassification issue. In this study, the 
DBSCAN method is used to extract bathymetric photons and 
perform refraction correction on the extracted underwater 
bathymetric photons. 
 
2.4 ArcticDEM  

The ArcticDEM data used in the study was obtained from the 
Polar Geospatial Center at the University of Minnesota. 
ArcticDEM covers the entire area above 60°N latitude and 
provides high-resolution DEM. ArcticDEM utilizes satellite 
stereo imaging principles, combined with stereo imagery from 
WorldView-1, 2, 3, and a small number of GeoEye-1 satellites. 
It employs Surface Extraction with TIN-based Search-space 
Minimization (SETSM) software to generate DEM data with a 
spatial resolution of up to 2 m (Morin et al., 2016). The 
emergence of ArcticDEM is of great significance for 
understanding Arctic terrain and climate change. In the 
ArcticDEM data, empty basins corresponding to the supraglacial 
lakes of the GrIS can be identified, enabling the extraction of 
elevation data for the lake floor. The construction of ArcticDEM 
took a considerable amount of time, making it challenging to 
synchronize with Sentinel-2 imagery and ICESat-2 data in terms 
of timing. Previous research (Melling et al., 2023) indicated that 
there may be fluctuations in water depth between the acquisition 
times of ArcticDEM data and Sentinel-2 and ICESat-2. However, 
it is unlikely that the underlying bedrock topography of the 
supraglacial lakes would significantly change within a short 
period. By delineating the boundaries of the supraglacial lakes 
using Sentinel-2 imagery and ICESat-2 data, and vertically 
aligning the elevation of the edge photons on the surface of the 
ICESat-2 lake with the ArcticDEM hollow lake basin, the water 
depth can be derived from ArcticDEM.  The water depths derived 
from ArcticDEM are basically consistent with ICESat-2 
elevation data, demonstrating the viability of using ArcticDEM 
as validation data for bathymetric inversion. The acquisition date 
of ArcticDEM data used in this study is 2019/09/24. 

 

3. Method 

3.1  Extraction of water areas 

To extract the supraglacial lakes, it is necessary to separate the 
water from the ice sheet within the study area. In this study, the 
strong contrast in reflectance between water bodies in the green 
and near-infrared bands was used to construct the Normalized 
Difference Water Index (NDWI) (McFeeters, 1996), expressed 
as Eq. (1). By selecting appropriate thresholds, the supraglacial 
lakes can be extracted from the GrIS. To ensure the 
representativeness of the selected study area, this study only used 
lakes with a water surface area larger than 200,000 m2 for 
bathymetric analysis. 
 

 
 
 
Green NIR

NDWI
Green NIR


   (1) 

 
 where  Green = reflectance at the green band   
 NIR = reflectance at the near-infrared band 
 
3.2 Detection of ICESat-2 Lake-floor Photons 

In the raw data of ATL03, there are a large number of noise 
photons due to the solar background. Due to this reason, the data 
cannot be directly utilized and requires the removal of noise 
photons to extract signal photons for bathymetry. This study 
utilized the DBSCAN algorithm to segment signal photons and 
noise photons into different clusters by adjusting the threshold of 
MinPts, thereby achieving the goal of extracting signal photons 
while eliminating noise photons. The calculation for the adaptive 
threshold MinPts is as Eq. (2) (Ma et al., 2021): 
                                        

 1 2

1

2

2

2
ln

SN SN
MinPts

SN
SN




 
 
 

 (2) 

  
where  SN1 = number of signal photons 

  SN2 = number of noise photons 
 
3.3 Bathymetric Correction of Lake-floor Photons 

Since the original ATL03 data did not take into account the 
refraction caused by the change of laser propagation medium, the 
detected underwater signal photon height is lower than the actual 
signal photon height (Figure 2). Therefore, it is necessary to 
perform refraction correction for horizontal and vertical offsets 
caused by the different refractive indices of air and water. Due to 
the relatively calm surface of supraglacial lakes, the influence of 
water surface fluctuations and tides on water depth was neglected 
in this study. After processing, these underwater signal photons 
can be used to obtain the water depth of supraglacial lakes. Figure 
2 shows the refraction correction of ICESat-2 data. The equation 
for water depth refraction correction can be expressed as Eq. (3) 
(Parrish et al., 2019): 
 

 
   1 2

1 21 tan sin
2 cD R

 
 

        
   

 (3) 

 
where  D = corrected water depth 
  θ1 = incidence angle to the water surface 
  θ2 = refraction angle in the water column 
  Rc = corrected laser range  

 

Figure 2. Illustration of ICESat-2 laser refraction correction.  
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3.4 SDB Methods with Sentinel-2 and ICESat-2 Data 

The linear bathymetric inversion model based on logarithmic 
transformation was proposed by Lyzenga (Lyzenga, 1978; 
Lyzenga, 1985), which uses a combination of multi-band 
reflectance to derive bathymetry. The equation is expressed as Eq. 
(4). 
 

    0
1

ln
N

i i i
i

Z a a L L 


       (4) 

 
where Z = water depth, 𝑎  and 𝑎  are parameters  

 L(λi) = subsurface bottom reflectance of the i-th band 

 L∞(λi) = reflectance in deeper water areas of the i-th 

band 

 

The bathymetric inversion model based on logarithmic ratio was 

proposed by Stumpf et al. (Stumpf et al., 2003) which establishes 

a linear regression relationship between band ratio and prior 

water depth using the reflectance of the blue and green bands. 

The equation is expressed as Eq. (5). 

                                                    

 
  
  1 0

ln

ln

i

j

nR
Z m m
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   (5) 

 

where  Z = water depth  
 m0, m1, and n = parameters  
 Rω (λi) = reflectance of the i-th band 
 
The BP neural network is the most widely used neural network 
in current applications, capable of mapping complex nonlinear 
relationships (Bin et al., 2016; Guo et al., 2022). Generally, the 
BP neural network consists of an input layer, a hidden layer(s), 
and an output layer, each containing several nodes. The principle 
of the BP neural network is to perform forward propagation by 
inputting the depth measurement data of ICESat-2 signal photons 
into the spectral reflectance data of Sentinel-2 through the input 
layer. After processing through the hidden layer, the data is 
transmitted to the output layer to predict water depth. If the output 
water depth result has a large error, error backpropagation is 
performed. By continuously iterating and adjusting the weights 
of each layer's nodes, the error can be reduced to a satisfactory 
level. In this study, the input layer consists of 3 nodes 
corresponding to the reflectance of red, green, and blue bands in 
Sentinel-2 images, the hidden layer consists of 11 nodes, and the 
output layer consists of 1 node. The activation function is 
Sigmoid, and the training function is Trainlm. 
 

  
Figure 3. The structure of the BP neural network in this study. 

 

4. Results  

4.1 Results of ICESat-2 Bathymetry 

In the southwest of Greenland, there are numerous supraglacial 
lakes. Figure 4 (a) shows one sample lake extraction result of the 
Sentinel-2 image on 2022/07/17. The Sentinel-2 data exhibits 
good quality and low cloud cover in the study area, which has 
minimal impact on the bathymetric inversion. Figure 4 (b) and (c) 
show the signal photon extraction and refraction correction 
results of one sample ICESat-2 data track on 2022/07/14. 
Although the ICESat-2 data contains considerable noise photons, 
the outline of the GrIS remains clearly visible, allowing us to 
identify the photons of the lake surface and lake bottom. The 
ICESat-2 photon data underwent processing, including noise 
filtering and the removal of elevation outliers along the 
supraglacial lake tracks, both excessively high and low in latitude. 
Subsequently, the DBSCAN algorithm was applied to the filtered 
data to extract photons of the lake surface and lake bottom 
(Figure 4 (b)). The x-axis represents the latitude of the ICESat-2 
laser trajectory, and the y-axis represents the elevation of the 
GrIS. Then, the refraction correction was performed on the 
extracted photons from the lake bottom to obtain the underwater 
bathymetric photons, which were used to construct the 
bathymetric inversion models (Figure 4 (c)). 
 

 
(a) 
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(b) 

(c) 

Figure 4. Examples of supraglacial lake extraction and ICESat-2 
data processing. (a) The Sentinel-2 image of the lake on 

2022/07/17. The red line represents a laser trajectory of ICESat-
2 ATL03 data. (b) The bathymetric photons extraction result of 

one sample ICESat-2 track on 2022/07/14, where red points 
represent raw data containing noise photons; blue points 

represent lake surface photons; green points represent lake floor 
photons extracted by DBSCAN. (c) The refraction correction 
result of the ICESat-2 lake floor signal photons, where blue 

points represent surface photons, red points represent lake floor 
photons before refraction correction and green points represent 

the corrected lake floor photons. 

 

4.2 Results of SDB using Sentinel-2 and ICESat-2  

The log-linear model, the log-ratio model, and the BP neural 
network model were used to perform bathymetry on the Sentinel-
2 and ICESat-2 data in July 2020. The accuracy was validated 
with points selected from the corresponding lakes in the 
ArcticDEM, as shown in Figure 5. It was observed that the 
inversion accuracy of the log-linear model was relatively low 
with R2, RMSE and MAE of 0.79, 1.15 m and 0.89 m, 
respectively. (Figure 5 (a)). Meanwhile, the accuracy of both the 
log-ratio model and the BP neural network model was relatively 
good (Figure 5 (b) and (c)). The R2, RMSE and MAE were 0.92, 
0.79 m and 0.62 m for the log-ratio model, and the R2, RMSE and 
MAE were 0.86, 0.87 m and 0.64 m for the BP model. Table 2 
shows the accuracy evaluation of the three models. However, due 
to the limited availability of sufficient ICESat-2 underwater 

depth photons as training data, the BP neural network exhibited 
relatively large errors in certain regions. Additionally, 
considering the large areas for bathymetry, the efficiency of the 
BP neural network model was relatively low. Compared to the 
other two models, the log-ratio model yielded the best accuracy 
and efficiency with the R2 of 0.92, RMSE of 0.79 m and MAE of 
0.62 m. Therefore, it was adopted for producing the final 
bathymetric maps. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Validation results of three bathymetric models. (a) 
The log-linear model. (b) The log-ratio model. (c) The BP 

neural network model. The red line is the 1:1 line. 
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Models R2 RMSE (m) MAE (m) 

log-linear model 0.79 1.15 0.89 

log-ratio model 0.92 0.79 0.62 

BP neural network 0.86 0.87 0.64 

Table 2. Accuracy evaluation of the three models. 

 

This study produced bathymetric maps with the log-ratio model 
of supraglacial lakes in the southwest of GrIS over five years 
from 2019 to 2023, as shown in Figure 6 (a)-(e), respectively. 
Due to the issue of overestimation or underestimation of water 
depth caused by anomalous pixel values during the inversion 
process, we manually removed these values based on data 
statistics. This ensured that the lake depth fell within a normal 
range. The above operations were conducted using ENVI 
software (version 5.3.1). 
 

 
(a) 

(b) 

(c) 

(d) 

(e) 

Figure 6. Bathymetry maps of supraglacial lakes in the 
southwest of GrIS from 2019 to 2023. (a) 2019, (b) 2020, (c) 

2021, (d) 2022, and (e) 2023.  

It is clear from the images that the distribution of the lake in mid-
July 2019 was relatively small compared to other years in the 
same period, and the number of lakes remained stable in 
subsequent years. The bathymetric maps revealed that the 
majority of water depths derived from the bathymetric inversion 
model for Arctic supraglacial lakes in this study area were below 
10 m. 
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5. Discussion 

5.1 Differences and Analysis of Bathymetry Models 

This study used three SDB models: log-linear model, log-ratio 
model, and BP neural network model. The linear model can 
incorporate multiple bands to construct the model, achieving high 
accuracy in shallow water areas. However, the accuracy 
decreases in deep-water areas. Moreover, there is no guarantee 
that the reflectivity of the deep-water band is less than that of the 
underground bottom, resulting in a negative difference between 
the two. During model training, the BP neural network achieved 
acceptable accuracy when compared with ArcticDEM. However, 
the construction and inversion process of the BP neural network 
model was relatively slow, resulting in longer processing times. 
Furthermore, in areas lacking training data, the BP neural 
network was unable to accurately define the relationship between 
reflectance and water depth. The log-ratio model achieved 
satisfactory accuracy in the bathymetry process, with higher 
efficiency than the BP neural network. Therefore, the log-ratio  
model was selected to produce bathymetric maps in this 
manuscript. 
 
5.2 Analysis of Lake Volume Changes 

Considering the various factors influencing polar temperatures, 
the time when the lakes reach their peak volume varies each year. 
Therefore, it is challenging to accurately extract data 
corresponding to the peak volume for each year for SDB. Instead, 
the approximate times were chosen for water depth inversion of 
each year to study the pattern of changes in water depth of polar 
supraglacial lakes. Figure 7 (a) and (b) show the morphology and 
the bathymetry of one supraglacial lake in 2019 and 2022, 
respectively. Meanwhile, to visually represent the changes in the 
volume of supraglacial lakes more intuitively, the obtained water 
depth results were multiplied by the pixel size and then summed 
to obtain the volume of supraglacial lakes in the study area, as 
shown in Eq. (6). The volume calculation results of supraglacial 
lakes from 2019 to 2023 are shown in Figure 8. It should be noted 
that the spatial resolution of Sentinel-2 imagery is 10 m here. 
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where  V = lake volume 

  Zi = water depth of the i-th pixel 
 S = pixel size 
 n = total number of pixels  
 

 
(a) 

 
(b) 

Figure 7. The morphology and bathymetry of the same 
supraglacial lake in 2019 and 2022. (a) The bathymetric map 
retrieved from Sentinel-2 on 2019/07/16. (b) The bathymetric 

map retrieved from Sentinel-2 on 2022/07/17. 
 

 
Figure 8. Lake Volume changes from 2019 to 2023 

 
By combining Sentinel-2 imagery with SDB inversion results, it 
can be observed that in 2019, both the number of lakes and their 
depths were significantly lower compared to subsequent years 
(Figure 6 (a)), while the water depth remained relatively stable in 
the following years. This phenomenon may be attributed to the 
increase in the number of supraglacial lakes due to the rise in 
Arctic temperatures from 2019 to 2020 (Zheng et al., 2023). In 
subsequent years, the water depth remained relatively stable 
(Figure 6 (b)-(e)). Besides, Figure 8 shows the changes in lake 
volume from 2019 to 2023. There was significant growth in lake 
volume in 2020 compared to the same period in 2019. However, 
the lake depth remained relatively consistent from 2020 to 2023. 
The changes in lake volume during the same period in different 
years may be related to global warming.  
 
5.3 Limitations of the method 

This polar SDB method based on Sentinel-2 and ICESat-2 has 
some limitations. The availability of high-quality ICESat-2 data 
that passes over supraglacial lakes is limited, which significantly 
restricts the accuracy of bathymetric inversion and the 
applicability of the inversion model. Occasional occurrences of 
anomalous water depth values are observed, and the direct 
transferability of the bathymetric inversion model to different 
years is challenging. As a result, when ICESat-2 data was lacking 
before 2018, the SDB method in this study could not be used to 
detect water depth changes, thus limiting the extension of water 
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depth detection to longer time series. Although ArcticDEM data 
offers high spatial resolution, its suitability for long-term 
inversion is also limited. Furthermore, the utilization of 
ArcticDEM is constrained by the reliance on the surface photon 
elevations of ICESat-2 data as a reference, making it suitable 
only as validation data within an acceptable margin of error rather 
than as training data for water depth inversion. Therefore, the 
proposed method also requires an adequate number of ICESat-2 
bathymetric photons to achieve satisfactory detecting results. 
 

6. Conclusion 

This study utilized Sentinel-2 and ICESat-2 data to derive 
bathymetry of supraglacial lakes in the southwest of Greenland 
from 2019 to 2023. The study also aims to compare the 
performance of three different SDB models in deriving 
bathymetry and detecting changes in lake volume over a long 
period. Using the log-linear model, log-ratio model, and BP 
neural network model, the bathymetry of the supraglacial lakes 
in the study regions was conducted and validated using high 
spatial resolution ArcticDEM. Results indicate that the log-ratio 
model demonstrated effectiveness in bathymetry inversion 
considering both inversion accuracy and efficiency. The R2, 
RMSE, and MAE are 0.92, 0.79 m, and 0.62 m, respectively. In 
contrast, the log-linear model exhibited larger errors in 
bathymetry in deeper regions. Additionally, due to limited 
ICESat-2 data available for long-term bathymetry across 
supraglacial lakes and certain restrictions on the training samples 
for the BP neural network, errors in the mapping relationship 
were inevitable during bathymetry in some areas. The 
bathymetry results over the past five years indicate a general 
upward trend of supraglacial lake volume in the southwest lakes 
of GrIS with a relatively large increase from 2019 to 2020 and 
subsequent years show slight increments but overall remain 
stable. The volume changes during the same period of the past 5 
years may be related to the concurrent change in temperatures 
caused by global climate warming which warrants concerns and 
further research. In summary, this study provides an SDB method 
for long-term inversion of Arctic supraglacial lake water depth, 
addressing the challenge of obtaining in-situ water depth data in 
Arctic regions. It also contributes to a deeper understanding of 
polar supraglacial lakes and serves as a reference for global 
climate change.  
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